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3.1 Introduction

This chapter gives an overview of the major current issues in rheology through
a series of different problems of particular relevance to geophysics. For each
topic considered here, we will outline the key elements and point the reader to
ward the most helpful references and authoritative works. The reader is also
referred to available books introducing rheology [1,2] for a more complete pre-
sentation and to the tutorial written by Middleton and Wilcock on mechanical
and rheological applications in geophysics [3]. This chapter will focus on mate-
rials encountered by geophysicists (mud, snow, magma, etc.), although in most
cases we will consider only suspensions of particles within an interstitial fluid
without loss of generality. Other complex fluids such as polymeric liquids are
rarely encountered in geophysics.

The mere description of what the term rheology embraces in terms of scien-
tific areas is not easy. Roughly speaking, rheology distinguishes different areas
and offshoots such as the following:

• Rheometry. The term “rheometry” is usually used to refer to a group of
experimental techniques for investigating the rheological behavior of mate-
rials. It is of great importance in determining the constitutive equation of
a fluid or in assessing the relevance of any proposed constitutive law. Most
of the textbooks on rheology deal with rheometry. The books by Coleman,
Markovitz, and Noll [4], Walters [5] and by Bird, Armstrong, and Hassager
[6] provide a complete introduction to the viscometric theory used in rheom-
etry for inferring the constitutive equation. Coussot and Ancey’s book [7]
gives practical information concerning rheometrical measurements with nat-
ural fluids. Though primarily devoted to food processing engineering, Steffe’s
book presents a detailed description of rheological measurements; a free sam-
ple is available on the web [8]. In Sect. 3.2, we will review the different tech-
niques that are suitable to studying natural fluids. Emphasis is given both to
describing the methods and the major experimental problems encountered
with natural fluids.

• Continuum mechanics. The formulation of constitutive equations is prob-
ably the early goal of rheology. At the beginning of the 20th century, the
non-Newtonian character of many fluids of practical interest motivated Pro-
fessor Bingham to coin the term rheology and to define it as the study of the
deformation and flow of matter. The development of a convenient mathemat-
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ical framework occupied the attention of rheologists for a long time after the
Second World War. At that time, theoreticians such as Coleman, Markovitz,
Noll, Oldroyd, Reiner, Toupin, Truesdell, etc. sought to express rheological
behavior through equations relating suitable variables and parameters rep-
resenting the deformation and stress states. This gave rise to a large number
of studies on the foundations of continuum mechanics [6]. Nowadays the
work of these pioneers is pursued through the examination of new problems
such as the treatment of multiphase systems or the development of nonlo-
cal field theories. For examples of current developments and applications to
geophysics, the reader may consult papers by Hutter and coworkers on the
thermodynamically consistent continuum treatment of soil–water systems
[9,10], the book by Vardoulakis and Sulem on soil failure [11], and Bedford
and Dumheller’s review on suspensions [12]. A cursory glance at the liter-
ature on theoretical rheology may give the reader the impression that all
this literature is merely an overly sophisticated mathematical description of
the matter with little practical interest. In fact, excessive refinements in the
tensorial expression of constitutive equations lead to prohibitive detail and
thus substantially limit their utility or predictive capabilities. This probably
explains why there is currently little research on this topic. Such limitations
should not prevent the reader (and especially the newcomer) from studying
the textbooks in theoretical rheology, notably to acquire the basic principles
involved in formulating constitutive equations. Two simple problems related
to these principles will be presented in Sect. 3.3 to illustrate the importance
of an appropriate tensorial formulation of constitutive equations.

• Rheophysics. For many complex fluids of practical importance, bulk behavior
is not easily outlined using a continuum approach. It may be useful to first
examine what happens at a microscopic scale and then infer the bulk proper-
ties using an appropriate averaging process. Kinetic theories give a common
example for gases [13] or polymeric liquids [6], which infer the constitutive
equations by averaging all the pair interactions between particles. Such an
approach is called microrheology or rheophysics. Here we prefer to use the
latter term to emphasize that the formulation of constitutive equations is
guided by a physical understanding of the origins of bulk behavior. Recent
developments in geophysics are based on using kinetic theories to model bed
load transport [14], floating broken ice fields [15], and rockfall and granular
debris flows [16]. It is implicitly recognized that thoroughly modeling the
microstructure would require prohibitive detail, especially for natural flu-
ids. It follows that a compromise is generally sought between capturing the
detailed physics at the particle level and providing applicable constitutive
equations. Using dimensionless groups and approximating constitutive equa-
tions are commonly used operations for that purpose. In Sect. 3.4, we will
consider suspensions of rigid particles within a Newtonian fluid to exemplify
the different tools used in rheophysics. Typical examples of such fluids in
a geophysical context include magma and mud. Chapters 4 and 14 provide
further examples of rheophysical treatments with granular flows.
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Other aspects of rheology, such as complex flow modeling and computational
rheology, are not addressed in this introductory chapter. Chapter 2 in this book
introduces the reader to the main rheological properties (viscoplasticity, time-
dependent behaviour, etc.) encountered in geophysics. The reader is referred to
examples of application to geophysical problems that are given in other chapters,
notably Chap. 7 for lava flows, Chap. 13 for snow avalanches, Chaps. 22 and 21
for mud and debris flows.

3.2 Rheometry

At the very beginning, the term rheometry referred to a set of standard tech-
niques for measuring shear viscosity. Then, with the rapid increase of interest
in non-Newtonian fluids, other techniques for measuring the normal stresses
and the elongational viscosity were developed. Nowadays, rheometry is usually
understood as the area encompassing any technique which involves measuring
mechanical or rheological properties of a material. This includes visualization
techniques (such as photoelasticimetry for displaying stress distribution within
a sheared material) or nonstandard methods (such as the slump test for evalu-
ating the yield stress of a viscoplastic material). In most cases for applications
in geophysics, shear viscosity is the primary variable characterizing the behavior
of a fluid. Thus in the following, we will mainly address this issue, leaving aside
all the problems related to the measurement of elongational viscosity. Likewise,
the description of the most relevant procedures in rheometric measurement is
not addressed here. We will first begin by outlining the main geometries used
in rheometry. The principles underlying the viscometric treatment will be ex-
posed in a simple case (flow down an inclined plane). Then, we will examine the
most common problems encountered in rheometry. We will finish this section by
providing a few examples of rheometric measurements, which can be obtained
without a laboratory rheometer.

