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Abstract. The motion of
a

single bead
on an

inclined "line" made up of juxtaposed identical

beads is analytically investigated. Initially,
an entirely analytical method is presented in some

detail: the problem is tractable with the usual analytical tools
as

long as any slip motion is

ignored. Under these conditions, we show I) the existence of
a

steady regime within
a

certain

range of line slopes and it) that the mean velocity of the mobile bead may be calculated by
induction. When compared to all the series of experiments (after the adjustment of the collisional

parameter), this approach reflects well all the features displayed by experiments. The influence

of slip is then numerically investigated, but, unfortunately, the unicity of solution to motion

equations cannot be proved. Despite this uncertainty, energy considerations show that the

main dissipation process is due to collisions. The analytical model is then compared to three

alternative types of approach, namely
a phenomenological approach, an heuristical model, and

one based
on

molecular-dynamics model. The comparison throws light on the role of (solid)
friction and collisions in granular materials: here, it is found that the macroscopic coefficient of

friction (bulk resistance) is mainly due to geometrical characteristics and collisional effects.

1. Introduction

Granular media offer considerable scope for
a variety of investigations, motivated to a large

extent by industrial ill and geotechnical [2] applications. Numerous geophysical flows also

involve mixtures in granular form [3]. More recently, they have received increasing attention

from physicists [4]. For instance, as typical of more complicated systems, the study of granular
packing yields profound insights into disordered behaviour [5,6], while a sand heap may exem-

plify various phenomea, both unusual and full of complexities such as instability, non-linearity,
phase change and so on [7-12].

In all these fields of investigations, a large number of experimental studies, theoretical models,

and numerical simulations have endeavoured in the past decade to improve the understanding
of granular media, as the rich literature testifies; nevertheless, our skill on fundamental mech-

anisms is often quite fragmented as compared to other complicated media (polymer melts,
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suspensions, etc.). This failing is mainly due to the concomitance of various bothersome

phenomena, whether under static or dynamic conditions. For instance, in the language of

rheologists, experimental results on granular flows are most often obscured by all the various

causes of non-linearity (non-Newtonian flow, instability, thixotropy or phase transition) [13].
As a consequence, the most promising method for modelling granular flows currently con-

sists in deducing the macroscopic behaviour on the basis of microscopic considerations. This

approach, generally referred to as the microstritctitrai approach, has been used in most new

numerical [14-21] and theoretical models [22-27] and constitutes an alternative to other con-

tinuum theories, such as models based on thermodynamic considerations or phenomenological
relations [28-31]. But microstructural models are clearly faced, in turn, with new issues, be-

cause, on the one hand, they shift the core of difficulty from
a macroscopic level to a microscopic

one and, on the other hand, they can lead to very complicated equations or numerical schemes.

For example, when comparing the predictions of a microstructural theory with experimental
data, it is rather tricky to assess the causes of discrepancy, because it may reflect either the

lack of accuracy of the hypotheses used or the shortcoming of the approach (inadequate choice

of interaction laws, average process, etc.). In this respect, the treatment of binary collisions

within the kinetic theory and its subsequent developments is typical: initially, Newton's law for

collisions between smooth elastic particles had been widely sufficient for impulse calculations

within the kinetic theory of gases [32], and later, in the inchoate theories using this framework

for rapid granular flows [26] then, in attempts at improving kinetic models, more sophisticated
assumptions have been used: making allowance for inelasticity [33], particle roughness [25] and

change in spin [24] has clearly enhanced the accuracy of kinetic models, but in the meantime, it

has greatly complicated formulation and multiplied the number of parameters required. Fur-

thermore, it is not unusual to encounter models based on opposite assumptions and giving
similar results: in the case of avalanches on a sand heap, numerical simulations carried out

by P6schel and Buchholtz and designed to test the role of friction have provided a concrete

example of this troublesome point [34].
The basic idea of this paper is to study a problem which is as simple as possible, in the

sense that the degree of freedom, the number of control parameters and the range of possible
phenomena influencing the motion must be as low as possible and, in the meantime, it should

be typical of problems encountered in granular material. On the other hand, it is suitable

to consider a system which has already been studied experimentally and theoretically. With

this view, the following system turns out to be suitable: it consists in a bead of radius r and

mass m, in motion on a row of juxtaposed beads which have the same radius (R). This row

constitutes a bumpy "line", which can be inclined at an angle (b) to the horizontal (see Fig. I).
Accordingly, two dimensionless control parameters characterize the geonietry of the system,
namely the ratio of radii (

=
r/R and the row slope b

In a
first section, the essential features displayed by experiments are summarized. In the

follo~v~ing section, we focus on the theoretical determination of the average velocity of the mobile

bead in a steady regime. To do so, we show that a completely analytical treatment is possible
within the framework of rigid body mechanics. In Section 4, we discuss the assumption of pure

rolling and its implications in motion equations and energy balance. The last section considers

recent studies that deal with the prediction of the mean velocity of a spherical particle moving
down an inclined bumpy line.

2. Description of the Physical System

Primarily, Jan et al. carried out experiments with a bumpy line, whose beads had the same
diameter as the mobile bead ((

=
1) [35]. They tested several types of bead (steel or glass
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Fig, I. Sketch of the motion of a
bead

on a bumpy line composed of juxtaposed beads.

beads and golf balls) and various values of radius (13.5, 21.9, 25,I, and 42.5 mm). The flume

consisted in a bed layer, made up of beads closely packed together over a length of 3 m and

surrounded by two smooth sidewalls. Later, Ristow, Riguidel, and Bideau extended Jan's

results by investigating the influence of the radius ratio ( [36j. The straight bed was made up
of 400 steel beads of radius (R) 0.25 mm, confined in an L-shaped flume. Tests were conducted

for several values of bed slope. the ratio ( being comprised in the set (0.8, 1, 1.6, 2).
Jan et al. showed that in all their tests, a steady motion of the mobile bead is achieved

within a certain range of bed inclinations. In this case, they found that the mean velocity
presumably does not depend on the density of the bead, and is proportional to the square root

of the bead diameter.

Ristow's et al, results confirmed the existence of three regimes depending on the bed slope
b and the regime boundaries were plotted in the form of a phase diagram (with ( as control

parameter)

Regime A: the bead stops just after its departure regardless of its initial velocity.

Regime B: the bead reaches an asymptotic velocity.

Regime C: the beads lose the contact with bed beads and begins accelerated motion with

jumps.

