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Abstract. The shallow-water equations are used to model the flow re-7

sulting from the sudden release of a finite volume of frictionless, incompress-8

ible fluid down a uniform slope of arbitrary inclination. The hodograph trans-9

formation and Riemann’s method make it possible to transform the govern-10

ing equations into a linear system and then deduce an exact analytical so-11

lution expressed in terms of readily evaluated integrals. Although the solu-12

tion treats an idealized case never strictly realized in nature, it is uniquely13

well-suited for testing the robustness and accuracy of numerical models used14

to model shallow-water flows on steep slopes.15
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1. Introduction

Dam-break floods on steep slopes occur in diverse settings. They may result from16

failure of either natural or manmade dams, and they have been responsible for the loss17

of thousands of lives [Costa, 1988]. Recent disasters resulting from dam-break floods on18

steep slopes include those at Fonte Santa mines, Portugal, in November 2006 and Taum19

Sauk, Missouri, USA, in December 2005.20

Numerical solutions of the shallow-water equations are generally used to predict the21

behavior of dam-break floods, but exact analytical solutions suitable for testing these22

numerical solutions have been available only for floods with infinite volumes, horizontal23

beds, or both [e.g., Zoppou and Roberts , 2003]. Computational models used to simulate24

dam-break floods commonly produce numerical instabilities and/or significant errors close25

to the moving front when steep slopes and/or irregular terrain are present in the flood26

path. In part these problems reflect the complex interaction of phenomena not included27

in model formulation (e.g., intense sediment transport under time-dependent flow con-28

ditions), but in part they also reflect shortcomings in the numerical solution algorithms29

themselves. Therefore, it is important to obtain exact analytical solutions of the shallow-30

water equations that can be used to test the robustness of numerical models when they31

are applied to floods of finite volume on steep slopes. This paper presents a new solution32

for this purpose.33

For the dam-break problem on a horizontal bed, many exact and approximate analyt-34

ical solutions already exist. For example, Ritter [1892] addressed the case of an infinite35

volume of fluid suddenly released on a frictionless plane. An exact solution for a dam-36
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break flood of finite volume on a frictionless bed was not presented until Hogg [2006]37

analyzed the finite-volume lock-exchange problem. The more realistic case involving a38

rough bed (represented by a Chézy-like friction force) has been addressed by a number of39

authors, including Whitham [1954], Dressler [1952], and Hogg and Pritchard [2004], but40

only asymptotic solutions have been developed to date. Taking into account a nonuniform41

velocity distribution in the vertical direction leads to mathematical difficulties, but exact42

self-similar solutions can still be obtained for floods with variable inflow (i.e., the released43

volume is a function of time) [Ancey et al., 2006, 2007].44

For sloping beds, most dam-break solutions developed to date employ approximations45

of the shallow-water equations, in which inertia or pressure-gradient terms have been46

neglected. Such assumptions typically lead to a kinematic wave approximation, which en-47

ables substantial simplification because the mass and momentum balances making up the48

shallow-water equations are transformed into a single nonlinear diffusion equation [Hunt ,49

1983; Daly and Porporato, 2004a, b; Chanson, 2006]. Exact solutions of the shallow-water50

equations for steep slopes have been obtained for infinite-volume dam-break floods [Shen51

and Meyer , 1963; Mangeney et al., 2000; Karelsky et al., 2000; Peregrine and Williams ,52

2001], and the case of a finite-volume flood has been investigated by Dressler [1958] and53

later by Fernandez-Feria [2006], who provided a partial solution by computing the po-54

sition and velocity of the surge front and rear. Savage and Hutter [1989] constructed55

two similarity solutions known as the parabolic cap and M-wave, but these differ from the56

long-time asymptotic solution of the problem investigated here.57

In this paper we present a new analytical solution of the shallow-water equations for a58

situation in which a finite volume of an ideal (frictionless) fluid is instantaneously released59
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from behind a dam on a steep slope. Although frictionless flows never occur in real fluids,60

the frictionless case constitutes an unambiguous end member as well as a clear target case61

for testing numerical models [Zoppou and Roberts , 2003]. Our solution strategy is mostly62

identical to that used by Hogg [2006] for the lock-exchange problem, with some additional63

complications that we shall detail later. We begin our analysis by using the characteristics64

of the shallow-water equations to infer the positions of the flow front and tail at all65

times. We then employ the hodograph transformation, which converts the nonlinear66

shallow-water equations into a linear system by exchanging the roles of the dependent67

and independent variables. An integral form of the exact solution of the linear equations68

is then obtained using Riemann’s method. This method, seldom used in open-channel69

hydraulics, is well established in some other fields where hyperbolic equations similar to70

the shallow-water equations arise. Typical examples include gas dynamics [Courant and71