3.2.1 Standard viscometers

The basic principle of rheometry is to perform simple experiments where the
flow characteristics such as the shear stress distribution and the velocity profile
are known in advance and can be imposed. Under these conditions, it is possible
to infer the flow curve, that is, the variation of the shear stress as a function
of the shear rate, from measurements of flow quantities such as torque and the
rotational velocity for a rotational viscometer. In fact, despite its apparent sim-
plicity, putting this principle into practice for natural fluids raises many issues
that we will discuss below. Most rheometers rely on the achievement of curvi-
linear (viscometric) flow [4]. The simplest curvilinear flow is the simple shear
flow achieved by shearing a fluid between two plates in a way similar to New-
ton’s experiment depicted in Sect. 3.3. But, in practice many problems (fluid
recirculation, end effect, etc.) arise, which preclude using such a shearing box
to obtain accurate measurements. Another simple configuration consists of an
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inclined plane or channel. To exemplify the viscometric approach, we will show
how some flow properties such as the discharge equation (variation of the fluid
discharge as a function of the flow depth) can be used to infer the constitu-
tive equation characteristics. We consider a gravity-driven free-surface flow in
a steady uniform regime down an inclined channel. The plane is tilted at an
inclination θ to the horizontal. We use the Cartesian coordinate system of origin
0 and of basis ex, ey, ez, as depicted in Fig. 3.1.

e

free surface y=h
0 u(y)

ey

x

Fig. 3.1. Definition sketch for steady uniform flow

The velocity field u only depends on the coordinate y and takes the following
form: ux = u(y), uy = 0, and uz = 0, where u is a function of y to be deter-
mined. Accordingly, the strain-rate tensor γ̇ = (∇u + t∇u)/2 has the following
components in the coordinate system:

γ̇ =
γ̇

2


0 1 0
1 0 0
0 0 0


 , (3.1)

where the shear rate γ̇ is defined as a function of the coordinate y and implicitly
of the inclination θ: γ̇(y) = (∂u/∂y)θ. The momentum balance can be written
as:

�
du

dt
= �g + ∇.σ , (3.2)

where � and g respectively denote the local material density and gravitational
acceleration. We assume that there is no slip at the bottom: u(y) = 0. Further-
more, we assume that there is no interaction between the free surface and the
ambient fluid above except the pressure exerted by the ambient fluid. Notably,
we ignore surface tension effects on the free surface. Without restriction, the
stress tensor can be written as the sum of a pressure term p and a deviatoric
term called the extra-stress tensor s (see also Sect. 3.3) [2,4]: σ = −p1+s. For a
homogeneous and isotropic simple fluid, the extra-stress tensor depends on the
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strain rate only: s = G(γ̇), where G is a tensor-valued isotropic functional. In
the present case, it is straightforward to show that the stress tensor must have
the form:

σ = −p1+

 sxx sxy 0
sxy syy 0
0 0 szz


 . (3.3)

Thus, the stress tensor is fully characterized by three functions: the shear stress
τ = σxy = sxy, and the normal stress differences: N1 = sxx − syy and N2 =
syy −szz, called the first and second normal stress differences, respectively. Since
for steady flows acceleration vanishes and the components of s only depend on
y, the equations of motion (3.2) reduce to:

0 =
∂sxy

∂y
− ∂p

∂x
+ �g sin θ , (3.4)

0 =
∂syy

∂y
− ∂p

∂y
− �g cos θ , (3.5)

0 =
∂p

∂z
. (3.6)

It follows from (3.6) that the pressure p is independent of z. Accordingly, inte-
grating (3.5) between y and h implies that p must be written: p(x, y)−p(x, h) =
syy(y) − syy(h) + �g(h− y) cos θ. It is possible to express (3.4) in the following
form:

∂

∂y
(sxy + � g y sin θ) =

∂p(x, h)
∂x

. (3.7)

Equation (3.7) has a solution only if both terms of this equation are equal to a
function of z, which we denote b(z). Moreover, (3.6) implies that b(z) is actually
independent of z; thus, in the following we will note: b(z) = b. The solutions to
(3.7) are: p (x, h) = bx+c and sxy(h)−sxy(y)−� g y sin θ = b(h−y), where c is a
constant, which we will determine. To that end, let us consider the free surface.
It is reasonable and usual to assume that the ambient fluid friction is negligible.
The stress continuity at the interface implies that the ambient fluid pressure p0
exerted on an elementary surface at y = h (oriented by ey) must equal the stress
exerted by the fluid. Henceforth, the boundary conditions at the free surface
may be expressed as: −p0ey = σey, which implies in turn that: sxy(h) = 0 and
p0 = p(x, h)− syy(h). Comparing these equations to former forms leads to b = 0
and c = p0 + syy(h). Accordingly, we obtain for the shear and normal stress
distributions:

τ = �g(h− y) sin θ , (3.8)

σyy = syy − (p− p0) = −�g(h− y) cos θ . (3.9)

The shear and normal stress profiles are determined regardless of the form of the
constitutive equation. For simple fluids, the shear stress is a one-to-one function
of the shear rate: τ = f(γ̇). Using the shear stress distribution (3.8) and the
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inverse function f−1, we find: γ̇ = f−1(τ). A double integration leads to the flow
rate (per unit width):

q =
∫ h

0
dy

∫ y

0
f−1(τ(ξ)) dξ . (3.10)

Taking the partial derivative of q with respect to h, we obtain:

γ̇ = f−1(τ(h)) =
1
h

(
∂q

∂h

)
θ

. (3.11)

This relation allows us to directly use a channel as a rheometer. The other normal
components of the stress tensor cannot be easily measured. The curvature of the
free surface of a channeled flow may give some indication of the first normal stress
difference. Let us imagine the case where it is not equal to zero. Substituting the
normal component syy by syy = sxx −N1 in (3.5), then integrating, we find:

sxx = p+ �gy cos θ +N1 + d , (3.12)

where d is a constant. Imagine that a flow section is isolated from the rest of the
flow and the adjacent parts are removed. In order to hold the free surface flat
(it will be given by the equation y = h, ∀z), the normal component σxx must
vary and balance the variations of N1 due to the presence of the sidewalls (for
a given depth, the shear rate is higher in the vicinity of the wall than in the
center). But at the free surface, the boundary condition forces the normal stress
σxx to vanish and the free surface to bulge out. To first order, the free surface
equation is:

−�gy cos θ = N1 + d+ O(y) . (3.13)

If the first normal stress difference vanishes, the boundary condition −p0ey =
σey is automatically satisfied and the free surface is flat. In the case where
the first normal stress difference does not depend on the shear rate, there is no
curvature of the shear free surface. The observation of the free surface may be
seen as a practical test to examine the existence and sign of the first normal stress
difference and to quantify it by measuring both the velocity profile at the free
surface and the free-surface equation. Computation of the shear-stress function
and normal stress differences is very similar for other types of viscometers. Figure
3.2 reports the corresponding functions for the most common viscometers. All
these techniques are robust and provide accurate measurements for classic fluids,
with uncertainty usually less than 2%. For geophysical fluids, many problems of
various types may arise.

First, the viscometric treatment relies on the crucial assumption that the
extra-stress tensor is a one-to-one function of the strain-rate tensor only (class
of simple fluids). Many classes of material studied in geophysics are not in fact
homogeneous, isotropic, or merely expressible in the form σ = −p1+ s(γ̇). For
instance, for materials with time-dependent properties (thixotropic materials,
viscoelastic materials), the constitutive equation can be expressed in the form
σ = −p1+s(γ̇) only for a steady state. Another example is provided by granular
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Rheometer type Sketch Viscometric function
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(Poiseuille flow)
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R
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Inclined plane See Fig. 1 singhτ ρ θ=
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h h
γ ∂ =  ∂ 
�

Fig. 3.2. Chief geometries used in rheometry

flows. In this case, when applied to experimental data obtained by studying dry
granular flows down an inclined channel [17], the viscometric treatment leads
to the conclusion that the flow curve should be a decreasing function of the
shear rate in violation of a stability criterion imposing that the flow curve be
an increasing function. Although such a decrease in the flow curve cannot be
directly interpreted in terms of a constitutive equation, it provides interesting
rheological information that can be explained on the basis of microstructural
theories [18].