In Ristow's et al. results, an inflexion point exists for curves (
=

I and 0.8 at the highest
slope values, whereas such behaviour is not observed in Jan's data. We suggest that this change
might be due, at least in part, to the transition from regime B to C, since this transition is

presumably due to the occurrence of micro-jumps and accordingly iniplies an apparent increase

in the mean velocity. It should also be noted that data corresponding to (
=

I in Jan's and

Ristow's experiments are similar but not identical: the steady motion began at 7.5° in Ristow's

experiments instead of11° in Jan's ones. This difference is probably due to the influence of

experimental apparatus (effects of sidewalls, nature of material, etc.).

It is worth noticing that a
parallel may be drawn between the existence of three phases of

motion depending on slope and the three phases of motion in open channel for granular flows:

according to Savage ill,
a steady flow exists only for a wide range of channel slopes as soon

as the slope exceeds a critical value (seemingly the angle of repose of the material) for slopes

lower than this critical slope, an "immatitre sliding flow" (transitional regime with development
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of stationary layers) takes place whereas the steady flow degenerates into a "spiashing flow"

(saltation of particles) when the channel slope is sufficiently greater than the critical slope.

More puzzling is the fact that for channel flows or a single bead rolling on a bumpy line,

the curves of mean velocity (as
a function of slope) have an

apparently similar form (see for

instance [37]).

3. Analytical Study of Pure Rolling

3.I. PRINCIPLE OF THE APPROACH. In this section, we seek to express analytically the

niean velocity of the mobile bead and the boundaries of the steady regime. Here we propose a

completely analytical treatment, which is based on the following hypotheses:

.
Ikamework: calculations are performed within the framework of rigid body mechanics.

.
Kinematics.- the trajectory of the mobile bead is assumed to be inscribed in a single

plane (one-dimensional motion) and the bead is assunied to roll without slipping (see
below).

.
Dynamics: the main forces acting on the mobile bead are the gravitational force and

the effects due to friction and collisions (see below).

.
Stability: the steady regime is implicitly assumed to exist and to be stable.

3.2. MODELLING oF CONTACT FoRcEs. The mobile bead is assumed to be mainly sub-

jected to the action of the gravitational and contact forces (with the bumpy line). Here, it

seems natural to distinguish two possible contact configurations: the rolling contact (when the

mobile bead rolls on the n~~ bead of the bumpy line) and the collisional contact (when it goes
from the n~~ bead to the following).

3.2.1. Rolling Contact. The contact between two smooth bodies generally gives rise, at

the common interface, to a tangential force due to frictional processes, which opposes motion.

According to Coulomb's law (see Eq. (33)), it is usual to distinguish two types of contact

depending on the slipping velocity at the point of contact I: I) if this velocity is zero, the motion

is referred to as "rolling without slipping" or "pure rolling" and the contact is called "sticking
contact", it) otherwise, the motion is referred to as "rolling with slipping", and slipping contact

occurs. This takes place when the tangential force exceeds the limiting friction. Here, the

coefficient of (solid) friction f, also called the Coulombic coefficient, is assumed to be constant

regardless of the slipping velocity.

3.2.2. Collisional Contact. A collision between two bodies is a very complicated event, whose

main characteristic is the very brief duration of the contact with respect to usual time scales.

Accordingly, the collisional process is assumed to be instantaneous and to provoke discontinuous

changes of linear and angular velocities of each body. These changes are theoretically and

experimentally investigated in the form of a "collisional law" between the initial and final

relative velocity.
The colinear collision between two spheres (without spin) is the simplest configuration, for

which the collisional law is Newton's law. This phenomenological relation has been theoretically
justified by Hertz on the grounds that the dynamic process of deformations during a collision

can be regarded as quasi-static and involves elastic deformations. The former assumption
is expected to be relevant in so far as the contact duration is long enough to permit stress

waves to traverse the length of both bodies many times (this condition is referred to as Love's
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criterion [38]). The latter assumption on elasticity yields a condition on the relative velocity
before impact [39]. When the impact velocity exceeds this critical value, deformations become

plastic and the coefficient of restitution (e) is introduced to account for energy lost in inelastic

deformations. As primarily suggested by Tabor for colinear impact, it is possible to justify this

phenomenological coefficient by considerations of elastoplastic deformations [38, 39].
The case of elastic oblique impact or colinear impact between bodies with initial spin is more

complicated: if the normal impulse can always be calculated by Hertz theory, the calculation

of tangential traction arising in oblique impact is intricate owing to the occurrence of stick-slip
contact [40,4 Ii. Accordingly, a complete treatment is not directly possible within the framework

of rigid body mechanics (as those proposed in [42-46] and requires thorough examination of

deformations in contact zones [47]. Continuum models, as those proposed by Maw et al. [48, 49],
Lim and Stronge [47] or Jaeger [50] have been validated by some experiments [48, 51]; however,

a rough phenomenological law is most often preferred to the detailed but intricate theory of

Maw et al. [19, 24]. In the case of two spheres, this consists in introducing both normal and

tangential coefficients of restitution (respectively
e and So) (19, 24, 51].

In our particular case, an additional difficulty arises because the collision is not binary,
but involves three beads. As a general formulation of this problem does not exist (as far as

we
know) and in absence of specific remarks in previous experimental works ion the bumpy

line), we performed some tests with steel beads of diameter I cm: qualitative observations of

our physical system showed that, apparently, no rebound occurred after impact between the

mobile bead and a row bead. Accordingly, the (normal) coefficient of restitution should be

zero and the collision should involve plastic deformations. In our context, it seems dubious

to attribute the absence of rebound to plasticity: indeed according to Johnson's analysis on

plasticity onset [38], plastic deformations occur for normal collision between spheres of the

same radius as soon as the relative impact velocity exceeds a critical value, which is about

lo cm
Is for steel beads. As mean velocities measured by Ristow or Jan et al, ranged from 4

to 14 cm Is, it is expected that collisions are elastic or slightly inelastic (e close to I). Here,

we suggest that a collision cannot be directly treated using Newton's law because, on the one

hand, involving three beads, it is not binary, and, on the other hand, Love's criterion probably
does not hold true, since the three beads involved are not isolated but on the contrary are

connected to a network of juxtaposed beads.