Friedrich, 1948], collapse of a granular column [Kerswell , 2005], and tsunami or swash72

run-up on a shore [Carrier and Greenspan, 1958].73

2. Governing equations

2.1. Flow-depth averaged equations

The nonlinear, one-dimensional shallow-water (Saint-Venant) equations provide a suit-74

able approximation for modeling water surges over a wide, uniformly sloping bed inclined75

at an angle θ with respect to the horizontal (Figure 1). If the effects of friction are76

neglected (see Appendix A), these equations may be written as77

∂

∂t̂
ĥ +

∂

∂x̂
(ĥû) = 0, (1)

∂

∂t̂
û + û

∂

∂x̂
û + g cos θ

∂

∂x̂
ĥ = g sin θ, (2)
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where x̂ is the downstream coordinate, t̂ is time, g is the magnitude of gravitational78

acceleration, û(x̂, t̂) is the depth-averaged flow velocity, and ĥ(x̂, t̂) is the flow depth79

measured perpendicular to the bed. Note that we use the shallow-water equations in a80

non-conservative form, which is permitted since the solution to the initial-boundary-value81

problem investigated here is smooth. Originally, the Saint-Venant equations were derived82

to model flood propagation on shallow slopes and smooth topography [Saint Venant ,83

1871], but modern formulations have demonstrated that the equations can be recast to84

apply rigorously to steep slopes and irregular topography [Dressler , 1978; Bouchut et al.,85

2003; Keller , 2003].86

Equations (1–2) can be normalized using the following scaled variables

x =
x̂

H0

, t =

√
g cos θ

H0

t̂, h =
ĥ

H0

, and u =
û√

gH0 cos θ
,

where H0 is the initial fluid depth at the dam wall. Substitution of the scaled variables87

into (1) and (2) yields the following dimensionless equations88

∂h

∂t
+ u

∂h

∂x
+ h

∂u

∂x
= 0, (3)

∂u

∂t
+ u

∂u

∂x
+

∂h

∂x
= tan θ, (4)

which can be recast in the matrix form89

∂

∂t
U + A · ∂

∂x
U = B,

with90

U =

[
h
u

]
, A =

[
u h
1 u

]
, and B =

[
0

tan θ

]
.

The matrix A has two real eigenvalues given by λ± = u±√h, indicating that the shallow-91

water equations are fully hyperbolic and that
√

h can be identified as the dimensionless92
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wave celerity, c =
√

h. The hyperbolic system of equations can be expressed in terms of93

their characteristics as [Stoker , 1957; Whitham, 1974; Chanson, 2004]94

dα

dt
= tan θ along the α-characteristic curve:

dx

dt
= u + c, (5)

where α = u + 2c is the associated Riemann variable; and95

dβ

dt
= tan θ along the β-characteristic curve:

dx

dt
= u− c, (6)

where β = u− 2c the other Riemann variable.96

2.2. Initial and boundary conditions for the dam-break problem

We consider a situation in which a dam perpendicular to the slope initially retains a97

reservoir behind it, as shown in Figure 1. The reservoir geometry is defined in cross98

section by the triangle OAB, where OA denotes the dam wall. The initial water depth is99

h = h0(x) = 1−x/xb, where xb = −1/ tan θ represents the abscissa of point B in Figure 1.100

At time t = 0, the dam collapses instantaneously and unleashes a flood of finite volume101

down the slope. An important difference between our formulation and that of Fernandez-102

Feria [2006] lies in the initial configuration of the flow, because Fernandez-Feria [2006]103

investigated the case of a vertical dam. Although a vertical dam is more similar to some104

real-world scenarios, it leads to significant mathematical difficulties when the method of105

characteristics is employed owing to singular behavior of the front and rear (both u and106

h being zero there).107

Following the dam break, part of the water immediately moves downstream in the form108

of a forward wave, while a wave propagating upstream separates moving fluid from static109

fluid upslope. The downstream and upstream waves constitute moving boundaries issuing110

from the origin point in the x− t plane (Figure 2). One boundary corresponds to the flow111
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front, where h = 0 and u = uf (uf being the front velocity, unknown for the present). The112

other boundary constitutes the locus of the upstream propagating wave, which travels to113