Second, for most viscometers, computing the shear rate from experimental
data can raise serious problems. A major source of uncertainty is that in most
viscometric procedures the shear rate is expressed as a derivative – for instance
∂q/∂h in (3.11) – which must be estimated from experimental data. To do so,
different procedures are available but they do not always provide the same re-
sults, especially when data are noisy [19]. A typical example of these problems
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is given by the concentric-cylinder rheometer (or Couette rheometer). The shear
rate is inferred from the rotational velocity Ω and the torque (per unit depth)
C using the following relationship:

Ω = −1
2

∫ C/(2πR2
2)

C/(2πR2
1)

γ̇(τ) d(ln τ) . (3.14)

When the gap between the two cylinders is narrow, it is possible to approximate
the shear rate as: γ̇ = R1Ω/(R2 −R1)+O(1−R2/R1). However, such a geome-
try is not very suitable to studying natural fluids (slipping, size effects, etc.) and
usually a large gap is preferred. For large gaps, one of the most common approx-
imations is attributed to Krieger who proposed for Newtonian and power-law
fluids [20,21]:

γ̇ =
2Ω(1 + α)
1 − βf

f (3.15)

with f = d lnΩ/d lnC; α = f ′f−2χ1(−f log β); χ1(x) = x(xex − 2ex + x +
2)(ex − 1)−2/2, β = (R1/R2)

2. However, this method can give poor results
with yield stress fluids, especially if it is partially sheared within the gap. In
this case, Nguyen and Boger [22] have proposed using γ̇ = 2Ωd lnΩ/d lnC. In
their treatment of debris suspensions, Coussot and Piau [23] used an alternative
consisting of an expansion into a power series of (3.15). They obtained: γ̇ =
2Ω

∑∞
n=0 f

(
βnC/(2πR2

1)
)
. For methods of this kind, computing the shear rate

requires specifying the type of constitutive equation in advance. Furthermore,
depending on the procedure chosen, uncertainty on the final results may be as
high as 20% or more for natural fluids. Recently, a more effective and practical
method of solving the inverse problem has been proposed [24,25]: the procedure
based on Tikhonov regularization does not require the algebraic form of the τ−γ̇
curve to be prespecified and has the advantage of filtering out noise. The only
viscometer that poses no problem in converting experimental data into a τ − γ̇
curve is the parallel-plate rheometer. In this case, the shear rate distribution is
imposed by the operator: γ̇ = ΩR/h. But such a relationship holds provided
centrifugal forces are negligible compared to the second normal stress difference:
�R2w2 � N2, where w is the orthoradial component of the velocity. Such an
effect can be detected experimentally either by observing secondary flows or by
noticing that doubling both the gap and the rotational velocity (thus keeping
the shear rate constant) produces a significant variation in the measured torque.

Third, any rheometer is subjected to end effects, which have to be corrected
or taken into account in the computation of the flow curve. For instance, end
effects in a channel are due to the finite length of the channel as well as the
sidewalls, both producing potentially significant variations in the flow depth.
Likewise, in a Couette rheometer, the measured torque includes a contribution
due to the shearing over the bottom surface of the bob. Such a contribution is
substantially reduced using a bob with a hole hollowed on the bottom surface
so that air is trapped when the bob is immersed in the fluid. But this can be
inefficient for natural fluids, such as debris suspensions, and in this case, the
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bottom contribution to the resulting torque must be directly assessed using the
method proposed by Barnes and Carnali [26]. For a parallel-plate rheometer,
the fluid surface at the peripheral free surface may bulge out or creep, inducing
a significant variation in the measured torque, possibly varying with time. Fur-
thermore, many natural fluids encountered in geophysics are suspensions with a
large size distribution. The size of the rheometer should be determined such that
its typical size (e.g. the gap in a rotational viscometer) is much larger than the
largest particle size. For instance, for debris flows, this involves using large-sized
rheometers [23,27].

Last, many disturbing effects may arise. They often reflect the influence of
the microstructure. For instance, for a particle suspension, especially made up
of nonbuoyant particles, sedimentation and migration of particles can signifi-
cantly alter the stress distribution and thus the measured torque. Likewise, for
concentrated pastes, a fracture inside the sheared sample may sometimes be ob-
served, usually resulting from a localization of shear within a thin layer. Other
disturbing effects are experimental problems pertaining to the rheometer type.
For instance, when using a rotational viscometer with a smooth metallic shearing
surface, wall slip can occur. Apart from effects resulting from microstructural
changes, which are a part of the problem to study, it is sometimes possible to
reduce disturbing effects or to account for them in the flow-curve computation.
For instance, to limit wall slip, the shearing surfaces can be roughened. Another
strategy involves measuring the slipping velocity directly and then computing an
effective shear rate. Still another possibility requires using the same rheometer
with different sizes, as first proposed by Mooney for the capillary rheometer.

All the above issues show that, for complex fluids (the general case for nat-
ural fluids studied in geophysics), rheometry is far from being an ensemble of
simple and ready-for-use techniques. On the contrary, investigating the rheologi-
cal properties of a natural material generally requires many trials using different
rheometers and procedures. In some cases, visualization techniques (such as nu-
clear magnetic resonance imagery, transparent interstitial fluid and tools, bire-
fringence techniques) may be helpful to monitor microstructure changes. Most
of the commercialized rheometers are now controlled by a PC-type computer,
both controlling the measurements and providing automatic procedures for com-
puting the flow curve. Such procedures should be reserved for materials whose
rheological behavior is well known, and consequently are of limited interest for
natural fluids.

3.2.2 What Can Be Done Without a Rheometer?

In the laboratory, it is frequently impossible to investigate the rheological prop-
erties of a natural fluid using a rheometer. For instance, with snow or magma,
such tests are almost always impractical. For debris suspensions, it is usually
impossible to carry out measurements with the complete range of particle size.
This has motivated researchers to developed approximate rheometric procedures
and to investigate the relations between field observations and rheological prop-
erties. For instance, given the sole objective of determining the yield stress, the
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semiempirical method referred to as a slump test can provide an estimate of the
yield stress for a viscoplastic material. This method involves filling a cylinder
with the material to be tested, lifting the cylinder off and allowing the material
to flow under its own weight. The profile of the final mound of material as well
as the difference δ between the initial and final heights is linked to the yield
stress. Pashias and Boger [28] have found:

δ

h
= 1 − 2

τc
�gh

[
1 − ln

(
2
τc
�gh

)]
, (3.16)

where h is the cylinder height, � the material density. Close examination of ex-
perimental data published by Pashias and Boger shows a deviation from the
theoretical curve for yield stress values in excess of approximately 0.15�gh. For
yield stress values lower than 0.15�gh (or for δ/h > 0.4), uncertainty was less
than 10% for their tests. The explanation of the deviation for higher yield stress
values lies perhaps in the weakness of the assumption on the elastoplastic be-
havior for very cohesive materials. Coussot, Proust and Ancey [29] developed
an alternative approach based on an interpretation of the deposit shape. They
showed that the free surface profile (the relationship between the material height
y and the distance from the edge x) depends on the yield stress only. On a flat
horizontal surface, the free surface profile has the following expression:

�gy

τc
=

√
2
�gx

τc
. (3.17)

Comparisons between rheological data deduced from a parallel plate rheome-
ter and free surface profile measurements showed an acceptable agreement for
fine mud suspensions and debris flow materials. Uncertainty was less than 20%,
within the boundaries of acceptable uncertainty for rheometrical measurement.
The major restriction in the use of (3.17) stems from the long-wave approxima-
tion, which implies that the mound height must far outweigh the extension of
the deposit: h − δ � τc/(�g). The method proposed by Coussot et al. [29] can
be extended to different rheologies and boundary conditions. In the field, such a
method applied to levee profiles of debris flow can provide estimates of the bulk
yield stress provided that the assumption of viscoplastic behavior holds.

Observing and interpreting natural deposits may provide interesting informa-
tion either on the flow conditions or rheological features of the materials involved
[30]. For instance, laboratory experiments performed by Pouliquen with granular
flows have shown that the flow features (e.g. the mean velocity) of a dry granular
free-surface unconfined flow can be related to the final thickness of the deposit
[31]. Although fully developed in the laboratory, such a method should be appli-
cable to natural events involving granular flows. More evidence of the interplay
between the deposit shape, the flow conditions, and the rheological features is
given by the height difference of two lateral levees deposited by a debris flow in
a bending track [32].
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3.3 The Contribution of Continuum Mechanics

In 1687, Isaac Newton proposed that “the resistance which arises from the lack
of slipperiness of the parts of the liquid, other things being equal, is proportional
to the velocity with which the parts of the liquid are separated from one another”
[33]. This forms the basic statement behind the theory of Newtonian fluid me-
chanics. Translated into modern scientific terms, this sentence means that the
resistance to flow (per unit area) τ is proportional to the velocity gradient U/h:

τ = µ
U

h
, (3.18)

where U is the relative velocity with which the upper plate moves and h is
the thickness of fluid separating the two plates (see Fig. 3.3). µ is a coefficient
intrinsic to the material, which is termed viscosity. This relationship is of great
practical importance for many reasons. It is the simplest way of expressing the
constitutive equation for a fluid (linear behavior) and it provides a convenient
experimental method for measuring the constitutive parameter µ by measuring
the shear stress exerted by the fluid on the upper plate moving with a velocity U
(or conversely by measuring the velocity when a given tangential force is applied
to the upper plate).

h

U

e
x

e
y

Fig. 3.3. Illustration of a fluid sheared by a moving upper plate

In 1904, Trouton did experiments on mineral pitch involving stretching the
fluid with a given velocity [34]. Figure 3.4 depicts the principle of this experiment.
The fluid undergoes a uniaxial elongation achieved with a constant elongation
rate α̇, defined as the relative deformation rate: α̇ = l̇/l, where l is the fluid
sample length. For his experiments, Trouton found a linear relationship between
the applied force per unit area σ and the elongation rate:

σ = µeα = µe
1
l

dl
dt

. (3.19)

This relationship was structurally very similar to the one proposed by Newton
but it introduced a new material parameter, which is now called Trouton viscos-
ity. This constitutive parameter was found to be three times greater than the
Newtonian viscosity inferred from steady simple-shear experiments: µe = 3µ.
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At first glance, this result is both comforting since behavior is still linear (the
resulting stress varies linearly with the applied strain rate) and disturbing since
the value of the linearity coefficient depends on the type of experiment. In fact,
Trouton’s result does not lead to a paradox if we are careful to express the
constitutive parameter in a tensorial form rather than a purely scalar form.

l

dl

ë

Fig. 3.4. Typical deformation of a material experiencing a normal stress σ

This was achieved by Navier and Stokes, who independently developed a
consistent three-dimensional theory for Newtonian viscous fluids. For a simple
fluid, the stress tensor σ can be cast in the following form:

σ = −p1+ s (3.20)

where p is called the fluid pressure and s is the extra-stress tensor representing
the stresses resulting from a relative motion within the fluid. It is also called
the deviatoric stress tensor since it represents the departure from equilibrium.
The pressure p is defined as (minus) the average of the three normal stresses
p = −trσ/3. This also implies that tr s = 0. The pressure used in (3.20) is
analogous to the static fluid-pressure in the sense that it is a measure of the
local intensity of the squeezing of the fluid. Contrary to the situation for fluids
at rest, the connection between this purely mechanical definition and the term
pressure used in thermodynamics is not simple. For a Newtonian viscous fluid,
the Navier–Stokes equation postulates that the extra-stress tensor is linearly
linked to the strain rate tensor γ̇ = (∇u + t∇u)/2 (where u is the local fluid
velocity):

s = 2ηγ̇ (3.21)

where η is called the Newtonian viscosity. It is worth noticing that the consti-
tutive equation is expressed as a relationship between the extra-stress tensor
and the local properties of the fluid, which are assumed to depend only on the



64 C. Ancey

instantaneous distribution of velocity (more precisely, on the departure from
uniformity of that distribution). There are many arguments from continuum
mechanics and analysis of molecular transport of momentum in fluids, which
show that the local velocity gradient ∇u is the parameter of the flow field with
most relevance to the deviatoric stress (see [37]). On the contrary, the pressure is
not a constitutive parameter of the moving fluid. When the fluid is compressible,
the pressure p can be inferred from the free energy, but it is indeterminate for
incompressible Newtonian fluids. If we return to the previous experiments, we
infer from the momentum equation that the velocity field is linear : u = Uexy/h.
We easily infer that the shear rate is: γ̇ = ∂u/∂y = U/h and then comparing
(3.21) to (3.18) leads to: η = µ. Thus, the Newtonian viscosity corresponds to
the simple shear viscosity. In the case of a uniaxial elongation, the components
of the strain-rate tensor are:

γ̇ =


 α̇ 0 0
0 −α̇/2 0
0 0 −α̇/2


 . (3.22)

At the same time, the stress tensor can be written as:

σ =


σ 0 0
0 0 0
0 0 0


 . (3.23)

Comparing (3.20), (3.22), and (3.23) leads to: p = −ηα̇ and σ = 3ηα̇, that
is: µe = 3η, confirming that the Trouton elongational viscosity is three times
greater than the viscosity. It turns out that Trouton’s and Newton’s experiments
reflect the same constitutive behavior. This example shows the importance of an
appropriate tensorial form for expressing the stress tensor. In the present case,
the tensorial form (3.21) may be seen as a simple generalization of the simple
shear expression (3.18).