In the following, we assume that, even for multiple collisions, the tangential component of

the post-collisional velocity (11') is a linear function of the normal and tangential components

of the precollisional velocity V (this holds true for binary collisions [19. 51]) as follows:

j'
=

Jria, f)v 11)

where K(a, f) is a coefficient, which we call the "collisional parameter", depending on control

parameter a
and possibly on friction coefficient f (see below). K is a priori a unknown function.

3.2.3. Other Forces. In this paper, we neglect the influence of air drag and flume sidewalls

on bead motion:

The magnitude of hydrodynamic forces acting on the mobile bead is expected to be low

in comparison with the gravitational force (see [52] for a more complete analysis).

The flume action is due to the fact that the spin vector does not necessarily have a fixed

direction, and consequently a free bead never follows the top of the bead row [55] and is

forced by the flume sides to move
downwards and to roll on one side of the flume [36]

collisions with the flume sides are also possible. A possible treatment of the guidance
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action of the flume consists in regarding the mobile bead as a cylinder rather than as a

sphere. Consequently, we shall consider the gyration radius as a parameter of our model.

3.3. MOTION EQUATIONS

3.3.1. Degrees of FFeedom; Notations. Let us now consider motion on the bed bead in). O

and Gn denote respectively the mass center of the mobile and stationary beads. The studied

system clearly possesses two degrees of freedom, since the motion can be broken down into

rotation around the bead in) and spin movement. The former motion is defined using the

angle between the vertical and the line joining the two mass centers, whereas the latter is

defined via an angle ~J with respect to a reference axis (see Fig. I). In the follo~ving, we shall

add an additional assumption on the motion, namely rolling withoitt slipping, and thereby the

degree of freedom of the system shall be reduced by one (see Eq. (6)). The motion is thus

entirely determined by a single equation of variable H.

On the bead (n), rotation begins at an angle Ho and ends at an angle Hi. Obviously, both

angles take the same value regardless of the bed bead and may be calculated by considering
the mobile bead to be resting on two successive beads (see Fig. I). To do so, we introduce the

angle a which is directly related to the roughness ratio (:

~ ~~~~~~ R~
r

~~~~~~
l (~ ~~~~ i'

~~~

From Figure I, it is straightforward to find: Ho "
b

a and Hi
=

b + a. In the following, it is

rather convenient to consider dimensionless variables, and consequently, we take respectively
for time, length and force scales: I/uJo, (r + R), mg, where g denotes the gravity constant and

uJo is defined as:

°~~
r

~R' ~~~

In the following, Greek capital letters along with tilded quantities refer to dimensionless pa-

rameters. When necessary, we will employ the new paramater e, equivalent to a or (:

e=~~~=~)~=~ ~, (4)
r -smo

3.3.2. Relation Between the Mass Center and Spin Velocities. We assume a sticking contact,

so that the friction work is zero. Moreover, it is possible to link
~J and H, or at least their

derivatives, by writing that the slipping velocity at I is zero:

v(I)
=

v(O) T(#ez) x en =
0 (5)

This condition is equivalent to:

4l
=

~ ~ ~0
=

e8 (6)
r

3.3.3. Procedure of Calculation; Motion Equation. We use an induction procedure in order

to determine the mean velocity of the mobile bead. Initially, the bead is launched with a given
velocity. The calculation is performed as follows (see Fig. I):

I) Consider that the bead is in motion on a given bed bead, which
we shall assume to

be the n~~ bed bead encountered since the start of motion. From the energy balance

equation, it is possible to infer the contact duration (for the bead n) and the velocity
just before the collision with the follo~A~ing bead (n +1).
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it) The motion equation written for the previous bead is clearly valid for the bead (n + I),
except that the initial velocity is altered and needs to be calculated with allowance for

previous motion on the bead (n).

iii) Finally, the calculation of the mean velocity is obtained by induction on n.

We are seeking to establish the motion equation for motion on the bead in). This may
be performed from the energy balance as follows. The kinetic energy Ek is the sum of

two contributions: one part related to rotation energy (via b) and the other to spin energy
(via 4l):

E~
=

m((r + R)~#~ + pr~@~) (7)
2

where pr~ is the gyration radius of the mobile body (with respect to its mass
center). The

energy balance implies that any change in kinetic energy is supplied by a variation in potential

energy:

~m ((r + R)~ + pe~r~) (H~ H()
=

mg(R + r)(cos Ho cosH) (8)
2

where the angle Ho is chosen as reference angle and Ho,n denotes the initial velocity on the n~~

bead (at
= Ho) The dimensionless expression of equation (8) writes:

62 hi
~

=

~
jcoseo cos e) j9)

1+ p

3.4. CALCULATION OF THE MEAN VELOCITY

3.4.1. Principle of the Calculation. We define the (dimensionless)
mean velocity of the

mobile bead on the n~~ bed bead as:

@n
=

~~ l 2 sin a

~ ~ ~ ~~ ~~

(10)

where Tn is the contact duration (on the n~~ bead), which is obtained by integrating equa-

tion (9):

7n # /~~
~~

(II)
eo

/)jcos Ho cos H) +
b(

~
,

The appropriate change in variable enables us to write this integral in terms of elliptic func-

tions [53]

~~ =

~~~ ~ ~~

~ ,

(12)
2(1 + cos Ho) + II + p)eo,~

kn
=

/~n,
(13)

1 + p

Qn(e)
=

arcsin (I cos e)
~~~ ~ ~°~

~°~ ~ ~~ ~
~~~~l) (14)

2(cos Ho cos e) + ii + p)e~
~

F is the elliptic integral of the first kind (Legendre's function).
The equation ill is then equivalent to the following form:

7n "
~nFiflniB0)> knj + ~nfiflniBf), kn). 1~5)
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3.4.2. Induction Relations. In order to calculate the limit of the sequence in, we need to

calculate the limits of the sequences Tn and eo,«. To this end, let us display the induction

relations linking these quantities. The final velocity (just before the impact with the following
bead) is calculated from equation (9) at 8

=
Hi:

8i,n
=

)(cos
Ho cos8i) + 8(,~ (16)

p

The initial velocity on the bead (n + I) is deduced from the final velocity by way of the

collisional law. Just before the impact, the normal and tangential components of the linear

velocity are respectively 8
I,n sin 2a and b

I,n cos 2a, the spin velocity is e8
I,n.

In the following,

we shall examine two cases: I) K
=

cos2a is referred to as "perfectly smooth collision"

(continuity of velocity field: the tangential components of velocity before and after impact

are equal) and it) K
=

cos(2a) + sin~ asin(2a)/2 is postulated taking into account multiple
collisions and is calculated from data fitting (see Sect. 3.6.I.).

From equation (I) and (16), it may easily be shown that:

o
~,«+j =

Fib ~,«j iii)

where the following function has been introduced:

Fix)
=

x2K2 +
(

sin a sin b (18)
p

3.4.3. Limits of Sequence. Obviously, taking into account that F is an increasing function of

x, the sequence is always ascending or descending depending on its initial value. In addition, as

F intersects the first bisector y = x, the sequence is bounded and converges to the intersection

point, defined as £
=

F(£); solving this equation gives:

~ l~p~~~~~ ~~~~

We deduce directly the limit of bo,« and Tn, denoted respectively £o and
r:

£o
"

K£ (20)

~ =
~ifino,k)+Fin~,t)) 121)

where we used:

T~ "

fi?
122)

~
~~'