point B in Figure 1. Along this wave, we have h = h(t) (which is also unknown at present)114

and u = 0.115

Mathematically, the two moving boundaries are described by characteristic curves in116

the x − t plane, which can be computed using (5) or (6), with h = 0 (forward front)117

and u = 0 (backward wave). For the forward wave, equation (5) reduces to du/dt =118

tan θ. The initial condition applicable with this equation is u = 2 at t = 0 because the119

dam collapse theoretically causes instantaneous acceleration at t = 0 such that the front120

velocity immediately becomes u = 2, independently of slope. Although this instantaneous121

acceleration appears unrealistic physically, it is a logical consequence of the shallow-water122

approximation, and it can be demonstrated mathematically by noting that the initial123

value of the Riemann variable α is 2; at early times after the dam collapse, since the flow-124

front depth drops to zero, this value implies that u = 2 at the flow front. Use of this value125

as the initial condition in du/dt = tan θ yields the front velocity solution u = t tan θ + 2.126

Moreover, because u = dx/dt, we deduce that x = 1
2
t2 tan θ + 2t is the locus of the front127

position in the x− t plane.128

To obtain the speed of the wave that propagates upstream from the dam into still water,129

we infer from (6) that d(−2c)/dt = tan θ along the characteristic curve. Integration of130

this equation gives c = − tan θ
2

t + 1 since at t = 0, we have c = 1. Substitution of this131

result into the equation defining the characteristic, dx/dt = c yields x = tan θ
4

t2 − t as132

the equation governing propagation of the backward wave in the x − t plane. According133
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to this equation, point B in Figures 1 and 2 is reached by the backward wave at time134

tb = 2cotanθ.135

Once point B is reached, a new wave issues from point B and defines the speed of the136

moving tail of the volume of fluid as it descends the slope. Propagation of this wave137

follows the trajectory BC in Figure 2. At the tail margin, the condition h = 0 (c = 0)138

applies, just as at the front of the forward wave. At point B, the initial conditions for139

the characteristic equation are x = xb = −cotanθ, t = tb = 2 cotanθ, h = 0 and u = 0.140

Substituting c = 0 in (5) and integrating the resulting equation du/dt = tan θ yields the141

wave velocity u = tan θ(t − tb) = t tan θ − 2. Integrating this equation once again yields142

the equation describing the position of the moving tail in the x− t plane:143

x = tan θ

(
1

2
t2 − ttb +

t2b
2

)
+ xb =

t2

2
tan θ − 2t + cotanθ.

Tables 1 and 2 summarize all the equations defining the boundaries of the moving fluid,144

and Figure 2 illustrates the position of the boundaries in the x− t plane.145

Some key physical implications of the boundary equations listed in Tables 1 and 2 de-146

serve special mention. First, once motion of the head and tail begins from their respective147

initial conditions, each boundary propagates downslope with an acceleration identical to148

that of a frictionless point mass moving along the slope. This finding implies that the149

boundary speeds are uninfluenced by the presence of adjacent fluid after motion com-150

mences. Second, the speed of the advancing flow front always exceeds that of the ad-151

vancing tail by 4 for t > tb. The difference in speeds is inherited from the difference in152

initial conditions affecting the head and tail, and it implies that the traveling wave of fluid153

continuously elongates at a constant rate. This constant elongation would not occur, of154

course, in a flow with frictional dissipation.155
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3. Homogenization and hodograph transformation

In order to make the governing equations homogeneous and simplify calculations, we156

use a change in variables so that the effects of gravitational acceleration do not appear157

explicitly:158

ξ̃ = x− tan θ

2
t2, t̃ = t, ṽ = u− t tan θ, and h̃ = h, (7)

Use of these substitutions in (3) and (4) yields159

∂h

∂t
+ v

∂h

∂ξ
+ h

∂v

∂ξ
= 0, (8)

∂v

∂t
+ v

∂v

∂ξ
+

∂h

∂ξ
= 0, (9)

where the tilde has been removed to simplify notation. The characteristic form of these160

equations is now161

dr

dt
= 0 along the r-characteristic curve:

dξ

dt
= v + c, (10)

where r = v + 2c is a Riemann invariant, and162

ds

dt
= 0 along the s-characteristic curve:

dξ

dt
= v − c, (11)

where s = u− 2c is the other Riemann invariant.163

The next step is linearization in order to use analytical methods available for linear164

partial differential equations [Garabedian, 1964]. Transformation of the governing equa-165

tions into quasi-linear equations is made possible by using hodograph variables. That is,166

instead of seeking solutions in the form h(ξ, t) and v(ξ, t), we switch the dependent and167

independent variables and seek solutions in the form ξ(v, h) and t(v, h) or, more precisely,168

ξ(r, s) and t(r, s) since we have169

v =
1

2
(r + s) and

√
h =

1

4
(r − s). (12)
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Denoting the Jacobian of the transformation by J = ξhtv − ξvth, we obtain170

hξ =
tv
J

, vξ = −th
J

ht = −ξv

J
, and vt =

ξh

J
.