In many cases, most of the available information on the rheological behav-
ior of a material is inferred from simple shear experiments (see Sect. 3.2). But,
contrary to the Newtonian (linear) case, the tensorial form cannot be merely
and easily generalized from the scalar expression fitted to experimental data.
First, building a three-dimensional expression of the stress tensor involves re-
specting a certain number of formulation principles. These principles simply
express the idea that the material properties of a fluid should be independent
of the observer or frame of reference (principle of material objectivity) and the
behavior of a material element depends only on the previous history of that ele-
ment and not on the state of neighboring elements [6]. Then it is often necessary
to provide extra information or rules to build a convenient expression for the
constitutive equation. To illustrate this, we shall consider a simple example: the
Bingham equation (see also Chaps. 2 and 22). When a fluid exhibits viscoplastic
properties, we usually fit experimental data with a Bingham equation as a first
approximation [35,36,38]:

γ̇ > 0 ⇒ τ = τc +Kγ̇ . (3.24)
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Equation (3.24) means that for shear stresses in excess of a critical value, called
the yield stress, the shear stress is a linear function of the shear rate. Conversely
when τ ≤ τc there is no shear within the fluid (γ̇ = 0). The question arises as to
how the scalar expression can be transformed into a tensorial form. The usual
but not the only way is to consider a process, called plastic rule, as the key
process of yielding. A plastic rule includes two ingredients. First, it postulates
the existence of a surface in the stress space (σ1, σ2, σ3) delimiting two possible
mechanical states of a material element (σi denotes a principal stress, that is an
eigenvalue of the stress tensor) as depicted in Fig. 3.5. The surface is referred
to as the yield surface and is usually represented by an equation in the form
f(σ1, σ2, σ3) = 0. When f < 0, behavior is generally assumed to be elastic
or rigid. When f = 0, the material yields. Second it is assumed that, after
yielding, the strain-rate is directly proportional to the surplus of stress, that is,
the distance between the point the representing the stress state and the yield
surface. Translated into mathematical terms, this leads to write: γ̇ = λ∇f with
λ a proportionality coefficient (Lagrangian multiplier).
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Fig. 3.5. Yield surface delimiting two domains

How must the yield function f be built to satisfy the principle of material
objectivity? For f to be independent of the frame, it must be expressed not as a
function of the components of the stress but as a function of its invariants. An
invariant is a quantity that does not depend on the frame in which it is expressed.
For instance, it is well known that the determinant of a tensor is an invariant. In
contrast with tensor invariants used in mathematics without physical meaning, it
is usual in mechanics to use specific forms for the invariants of the stress tensor:
they are defined in such a way that they can be used as the coordinates of the
point representing the stress state M in the stress space (see Fig. 3.6). The first
invariant I1 = trσ = σ1 + σ2 + σ3 represents the mean stress multiplied by 3
(|OP | = I1/3 in Fig. 3.6), the second invariant I2 = (tr2σ−trσ2)/2 = −tr(s2)/2
can be interpreted as the deviation of a stress state from the mean stress state
(|PM |2 = −2I2 in Fig. 3.6) and is accordingly called the stress deviator. The
third invariant I3 = −tr s3/6 reflects the angle in the deviatoric plane made by
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the direction PM with respect to the projection of σ1-axis and is sometimes
called the phase (cos2 3ϕ = I23/I

3
2 in Fig. 3.6).

If the material is an isotropic and homogenous fluid, the yield function f is
expected to be independent of the mean pressure and the third invariant (for
reasons analogous to those given above for explaining the form of the constitutive
equation). Thus we have f(σ1, σ2, σ3) = f(I2). In plasticity, the simplest yield
criterion is the von Mises criterion, asserting that yield occurs whenever the
deviator exceeds a critical value (whose root gives the yield stress): f(I2) =√−I2 − τc. As depicted in Fig. 3.6, the resulting yield surface is a cylinder of
radius τc centered around an axis σ1 = σ2 = σ3. (If we draw the yield surface in
the extra-stress space, we obtain a sphere of radius

√
2τc.)
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Fig. 3.6. On the left, the yield surface in the stress space when the von Mises criterion
is selected as yield function. A stress state is characterized by its three principal stresses
and thus can be reported in the stress space. The three invariants of the stress tensor
can be interpreted in terms of coordinates

Once the stress state is outside the cylinder defined by the yield surface, a
flow occurs within the material. As stated above, it is assumed that the strain
rate is proportional to the surplus of stress. This leads to the expression:

γ̇ = λ∂f/∂s = λ
(√

I2 − τc

) s√
I2

. (3.25)

For convenience, we define the proportionality coefficient as: λ−1 = 2η. It is
generally more usual to express the constitutive equation in the converse form
s(γ̇). To that end, we express the second invariant of the strain rate tensor J2
as J2 = −tr(γ̇2)/2 =

[
λ

(√−I2 − τc
)]2. Then we deduce:

γ̇ = 0 ⇔
√

−I2 ≤ τc , (3.26)



3 Introduction to Rheology and Application to Geophysics 67

γ̇ 
= 0 ⇔ σ = −p1+
(
2η +

τc√−J2

)
γ̇ , (3.27)

which is the usual form of the Bingham constitutive equation. It is worth noting
that contrary to the Newtonian case, the general tensorial expression (3.26)–
(3.27) cannot not easily be extrapolated from the steady simple-shear equation
(3.24).

3.4 Rheophysics

The rheophysical approach seeks to derive the bulk properties by examining what
may happen at the microscopic scale. Generally the bulk stress tensor is com-
puted by averaging the local stresses. Accurate computation has been achieved
in a certain number of simple cases. Kinetic theories for gases, polymers, and
granular media (rapidly sheared) are typical examples. In most cases for fluids
involved in geophysics, computations are so much more complex that analytical
results cannot be provided. One can, however, benefit from this approach either
by building approximate rheological models or by finding convenient scalings
for the key variables describing bulk behavior. Typical examples include all the
treatments focusing on the rheology of concentrated suspensions. To begin with,
we will outline the principles used in deriving the bulk constitutive equations.
This will lead to introducing important concepts such as the pair distribution
function, the averaging operator, particle interactions, and evolution equations.
We will examine these different notions through the example of Newtonian sus-
pensions with no loss of generality since they can be encountered with a similar
meaning in other theories such as the kinetic theories for granular flows [39].
Then we will examine how it is possible to simplify the constitutive equation
to obtain approximate equations. The last subsection will demonstrate the ad-
vantages of dimensional analysis combined with a microstructural analysis of
particle interactions in deriving appropriate scalings for experimental data and
theoretical results.

3.4.1 Definition of the Bulk Stress Tensor and Selected Applications

One of the key questions in rheophysics is to establish the way in which bulk
behavior can be deduced from the microstructure properties. For suspensions,
this is generally achieved by averaging the local stress and particle interactions.
As all the issues around the most appropriate averaging procedure are still being
debated, here we restrict our attention to the approach followed by Batchelor
and many subsequent authors. The reader interested in further information on
averaging is referred to specific papers [41,42,43,44,45,46,47,48,40].