~~~~

A
=

I + cos(b a) +
~~~

~
sin o sin (24)

1 K

~~ ~~~~~~

~~ ~ ~ ~
'

~~~~

~° ~~~~~~ ~~~

~

2

~
~

~~~~
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Finally, we deduce the value of the mean velocity for a given slope b and a roughness
parameter a:

I"'~~
~(F(Qo, k) + Fin

I,
k)) ~~~~

Note that this analytical expression may be approximated: as the elliptic modulus k is always
about I, it is possible to approximate the elliptic integral of the first kind as follows:

Fin, k) m
In(tan Q + cos~~ Q)

=
argsh(tan Q) (28)

k
-

1

Thus, equation (27) is approximated by:

I°'~~ ~(argsh(tan ~~~~~rgsh(tan Qf)) ~~~~

3.5. LIMITS OF STEADY REGIME

3.5.1. Upper Limit of Steady Regime. When the bead velocity is too great, a jump occurs

owing to the centrifugal effect; in other words, the normal coniponent of the reaction force is

reduced to zero. We estimate the upper limit (defined as the minimum bed slope sufficient to

cause a jump) by writing that the normal component becomes zero at the final angle. As the

body in motion undergoes only the action of gravity and reaction forces, we deduce from the

momentum balance equation written in the mobile frame (en, et) the normal and tangential
(dimensionless) components of the reaction force:

fl
= cos 8 8~ (30a)

I
=

sin 8 Hi (30b)

The jump condition is given by: N
=

o. For a given roughness ratio, solving this equation and

making use of equation (9) and equation (20) leads to the maximum angle for which a steady
motion still exists:

~

~~ ~~~~~~
tan

~~ ~~ p)~ K2)) ~~~~

For the sake of brevity, the tilde over dimensionless quantities is omitted in the following.

3.5.2. Lower Boundary of Steady Regime. When the bed slope is too low, motion becomes

impossible: when the bead is falling in the trough between two successive beads, its kinetic

energy is not sufficient to balance the decrease in potential energy and the bead stops. For the

appraisal of the bed slope below which no motion is possible, let us consider the case where

the mobile bead just reaches the top (H =
0) of a bed bead with a zero velocity. Therefore,

making use of equation (9) and (20), it may be shown that this situation corresponds to a bed

slope bm.

~~ ~ ~~~~~~ ~l ~~~
a +

~~ ~~~~

As a conclusion, we have to distinguish three regimes according to the bed slope b:

b < bm (Regime A): the bead stops just after its departure.

bm < b < id (Regime B): the bead reaches an asymptotic velocity (given by Eq. (28)).

id < b (Regime C): the beads loses contact with the bed beads and begins
a jumping

niotion.
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Fig. 2. Variation of the mean velocity in
a

steady regime with respect to the bed slope b and for

various values of control parameter (. The broken line stands for p =
2/5 (bead) whereas the full line

represents the
case p =

1/2 (cylinder). The collisional parameter is chosen as K
= cos 20. Jan's et al.

and Ristow's et al. data
are

also shown.

3.6. COMPARISON WITH EXPERIMENTAL DATA

3.6.1. Steady Regime. In Figures 2 and 3, theoretical curves along with points corresponding

to experimental measures of Ristow et al. and Jan et al. are reported against the bed slope b

for four values of roughness parameter ( and two values of the collisional parameter K.

In Figure 2, we have compared the trend given by Jan's and Ristow's data with our theoretical

model in the case of continuity of velocity components, namely K
=

cos20. The curves of

mean velocity corresponding to either p =
1/2 (cylinder)

or 2/5 (bead)
are plotted: it turns

out that theoretical results are slightly influenced by the gyration parameter except at steeper

slopes and mean velocities, for which the relative difference between both theoretical curves

reaches about 5%. A possible explanation lies in the fact that inertia effects are significant for

larger velocities. When compared to experimental data, the trend of theoretical curves appears

as correct but is not in complete agreement with experimental data. The relative difference

ranges from 10 to 30%: it tends to decrease for larger values of ( (for which it is about 10%)
while it is greatest for smaller values off, for which it exceeds 30%. As theoretical predictions

are always lower than experimental results, we infer that the collisional parameter K actually
should be slightly larger. This can be supported by the fact that a part of collisional energy,
which is not restored in the form of a normal impulse (e

=
0), could be released in the form

of a tangential impulse. Accordingly, we have considered that the previous form K
= cos 2a is

to be corrected to account for multiple collisions and this correction on K is still a function of

a, since a multiple collision is presumably greatly influenced by the geometrical configuration
of beads at impact.

From Ristow's et al, experiments, we have chosen a single value for bach series off and

we have searched for the correct value of K for theoretical and experimental values of the

corresponding mean velocities to match; we have thus established that the function K(a)
=
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4.I. RELIABILITY oF THE AssumPTioN oN ROLLING. The formulation of the motion

equation (9) is based on the assumption that any slip at the point of contact cannot arise

during motion. This holds provided that Coulomb's condition is fulfilled, namely when the

tangential and normal coniponents verify:

T § fN ~ v(I)
=

o (33)

otherwise slip occurs:

T
=

fN and v(1) # 0 (34)

In order to check whether Coulomb's condition is fulfilled, let us introduce the function Hn
defined as the ratio of tangential to normal components:

Hn(8)
=

~
=

~~~~~
(35)

N j3 + p) cos 8 2 cos(b a) ii + p)8(
~

As soon as Hn reaches the value f, the rolling motion without slipping ceases; this arises at

an angle:

~~'" ~ ~~~~~~
~ ~ ~~(3 ~~~

~Y)

~~ ~ ~~~~
~~~~

with:
~Y =

2 cos Ho + Ii + p)b(
~Slipping motion appears

ratter quickly on account of the low value of f (say 0.1) and there-

fore, the primary assumption of rolling without slipping could appear unsuitable. However,
it will be shown later that the stick hypothesis yields a correct approximation of real motion

anyway. To substantiate this statement, we shall try to determine the complete set of motion

equations.

4.2. SET oF MoTioN ERUATIONS. The equation accounting for slipping motion is obtained

with the help of Coulomb's law. Making use of equations (34) and (30), it is straightforward
to deduce:

sine 8
=

f(cos 8 8~) (37)

It is a non-linear second-order differential equation, rather uninteresting in this form. We

expect that it may be transformed into a more suitable form, namely
a first-order equation.

With a view to decreasing the order, we shall try to express a possible solution to equation (37)
in the following form:

b~
=

ae~~ + b sin 8 + c cos 8 (38)

For this "all-purpose" solution to exist, parameters b, c and d must fulfill:

Id
=

2 f
-6 f

1 + 4 f2 (39)
4 f~ 2

~
1 + 4 f2

These constants depend only
on

the nature of the material (but not on the gyration param-
eter), whereas the coefficient a depends on initial conditions (at slip onset), in other words by
adding the subscript

n:

an =
(8$_~ b sin BG,n ccos 8G,n)e~~f~G

" (40)
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where 8G,« is the velocity at slip onset on
the n~~ bed bead.

Slip motion is characterized by a non-zero slip velocity at the point of contact. If this

velocity falls to zero, then stick motion takes place again. It is thus necessary to calculate the

(dimensionless) velocity at the point of contact:

v(Ij
=

vjo) ijez
x enj (41j

The spin velocity 4 is obtained from the balance equation for the moment of momentum

(applied at the mass center O), namely:

j~°~
~ ~l~))

"
OI x (-T~~~ j4~~

On account of equation (30b), it is easy to deduce 4l:

4l
=

~T (43)
P

During slip motion, the spin velocity at any time t is obtained after integration from the slip

onset, the initial condition being imposed by the stick motion (Eq. (6)):

+jt)
=

eoc,« +
f f /~ icos~juj -12(uj)du (44j

where tG,« is the time corresponding to slip onset it
=

0 corresponds to the start of the motion

on the n~h bead). The occurrence of slip motion considerably complicates the problem, since

the spin velocity is now a function depending on previous motion. Slip motion exists as long

as the velocity at the point of contact I fulfills:

vjI) ~ o j45)

The set of equations governing motion is given by equation (9) and (38). The motion type
(sticking or slipping contact) is controlled by a condition in the form of an inequality, namely

Coulomb's law (33) for sticking motion and the condition on velocity at the point of contact

(45) for slipping motion.

Unfortunately, in our context, it is not possible to determine a priori the actual type of

motion as long as the collisional law is not correctly known. Indeed, the variation in spin
velocity at impact entirely determines subsequent motion. It may be shown at least that two

solutions to motion equations are possible: I) motion entirely governed by slip between Ho and

Hi (referred to as "slip motion" and it) a sequence of slip and stick motion (referred to as

"stick/slip motion" ). As the existence and the unicity of the solution to a
(two-dimensional)

problem with a friction process cannot be proved (see for instance [54]), it is not possible to

choose the appropriate solution. In the following, we indicate how the two solutions are built.

4.3. SLIP MoTioN. In this case, ~ve shall consider that the complete equations of motion can

be reduced to equation (38) and (43). To calculate the mean velocity using the same method

as previously (see Eq. (10)), we need to calculate the new expression of contact duration. For

bed bead (n), the integration of the slip-motion equation makes it possible to infer the time

function, which we express as an integral function of the initial and final angles:

~i j~~
dH

"
aa

Gn(H)
(46)
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~~~~~ ~~~~~ ~~~~

G~(8)
"

i~ane~~~~ ~°~ ~ ~~~~~ ~ ~~~~ ~ ~~~~

and an denotes now:

an =

Al
~

b sin Ho qcos Ho (48)

Assuming, once again, that the initial velocity on bead (n +1) can be deduced from the

final velocity on bead (n) via the collisional parameter K, the induction relation on the final

velocity is:

G(x)
=

/(K2x2 b sin Ho ccos
Ho)e4f° + b sin Hi + ccos Hi (49)

The limit of the final-velocity sequence is then the fixed point £' of the function G:

~j
b sin Hi + ccos Hi (b sin Ho + cos

Ho)e4f°
~~~

i j~2~4fa

As a consequence, the limit of (T[) is:

~' lej~ ~H) ~~~~

where:

G(H)
=

~la~e2f(9-80)+bsinH+ccosH, and (52)

am =

K~£'~ b sin Ho c cos Ho (53)

Unfortunately, there is no analytical solution to this integral expression, and we need to

resort to either a numerical resolution or an approximation. We shall provide a clue for the

latter choice; it is possible to give a fairly good approximation by expressing G as a function

depending on circular sine and cosine functions. To this end, we point out that from a second

order expansion, the exponential function can be approximated by:

e~ re 2 + sin x cos x
(54)

x -
o

By so doing, integration becomes possible in terms of elliptic functions. One obtains for ©:

Die)
=

~la[ + b'sin H + c' cos H (55)

where:

a)
=

a~(1+4f~)e~~f~° (56a)

b'
=

b+2a~fe~~f~° (56b)

c'
= c 4a~ f~e~~f~° (56c)

ii
=

~'ifj~(eo), k') F(~(e), k')) (57)

where we used:

k'~
=

~~

,

(58a)
au + p

~~
~

~ p
~~~~~

p =

fi~, (58c)
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along with the variable change:

B(V)
"

arcsin
? ~~ ~~~(V) c' cos(V)

2P
(59)

Making use of equation (lo) and (57) or (51) leads to the new expression of mean velocity:

uj~
~~ =

~ ~j ~
m

~
~(j °

(Go)
, ~ ~

This calculation is reliable as long as the condition (45) holds true. If 40,« denotes the initial

spin velocity for the n~~ bead, then the final spin velocity is on the basis of equation (44)

+~,«
=

+o,~ +
ff

/~'(cos e(tj 02(tjjdt j&i)

where Bit) is the solution to motion equation (38). An approximated solution is obtained

using the above techniques (Eq. (54))

b' + 2psn(t/~') cn(t/~')
(62)~(~)

" ~ ~ ~~~~~~ p(1 2 sn2(t/~')) C'

where "sn" and "cn" are, respectively, the Jacobian sine and cosine. As before, we shall

suppose that the spin velocity just after the collision 4lo,«+1 is linked to the pre-collisional

velocity 4i,n via a collisional paranieter L, which should be a function of a, f and bi,n (I.e.
£'). Accordingly, the asymptotic value of the initial spin velocity is:

+o
= ~([~jl'fj~j~~~ /~'(cosejt) 02(t))dt j&3)

As the function L cannot either be known theoretically or fitted experimentally, it is not

possible to check the condition (45).

4.4. STICK/SLIP MoTioN. An alternative method exists for building a solution to the

complete equations of motion. It consists in noting that sticking motion is possible within the

range of slopes [-eG,n,eG,«], given by equation (36). Outside this range, slipping motion

takes place. The sequence of motion for the n~~ bead depends on the value of the initial angle
Hoi if Ho < eG,«, then the motion includes three successive phases (slip, stick and slip again);

otherwise it encompasses two stages (stick then slip). As eG,n has a value which is always close

to 15° (see Eq. (36)) and on account of the values of Ho, we shall consider in the following
only the latter sequence of motion. Otherwise, the calculation is more complicated (among
other things, the Eq. (36) is no longer true and must be replaced by an induction calculation);

moreover, it may be shown this complete calculation yields only slightly different results.

In this perspective, we shall calculate the duration of each motion phase in order to calculate

the contact duration on the n~~ bead. Here, tG,« denotes the duration of the stick phase on

the bead (n), using equation (15):

~G,n "
~ni~iflni~0)? ~n) + ~iflniBG,n), kn)) i~~)

while, the total duration writes:

ej ~~
~0

" ~G,n +
/

~ ~~
(65)

8G,n "
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~~~~~

Hn (e)
= jla$e~~~~ ~~'"~ ~ ~~~ ~ ~ ~ ~°~ ~ ~~~~

(which can be approximated as previously for G) and a$ denotes:

a$
=

)
cos Ho + e( bsin eG,n (c +

))
cos eG,n (67)

P P

As previously, showing the convergence of the sequence fin is tantamount to demonstrating
the convergence of the final velocity on bead in), defined from an induction relation 7i. Even

if the limit of this sequence cannot be found analytically,it is easy on account of equation (36),
(38) and (67), to show that a fixed point £" exists since the induction function 7i asymptotically
behaves as 7i(x)

oc
Ke~f"z, thus the corresponding curve intersects the line y = x, provided

that Ke~f° is lower than I. The mean velocity is directly deduced:

U)[,~~ =
~~~~° (68)

T

4.5. COMPARISON oF SoLuTioNs. As the collisional law is not correctly known, any seri-

ous prediction of the previous equations (60) and (68) needs an adjustment of the collisional

parameter for each motion sequence; consequently, the comparison (in ternis of mean velocity)
between both solutions will be biased, since the value of K would be twofold. Here, we prefer to

only consider the following problem: for any set (o, b), we are seeking the adequate collisional

parameter K from experimental data. This has been numerically achieved by searching for a

root to the equation:

Uth(K, a, b)
=

U~xp_(a, b) (69)

where @th is the theoretical mean velocity (given by Eq. (60) or (68) whereas Uexp is the mean

velocity experimentally measured for the set (a, b).
Corresponding values of K are plotted in Figure 5 and 6 for each motion sequence. In

Figure 5, the stick-slip motion implies that K tends towards cos(2a). The difference between K

and cos(20) is probably due to the first phase of slip which has been ignored. The interpretation
of this asymptotic behaviour is clear: the collision entails no discontinuity in tangential velocity
(of mass

center). In this perspective, this implies that the previous adjustment of K (see
Sect. 3.6.) could be an artefact: actually, K would represent the influence of the slip phase

rather than an effect of multiple collisions. In Figure 6, motion including only one slip phase

means that K should be a decreasing function of the final velocity, but we have failed to yield

any interpretation to this behaviour. In the light of these comments, the sequence of stick-slip

motion appears to us to be the most physical solution.

It is also of interest to compare theoretical predictions with and without a slip phase. As an

example of errors caused by the rolling assumption, we have plotted in Figure 7 the variation

of local velocity with respect to the angle of position e by considering either a (pure) rolling or

slipping motion. For (
=

2 and b
=

6°, the relative difference between both solutions is about

6$lo whereas it reaches 15% for (
=

I ii
=

12°). The pure-rolling assumption turns out to be

all the more adequate since the parameter ( is large. This is readily explained by the fact that

the angular trajectory is 2a, and consequently, on account of equation (2) it decreases when

( increases. This fairly correct agreement between both predictions explains the reason why

pure rolling motion is a good approximation of real motion (in the sense that the complete

solution encompassing phases of sticking and slipping is thought to be a correct representation
of reality).
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a steady state) calculated from

equation (69) in the case of a stick /slip solution, as given by equation (68) for various values of the

ratio (. K is calculated from Ristow's data for (
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function of the final velocity (in

a steady state) calculated from

equation (69) in the case of a slip solution, as given by equation (60) for various values of the ratio (.
K is calculated from Ristow's data for (

=
0.8, 1, 1.6, and 2.
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Fig. 7. Comparison of the velocity calculated with either the assumption of pure rolling motion

(broken line), slip motion (discontinuous line)
or

stick/slip motion (continuous line), given by equa-
tion (9)

or
(38). The local velocity is represented for two particular

cases:
((

=
2, 6

=
5.73° and

((
=

1, 6
=

11.53° ). The friction coefficient is f
=

0.I and p =
2/5.

4.6. DIscussIoN oF BOTH MODELS. The above analysis "has focused on two essential

developments, depending on the account of the slip phase:
In the former development, we have considered a motion vTithout slipping and we have

taken advantage of the fact that a rolling assumption offers a significant gain in mathematical

formulation and provides an entirely analytical solution. Although this hypothesis turned out

to be crude, the consistency of our analytical nlodel has been proved from comparisons with

experimental data: it was able to correctly predict the mean velocity of the mobile bead as

a function of control parameters h and ( as well as the existence of three motion regimes. In

addition, this method provided further indicatibns on our
physical system:

First, it is worth noticing that steady motion is possible; in other words, from a macroscopic
point of view, a "force" balances the downward component of gravity force. It is quite easy

to convince oneself that this force is only due to energy loss during collisions: in this respect,

we should consider the part of energy lost in collisions and the gain in potential energy (over

a path corresponding to the distance between two successive collisions). The correiponding
ratio may be expressed as:

~i~ ~~~~in
~ ~~

~~~~

where AEk is the variation in total kinetic energy. In this balance about 30% of the kinetic

energy is due to the rotational motion.

Using equation (19), we find naturally:

~~~
=

-l 171)
EP

Secondly, the analytical approach has shown that a suitable determination of the collisional

law via the collisional parameter K) is crucial for the correct calculation of mean velocities and
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that the gyration parameter does not apparently play a significant role in the mean motion.