In the following, we consider a suspension of rigid spherical particles of ra-
dius a within an incompressible Newtonian fluid with viscosity η. Particles are
assumed to be identical and neutrally buoyant. The solid fraction φ is defined
as the ratio of the solid volume to the total volume. In a fundamental paper,
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Batchelor showed that the bulk stress is the sum of a fluid contribution and a
particle contribution [49]:

σ̄ = σ̄(f) + σ̄(p) , (3.28)

where the fluid part can be written as

σ̄(f) = 2η¯̇γ − 〈pf 〉1− �f < u′ ⊗ u′ > , (3.29)

where ¯̇γ denotes the averaged strain-rate tensor, 〈pf 〉 is the mean interstitial
fluid pressure, �f is the fluid density, u′ refers to velocity fluctuations, and ⊗
is the tensor product. We use brackets and the bar symbol to represent en-
semble and volume-averaged quantities respectively. The ensemble average of a
quantity f(r, t) at position r and time t, is computed by performing a large
number of experiments (“realizations”), with the same macroscopic initial and
boundary conditions, and measuring f at r at the same time relative to the
beginning of each experiment. The average of these realizations forms the en-
semble average. To do such a computation, we have to record the configuration
CN of N particles (specified by their positions, linear, and angular velocities)
contained in a volume V . After calculating the probability P (CN , t) of observ-
ing a given configuration CN at time t, we can define the ensemble average as
< f(r, t) >=

∫
P (CN , t)f(x, t;CN )dCN . Such a definition is not very practical

since it implies to specify the positions and velocities of all the particles con-
tained in V . A strategy to bypass this difficulty is to focus on a single particle
(“test particle”) and examine how other particles are distributed with respect
to this particle. This leads to introduce the pair distribution function P2, which
is the probability of finding a particle located at y when the centre of the test
particle is simultaneously in x. Formulated in mathematical terms, this leads to
write the ensemble average of f(r, t) as:

< f(r, t) >=
∫
C2

P2(t;x,y)f (2)(x, t;C2)dxdy ≈
∫
C2

P2(t;x,y)f(x, t)dxdy

(3.30)
where f (2) denotes the conditional averaged function when the position of two
spheres is fixed. It is usually assumed that the conditional averaged function f (2)

can be merely replaced by f . For dilute suspensions, apart from systems governed
by fluctuations (critical phase transition), such an assumption is generally sound
but remains to be proven for concentrated suspensions. The ensemble average
is conceptually very convenient since it offers a sound statistical description
of suspensions and it has the advantage that the operations of differentiation
and ensemble averaging commute. However, its use is restricted by the poor
knowledge that we may have on the distribution of particles in the suspension.
An alternative is to use a volume average, that is, to average the quantity f over
a control volume V , whose length scale must be large compared to the average
distance between particles but small with respect to a distance over which the
average of the property at hand varies appreciably. According we define the
volume-averaged quantity f̄ as f̄(r, t) =

∫
V

f(x, t)dx/V .
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In parallel to the fluid contribution, it is possible to obtain a generic expres-
sion of the particle contribution [40]:

σ̄(p) = σ̄
(p)
surface − 1

2
Jp < Ω′ ⊗ Ω′ > −�p < u′ ⊗ u′ > (3.31)

where σ̄
(p)
surface denotes the contribution due to forces exerted on the particle

surface, Ω′ the fluctuations of angular velocity of particles, and Jp the inertia
moment. It can be shown that the surface contribution σ̄

(p)
surface reflects the effects

of local forces at the particle level and may be deduced by averaging the local
forces [40]:

σ̄
(p)
surface =

a

V

N∑
m=1

∫
A

(m)
p

σk ⊗ kdk = an 〈σk ⊗ k〉 (3.32)

where σk is the local stress acting on the particle surface (σkdk is sometimes
referred to as the contact force), k is the outward normal at the contact point,
dk the angle around k, n is the number density (n = φ/(4πa3/3)). In the first
equality in (3.32), we use a volume average of all contact forces acting on the
surface A(m)

p of N beads included in a control volume V . The second equality is
a simple translation of the first one in terms of ensemble average, which is more
usual in kinetic theories or homogenization techniques.

To compute the two contributions, we have to introduce further ingredients.
In particular, information on the particle distribution and the forces acting on
particles is needed. In fact these two elements are tightly connected. It can be
easily shown by first taking f = 1 in (3.30), then calculating the total time deriva-
tive that the pair distribution function satisfies an evolution equation called the
Smoluchowski equation:

∂P2
∂t

+ ∇x.P2U
(2)
x + ∇r.P2U

(2)
r = 0 (3.33)

where U
(2)
x and U

(2)
r are the conditionally averaged velocity and relative velocity

between the two particles located at x and x+ r. From a general point of view,
these two velocities depend on the interparticle forces F (hyd), the Brownian mo-
tion, etc., which in turn depend on the imposed velocity gradient γ̇. There is no
for-all-purpose solution to this equation, but several particular applications have
been completely or partially explored. The simplest application of this theory
is to consider suspensions sufficiently dilute for the hydrodynamic interplay be-
tween two particles to be negligible. In this case, if the Reynolds particle number
Rep = 2�a |U | /η (with U the particle velocity relative to the fluid) comes close
to zero, the hydrodynamic force that the particle undergoes is the Stokes force:
F (hyd) = 6πηaU [37]. (This force is inferred from the so-called Stokes equation,
that is, the Navier–Stokes equation in which the inertial terms have been ne-
glected since Rep → 0: µ∇2u = ∇pf .) Both the disturbances in the fluid velocity
and fluid stress fields can be inferred from Stokes problem. At a point x from
the particle center, the disturbance in the fluid stress due to the slow motion
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of the particle can be expressed as: σ(f) = −x.f/(4π|x|3)1 + η(∇u +t ∇u),
where u = (1 + xx/|x|2).f/(8πη|x|) is the disturbance in the velocity field and
f a constant such that

∫
σ(f)k dk = F (hyd) [37,50]. Using (3.32) with P2 = 1

(assumption of dilute suspensions), we deduce that the bulk stress tensor can be
expressed as:

σ̄ = −〈pf 〉1+ 2η
(
1 +

5
2
φ

)
¯̇γ . (3.34)

Thus the well-known Einstein relationship for the effective viscosity of a dilute
suspension is obtained: ηeq/η = 1+2.5φ+O(φ), holding for solid fractions lower
than 2%. This method has been progressively extended to take further interac-
tions into account. Batchelor and Green [51,52] provided the pair distribution
function and the disturbances in the velocity and pressure fields when the solid
concentration is increased so that the velocity and pressure caused by the motion
of a particle is significantly influenced by the presence of another particle. This
leads to modifying the Einstein equation as follows: ηeq = η+2.5φ+7.6φ2+o(φ2).
Subsequently, the Brownian force [53], colloidal forces [54], the effect of solid frac-
tion [55,56], and the particle surface roughness [57] have been included in the
bulk stress computation.