The collisional parameter cannot be predicted by current modelling of binary collisions and, on

the contrary, it is thought to pertain to energy transfer (from normal to tangential direction)
in multiple collisions.

The second development investigates the occurrence and influence of a slip phase in the

motion of the bead. As matters stand, it has been shown that the unicity of the solution to

the motion equations cannot be proved. Furthermore, with allowance for friction, the energy
conservation equation (70) becomes:

~i~ ~~~
~~~~~in~~~"~

~~~~

Unfortunately, this ratio cannot be calculated analytically, since no analytical expression
for £" and 4l exists. Nevertheless, considering only dissipations due to translational kinetic

energy and taking for K the values given by equation (69),
we find from Ristow's data that the

ratio of translational kinetic energy to potential energy always ranges from 74% to 94%. Thus,

even taking into account slip motion, the collisional process constitutes the main dissipation
compared to the frictional effect within the range of Jan's and Ristow's experiments.

5. Survey of Alternative Approaches

In the following, a thorough analysis of three model types is presented: Jan's model is phe-
nomenological in the sense that his analysis is intended to represent experimental data as

simply as possible by considering energy balance [35] Jaeger et al. proposed a more sophisti-
cated model supported by heuristic arguments [55], whereas Ristow et al. performed a series

of numerical simulations based on methods used in molecular dynamics [36].

S-I- PHENOMENOLOGICAL APPROACH

5.1.1. Principle. In order to estimate the mean velocity (space average), Jan et al. consid-

ered, in a steady regime, the energy balance over a length 2R between two successive colli-

sions [35]. The gain in potential energy must be lost in friction and inelastic dissipations due

to collisions:

mg2R sin b
=

ml@~ + pmg2Rcos b (73)

where p is a friction coefficient, that the authors called "bulk resistance coefficient", and ~ a

coefficient pertaining to collisional dissipations. From this balance, the (dimensionless) mean

velocity is easily inferred:

=

~
~) ° (Sin b p cos b) (74)

5.1.2. Comparison with Experimental Data and Discussion. In Figure 8, we have plotted

@~ /cos# as a function of tan h. According to their authors, the model successfully captured
the trend for the data series (

=
1. The friction coefficient is found to be close to 0.13, which is

the usual order of magnitude for the Coulomb coefficient of steel. However, without resorting
to parameter fitting, the model is unable to give correct values for other values of (. This

difficulty may be circumvented by fitting both parameters I and p from experimental data.

From Ristow's series, we found that the more appropriate fitting is respectively for I and p
(as functions of a):

1
=

0.063e~'~~~~~° (75)

p =

0.0025e~.~~~~~° (76)
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Fig. 8. Variation of u~/
cos 6 as a

function of tan 6. The curves given by Jan's model are
plotted

with allowance for the fitting (75) and (76). Jan's et al. and Ristow's et al. data
are also shown.

By way of this adjustment, Jan's model comes closer to describing the observed features.

Nevertheless, we can point out that it is tricky to propose an interpretation of the coeffi-

cients introduced in Jan's model. Indeed, the model is based upon frictional and collisional

dissipations via ~ and p:

I) With regard to collisions, the authors related the energy loss to the mean velocity,
whereas it actually depends on the final velocity along with spin velocity (at impact). As the

mean and final velocities are not closely related, the two expressions (73) and (70) are not

equivalent. Here the ratio of collisional loss to potential energy is written as:

f 2 sin a sin h
~~~~

It ranges from 0.24 to 0.78, which differs considerably from the previous range for stick /
slip motion [0.74, 0.94] or the value for stick motion (I).

ii) With respect to the friction coefficient p, our own
results cast some doubt on the

interpretation as a solid friction coefficient. By extending the author's hypothesis, we also

suggest that p is the expression of macroscopic ("bulk") friction, due to a large extent to

geometrical constraints and collisional effects. To show that, we have compared both analytical
expressions given by equation (74) and (27). It is straightforward to show that:

p =
lim tan h (78)
u-0

T~~~"
(I K~ sin a (79)~ (l + K2) cos a + 2K

The equation (79) yields friction coefficient values accurate to within to 15%, when com-

pared to the fitted values (76). The parallel may illuminate the notion of macroscopic frictiin,
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which is used, for example, with the internal friction angle or the repose angle for a sand heap.
P6schel and Buchholtz concluded, in a similar way, that friction phenomena are presumably

more attributable to particle geometry than solid friction Coulomb's law) [34], while recent ex-

periments carried out by Abriak on a triaxial and numerical simulations performed by Cambou

confirmed the slight dependence of the friction angle on the Coulomb coefficient [23, 56].

5.2. HEURISTIC MODEL

5.2.1. Principle. In order to explain the hysteresis phenomena commonly observed in gran-
ular avalanches, Jaeger et al. proposed a model, based on heuristic considerations, which

expressed the mean frictional force acting on a single particle within a bulk [55]. This force

can be separated into two contributions: one part related to the collisional process (R~) and

another to dissipations due to friction and variations in potential energy (Rp ). After examining
the asymptotic behaviour of these terms at low and large shear-rates, the authors proposed
the following extrapolated form:

R
=

R~ + Rp
=

(a3v~ +
~~

~

)mg
cos h, (80)

1 + a2v

where the dimensionless velocity is used:

and where a2 and a3 are constants pertaining to particle geometry and energy loss during
collisions, while al is a constant rendering the depth of depression as well as the solid friction;

al is related to the angle of maximum stability for
a sand heap. The previous expression

exhibits a minimum provided that the coefficients fulfill:

aia2 > a3 (82)

From the form proposed by Jaeger et al. (Eq. (80)),
we found that, in our context, the

steady-state condition implies:

~ al (83)~~~ ~ ~~~ ~
l + a2v2

By performing the variable change: X
=

v2, this expression is equivalent to a second-order

polynomial:
a2a3X~ + X(a3 a2 tan b) + al tan b

=
0 (84)

Real square roots of this equations exist if A > 0, where A is

A
=

(a3 + a2 tan b)~ 4aia2a3

ul
=

(a3 + a2 tan b 2 aia2a3)(a3 + a2 tan b + 2 aia2a3) (85)

The existence of real square roots and how many may be found, depend on the sign of A.

All the possible cases are summarized in Table I.

Note that if we have: 2i<
(86)

a3
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Table I. Several solutions to equation (8$) depending to slope and parameters a2, a3.

a3 > a2 tan a3 < a2

tan b < al no positive two

tan > b~~ (2 ~~~~ l) square root square roots
a2

~
> al one one

square root square roots

tan b < al no positive one positive

tanb= ~~(2 ~~~~ -l) square root square root
a2

~
tan > al one one positive

square root root

no solution no solution