3.4.2 Approximate Models

Because of the complexity of the dynamics of multiparticle interactions, rigorous
microstructural theories generally do not provide analytical results. For instance,
no analytical constitutive equation is available to predict the bulk behavior of
Newtonian suspensions or granular flows at high solid fractions. A common way
of overcoming this difficulty is to approximate the pair distribution function and
the particle interaction expressions. This leads to a wide range of approximate
models, whose applicability compensates for the introduction of ad hoc approx-
imations. It is worth noting that numerical simulations of particle dynamics are
increasingly used as an intermediate step between the theoretical models and the
approximate equations. Typical examples include the treatment performed by
Zhang and Rauenzahn [46,58] for granular flows and by Phan Thien [59,60] for
concentrated viscous suspensions. Here, to exemplify the derivation of approxi-
mate models, we present the reasoning for deriving the bulk viscosity (see also
[40,61]). The first step is to specify the approximate pair distribution function.
This is usually done by considering a given configuration of particles (generally
assumed to be cubic) and by assuming that the face-to-face distance between
particles (ξ) is fixed on average and related to the solid fraction as follows:

ξ

a
= 2

ς

1 − ς
, with ς = 1 − 3

√
φ

φm
, (3.35)

where φm is the maximum random solid concentration (φm ≈ 0.635 for unimodal
suspensions of spherical particles). The pair distribution function may thus be
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written as:

P2(k)|r=ξ =
nc∑
i=1

δ(k − ki) , (3.36)

where δ is the Dirac function, ki denotes the directions of the neighboring particle
centers in the considered configuration with respect to the test-particle center,
nc the coordination number (number of indirect contacts). The lubrication force
between two spheres can be divided into three contributions: a squeezing con-
tribution, a shearing contribution, and a term due to the rotation of spheres. It
can be shown that, in a steady state, the squeezing contribution is to leading
order [62]:

F sq =
3π
2
η
a2

ξ
cn , (3.37)

where cn is the normal component of the relative particle velocity c. The force
due to shearing motion can be written to first order: F sh = πηa ln (ξ/a) ct (with
ct the tangential component of the relative particle velocity) and the force due to
the rotation of particles is: F rot = 2πηa2 ln (ξ/a) k×Ω. These two contributions
are of the same order and their magnitudes increase as ln(ξ/a). Consequently, for
concentrated suspensions, to leading order in ξ/a, they are negligible compared
to the squeezing force. All the above expressions tend toward infinity when the
gap becomes extremely small, which would preclude any direct contact. The
squeezing contribution can be evaluated by incorporating (3.37) into (3.32):

σ(p)
sq =

3π
2
a3

ξ
µnd 〈cn ⊗ k〉 . (3.38)

The relative velocity is computed as the average velocity imposed by the bulk
flow:

c ≈ 2aL̄k − 2a < Ω > ×k = 2a(¯̇γk − (< Ω > −ω̄) × k) , (3.39)

where L̄ = ∇ū denotes the bulk velocity gradient, ω̄ is the curl of L̄, and ¯̇γ is
the symmetric part of L̄. It follows that the squeezing velocity can be written:

cn = 2a(¯̇γ : k ⊗ k)k . (3.40)

The contribution due to the squeezing motion is directly deduced from (37):

σ(p)
sq =

9
4
a

ξ
ηφ(¯̇γ : ki ⊗ ki)ki ⊗ ki . (3.41)

It should be noted that the Newtonian character of bulk stress is dictated by
the symmetry of the directions ki with respect to the principal directions of the
strain-rate tensor. Let us consider a simple shear flow. If we assume that (i) the
particle configuration is cubic, (ii) its privileged axes coincide with the principal
axes of the strain-rate tensor, (iii) the predominant action is due to squeezing,
then we can deduce that the bulk viscosity varies as:

ηeq = α
a

ξ
η , (3.42)
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with α = 9φ/4. Thus it is shown that the bulk viscosity of a concentrated sus-
pension should tend towards infinity when the solid concentration comes closer
to its upper limit φm.

The main drawback in the derivation of approximate models lies in the specu-
lative character of many assumptions. As pointed out by different authors [63,64],
the mean-field approach presented here suffers a great deal from questionable
approximations. Among others, it is obvious from (3.40)–(3.41) that the result-
ing bulk stress tensor depends to a large extent on the particle arrangement,
the face-to-face distance between particles, and the velocity field. For instance,
using different methods or assumptions, most authors have obtained a bulk vis-
cosity whose expression is structurally similar to (3.42), but sometimes with a
different value for α. For instance, using a similar approach, Goddard [65] found
α = 3φ/8 while van den Brule and Jongshaap arrived at α = 9φ/4 [61]. Using an
energy-based method, Frankel and Acrivos obtained α = 9/4 [66]. Sengun and
Probstein [67] inferred a more complicated expression from energy considerations
but, asymptotically for solid concentrations near the maximum concentration,
they found a comparable expression for the bulk viscosity, with α ≈ 3π/4, close
to the value determined by Frankel and Acrivos. On the basis of energy and
kinematic considerations, Marrucci and Denn [64] argued that coefficient α is
not constant and must vary as α ∝ ln(a/ξ) in the worst case. Likewise, Adler
et al. [63] put forward that averaging the different configurations through which
the particle arrangement passes does indeed smooth the singularity 1/ς and con-
sequently the bulk viscosity does not diverge when the solid concentration tends
to its maximum.

It is worth noting that approximate models can be built using empirical rea-
soning without any recourse to a detailed analysis of particle interactions. A
typical example in the area of suspensions is given by Krieger and Dougherty’s
model [68]. The authors assumed that within a suspension of non-Brownian,
noncolloidal particles, a particle sees a homogeneous fluid surrounding it, whose
viscosity depends only on the solid fraction and the interstitial fluid viscosity.
This is obviously a crude assumption since this particle is more influenced by
nearby particles than by more distant particles. Using dimensional analysis (see
below), it may be shown that the bulk viscosity is of the form: ηeq = ηf(φ). The
bulk viscosity can be computed by assuming that one first introduces a solid
fraction φ1, then a solid fraction φ2 so that the resulting solid concentration is
φ. For doing so, we must choose φ2 such that it satisfies: φ2 = (φ−φ1)/(1−φ1).
Finally we must have: f(φ1)f(φ2) = f(φ), which must hold whatever the solid
fractions. It can be shown that the only function obeying such an equality is of
the form: f(φ) = (1 − φ)−β . Experimentally, β has been generally estimated at
approximately 2. Krieger and Dougherty’s expression has been modified to rep-
resent experimental data over as wide a range of solid concentrations as possible:

ηeq
η

=
(
1 − φ

φm

)−[η]φm

, (3.43)
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where [η] = lim
φ→0

(ηeq − η)/(ηφ) = 2.5 is called the intrinsic viscosity. Such a

relation matches the Einstein expression at low solid fractions. Many expres-
sions with a form similar to (3.43) have been proposed to take further phenom-
ena (aggregating of particles [69], shear-thinning, colloidal effects, polydispersity
[70,71], etc.) into account. A common element in several models is to consider
that the maximum solid concentration is not constant but is rather a shear-rate-
dependent function since it should reflect changes in the microstructure. For
instance, in order to make an allowance for viscoplastic behavior, Wildemuth
and Williams [73,72] have assumed that the maximum solid fraction relaxes
with shear stress from a lower value φ0 to an upper bound φ∞:

1
φm

=
1
φ0

−
(

1
φ0

− 1
φm

)
f(τ) (3.44)

where f(τ) = (1+Aτ−m)−1, A andm are two constants intrinsic to the material.
This also implies that such a suspension (with φ0 ≤ φ ≤ φ∞) exhibits a yield
stress:

τc(φ) =
[
A

(
φ/φ0 − 1

1 − φm/φ∞

)]1/m

. (3.45)

It should be noted that in the model and experiments presented by Wildemuth
and Williams, the yield appearance reflects either colloidal effects or structural
changes in the particle arrangement (jamming, friction between coarse particles)
or both of them.

In contrast, Sengun and Probstein [67] proposed different arguments to ex-
plain the viscoplastic behavior observed in their investigations on the viscosity of
coal slurries (with particle size typically ranging from 0.4µm to 300µm). Their
explanation consists of two approximations. First, as it is the interstitial phase,
the dispersion resulting from the mixing of fine colloidal particles and water
imparts most of its rheological properties to the entire suspension. Secondly,
the coarse fraction is assumed to act independently of the fine fraction and to
enhance the bulk viscosity. They introduced a net viscosity ηnr of a bimodal
slurry as the product of the fine relative viscosity ηfr and the coarse relative
viscosity ηcr. The fine relative viscosity is defined as the ratio of the apparent
viscosity of the fine-particle suspension to the viscosity of the interstitial fluid:
ηfr = ηf/η0. The coarse relative viscosity is defined as the ratio of the apparent
viscosity of the coarse-particle slurry to the viscosity of the fine-particle suspen-
sion: ηcr = ηc/ηf . The two relative viscosities depend on the solid concentrations
and a series of generalized Péclet numbers. For the coarse-particle suspensions,
all the generalized Péclet numbers are much greater than unity. Using a dimen-
sional analysis, Sengun and Probstein deduced that the coarse relative viscosity
cannot depend on the shear rate. In contrast, bulk behavior in fine-particle sus-
pensions is governed by colloidal particles and thus at least one of the generalized
Péclet numbers is of the order of unity, implying that the fine relative viscos-
ity is shear-dependent. Sengun and Probstein’s experiments on viscosity of coal
slurries confirmed the reliability of this concept [67]. Plotting log ηnr and log ηfr
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against log γ̇, they found that over a wide range of concentrations, the curves
were parallel and their distance was equal to log ηcr (see Fig. 3.7). However, for
solid concentrations in the coarse fraction exceeding 0.35, they observed a sig-
nificant departure from parallelism which they ascribed to nonuniformity in the
shear rate distribution within the bulk due to squeezing effects between coarse
particles.

Generally, all these empirical models successfully provide an estimation of
bulk viscosity over a wide range of solid fraction, as shown in Fig. 3.8, provided
that the maximum solid concentration has been correctly evaluated. In practice,
for natural fluids such as debris suspensions, this evaluation may be problematic
and lead to a large uncertainty in computing bulk viscosity.
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Fig. 3.7. Variation of the bulk viscosity of coal slurry as a function of the shear
rate. The bulk viscosity curve is parallel to the curve obtained with the fine fraction.
After [67]

3.4.3 Contribution of Dimensional Analysis

Expressing bulk behavior in terms of dimensionless groups is a practical and
usual way of identifying the most relevant variables and delineating flow regimes.
A certain number of studies have so far focused on suspensions of rigid spherical
particles within a Newtonian fluid with a narrow size distribution [7,54,76,78].
In this case, a suspension of noninteracting particles is characterized by eight
variables: (i) for particles, the density �p, the radius a, and the solid volume
concentration φ; (ii) for the interstitial fluid, the viscosity η and the density �f ;
(iii) for the conditions imposed during an experiment, the temperature T , the
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Fig. 3.8. Variation in the bulk viscosity as a function of the reduced fraction. Typical
data obtained by Thomas [74] and Pätzold [75] are reported

shear rate γ̇ (or equivalently the shear stress τ), and the experiment duration
texp. According to the principles of dimensionless analysis, the bulk viscosity
can be expressed as a function of 8− 3 = 5 dimensionless groups. The following
numbers are preferentially formed: the solid fraction φ, the Reynolds particle
number Re = (2a)2γ̇/η reflecting fluid inertia at the particle scale, the Péclet
number Pe = 6πγ̇a3η/(kT ) (where k refers to the Boltzmann constant) defined
as the ratio of viscous forces to Brownian forces, the Deborah number expressed
as the ratio of a particle relaxation time tp to the typical time of the experi-
ment De = tp/texp (depending on the particle size, the particle relaxation can
be linked to the Brownian diffusion time tp = 6πa3η(kT )−1 or the Stokes relax-
ation time tp = 2a2�p(9η)−1), the Stokes number St = 2�pRe/(9�f )−1 defined
as the ratio of a particle relaxation time to a fluid characteristic time. If the par-
ticles are colloidal, van der Waals’ attraction and electrostatic repulsion must be
taken into account, giving rise to two dimensionless groups: an attraction num-
ber Natt = ηa3γ̇/A, where A is the Hamacker constant of the colloidal particles,
and a repulsion number Nrep = ηa2γ̇/(εψ2

0), where ε is the fluid permittiv-
ity and ψ0 the surface potential. As examples, taking a = 0.5mm, γ̇ = 1 s−1,
η = 10−3 Pa.s, texp = 10 s, T = 293K, �p = 2500 kg/m3 for a suspension of
coarse particles slowly sheared (typically a suspension of particles in a water-
glycerol solution), we find: Re = 10−3, Pe = 580 106, St = 5 10−4, De = 10−2.
Taking a = 0.5µm, A ≈ 10−20 J, ε = 7 10−10 C2J−1m−1, ψ0 ≈ 100mV,
�p = 2650 kg/m3 for a suspension of colloidal particles slowly sheared (typi-
cally a water–kaolin dispersion), we find: Re = 10−9, Pe = 0.6, St = 6 10−10,
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De = 6 10−2, Natt ≈ 10−2, Nrep ≈ 4 10−5. Using the dimensional analysis prin-
ciples (i.e. ignoring dimensionless numbers much lesser or greater than unity)
[79], we expect from the magnitude orders found above that, typically for the
viscosity of a coarse-particle suspension, bulk viscosity depends on the solid con-
centration mainly: ηeq/η = f(φ), and for a dispersion, it depends on the Péclet
number and the solid concentration: ηeq/η = f(φ, Pe). Such scalings have been
successfully compared to experimental data [80,81]. The main problem encoun-
tered in geophysics is that fluids generally involve a wide range of size particles
and different types of particle interaction. For instance, typically for a debris
flow, the particle size ranges from 1µm to more than 1m and particle interac-
tions can include colloidal effects, collisional, frictional, lubricated contacts, etc.
Thus the large number of physical parameters intervening in the problem makes
any thorough and general examination of the resulting flow regimes intricate. To
our knowledge, only partial results have so far been provided on the relevant di-
mensionless groups controlling bulk behavior of natural fluids [7] (see also Chap.
21).
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