~~~~ ~
a fl ~~

then motion is always possible regardless of the bed slope, which is unphysical. Accordingly,

we shall assume that such
an

inequality is never fulfilled. We can
deduce the expression of

mean velocity, in so far as a positive root exists:

V
=

(sin b X(b) cosb) (87)
a2e

where we used the function x of slope b:

x(b)
=

(a3 la3
+ a2 tanb)2 4aia2a3) (88)

a2

5.2.2. Comparison with Experimental Data and Discussion. The expression of the mean

velocity is similar to the one found in Jan's model, except that the friction coefficient is replaced

by the function ~(b), which also depends on al, a2, and a3. We have attempted to fit these

parameters using experimental data. To that end, we express the mean velocity as a function

of tan b:

~~
~~~~~~ ~~~~~~~~~ ~~~~~~~

~~~~

By taking several possible combinations of data for the same series, we unfortunately found

that these parameters vary significantly as a function of the slope depending on the set cho-

sen from the data: for example, in the case off
=

1, al "
0.131; 6.11 < a2 < 20.83 and

1.2 < a3 < 1.5. We nevertheless found a rough set of parameters adjusted from each series of

(. The coefficient al was always chosen to be equal to the minimum slope necessary for steady

motion. Corresponding fitted curves are plotted in Figure 9. The global trend is correct, but

fails to represent details.

In addition, Jaeger's model predicts three regimes according to the bed slope, as summarized

in the previous table: a steady regime occurs when tan b is in excess of al, whereas a bi-stable

regime arises if the slope is between:

al > tan b >
~~

2fi-
1 (90)

a2 a3
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5.3. MOLECULAR-DYNAMICS MODEL

5.3.1. Principle. Using methods for modelling assemblies of molecules (molecular dynam-
ics), Ristow et al. performed numerical simulations of the motion of a single bead on a bumpy
line [36]. This deterministic approach, commonly used in most numerical investigations on

granular materials, proves to be fruitful because it makes it to estimate flow properties (ve-
locity, density, and so on) inside the material without disturbing the flow field contrary to

laboratory experiments (see the reviews [57, 58]). Within this framework, the force 3~ results

from collisional interactions between particles:

-kn(r~ + rj en(r~ rj))P ~inmeRen(F~ Fj)
11

=
(91)

-~i~meR(et(f~ fj) + r~uJ~ + rjuJj)

where r~ denotes the position vector of the mass center of i~~ bead with respect to a fixed point
O, uJ~ is the spin velocity, and meR the reduced mass:

meR =

~~~~ (92)
m~ + mj

The constant kn is Young's modulus, ~in the damping coefficient in the normal direction, ~i~

and fl are constants accounting, respectively, for the transfer of translational kinetic energy

into rotational energy and for elastic deformation. In their tests, the authors took the following
values: kn

=
107 Pa, fl

=
1.5, ~in =

1000 Hz (e
=

0.7),
~i~ =

100 Hz. It should be noted that

they did not take solid friction into account. We should point out that the physical parameters
used by Ristow et al. are different from usual values: for instance, Young's modulus is 2 x

10~

less than the common value for steel and a non-zero coefficient of restitution should result in

a rebound, which has not been experimentally observed.

5.3.2. Comparison with Experimental Data and Discussion. The predictions of the numer-

ical model are plotted in Figure 10 and can be compared with the experimental data. This

numerical model yields correct trends for mean velocities and changes in phase; the relative

difference between experimental data and numerical results does not exceed 40%.

6. Conclusion

A simple physical system, consisting in the motion of a single bead on an inclined bumpy

line, has been studied using various approaches. Our analytical approach, complemented by
numerical analysis, has raised several crucial points: I) a steady regime exists within a certain

range of bed slopes (whose limits depend on the radius ratio ( and the collisional parameter
K), because the gain in potential energy is mainly lost in collisions, and to a lesser degree
in friction; it) no rebound occurs in the regime B; iii) the chief parameter is the collisional

parameter K whereas the gyration parameter p plays a minor role. Moreover, the assumption
of pure rolling makes it possible to approximate the major features of the physical system. The

agreement becomes very good when the value of K is adjusted using experimental data; in this

perspective, K is expected to be due to collisional effects. In fact, slipping effects seem to be

the actual cause, as numerical tests (accounting for slipping motion) show more accurately.
This simple example provides clear evidence that the discrepancy between experimental and

theoretical results can be tricky to analyse.
In parallel, other approaches have been tested. The simple model of Jan et al. requires an

appropriate adjustment of frictional and collisional parameters to correctly predict the mean

velocity. The coefficient of macroscopic friction is found to be mainly a function of collisional
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and geometrical characteristics, depending only slightly on solid friction. This relation can shed

light on the notion of the internal friction angle used in soil mechanics. Although intermittent

regimes have been observed for flows on sand heaps or down open channels, there is no experi-
mental evidence that such a regime exists for our physical system, and consequently, there are

few reasons in our context to use the sophisticated model of Jaeger et al., which requires the

adjustment of three parameters. The trend given by the numerical model of Ristow et al. is

roughly correct, but is based on the use of unphysical values for material parameters.

A central point in the development of the microstructural model has not been addressed in

this paper: microstructural models are generally concerned with systems composed of a very
large amount of particles, and it is precisely this large number which makes it possible (for
instance, in the kinetic theory of gases) to describe the mean behaviour. In this respect, the

low accuracy of the molecular-dynamics model of Ristow et al. is not surprising in the case of

a single bead rolling on a bumpy line, but is not proved for larger systems.
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