The transformation is reversible provided J 6= 0 and 1/J 6= 0. This condition is satisfied171

here except at the flow boundaries, but since the solution is known there (as summarized in172

Table 2), this restriction presents no difficulty. With the new variables, the homogeneous173

governing equations (8) and (9) reduce to174

−∂ξ

∂v
+ v

∂t

∂v
− h

∂t

∂h
= 0, (13)

∂ξ

∂h
+

∂t

∂v
− v

∂t

∂h
= 0. (14)

Equations (13) and (14) can be solved using the method of characteristics. The equation175

of an r-characteristic in the plane r − s is given by176

∂ξ

∂s
=

3r + s

4

∂t

∂s
, (15)

which was deduced from Eq. (10) using dξ = ξsds and dt = tsds since r is constant.177

Similarly, we obtain for the s-characteristic equation178

∂ξ

∂r
=

3s + r

4

∂t

∂r
. (16)

We next derive a single equation governing t. Differentiating Eq. (15) with respect to r179

and Eq. (16) with respect to s, then finding the difference of the two resulting equations,180

we obtain the equation for t:181

L[t] = 0 where L[t] =
∂2t

∂r∂s
− 3

2(r − s)

(
∂t

∂r
− ∂t

∂s

)
. (17)

A similar equation can be obtained for ξ, but its form is more complicated and it is more182

fruitful to compute t by solving Eq. (17) and then using one of the characteristic equations183
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(15) or (16) to find ξ. Equation (17) is a linear hyperbolic partial differential equation of184

second order, which arises in a number of contexts in gas dynamics and hydrodynamics185

and for which solutions are known in terms of Riemann functions [Courant and Friedrich,186

1948; Garabedian, 1964; Kevorkian, 2000]. The boundary conditions for Eq. (17) are187

specified along curves OA, OB, and BC (see Table 1).188

4. Riemann formulation

Next we exploit the linearity of Eq. (17) and use an integral representation to relate t189

to its auxiliary conditions. If we integrate Eq. (17) over a finite domain D whose oriented190

contour is denoted by Γ, we obtain area integrals that by themselves yield little insight.191

However, if we transform these area integrals into boundary integrals using Green’s theo-192

rem, then part of the problem is solved. In this context, Riemann’s formulation involves193

introducing an adjoint differential operator N(τ), which enables us to write [Garabedian,194

1964; Zauderer , 1983]195

τL[t]− tN [τ ] = ∇ ·U =
∂U

∂r
+

∂V

∂s
,

where U = (U, V ) is a vector field. In this way, we obtain196

∫

D
(τL[t]− tN [τ ])drds =

∫

Γ
U · ndη, (18)

where n is an outward normal vector along Γ and dη is a curvilinear abscissa such that197

ndη = (ds,−dr). For this decomposition to hold, we must define N , U , and V as follows198

N [τ ] =
∂2τ

∂r∂s
+

3

2(r − s)

(
∂τ

∂r
− ∂τ

∂s

)
− 3τ

(r − s)2
. (19)

U = −3

2

1

r − s
tτ +

τ

2

∂t

∂s
− t

2

∂τ

∂s
, (20)

V =
3

2

1

r − s
tτ +

τ

2

∂t

∂r
− t

2

∂τ

∂r
. (21)
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We now consider a geometric domain D in the form a quadrilateral MPOQ, as depicted199

in Fig. 3. The value of t is known along PO (point O corresponds to point O in the x− t200

plane) and OQ (see Table 1). Since we are free to choose the function τ , we pose201

N [τ ] = 0, (22)

with the boundary conditions202

τ(a, b) = 1,
∂τ

∂s
= − 3τ

2(r − s)
on r = a, and

∂τ

∂r
=

3τ

2(r − s)
on s = b, (23)

These equations remove the dependency on v in the boundary integrals along PM and203

QM. The solution of (22) satisfying these boundary conditions may be written as the204

Riemann function R(r, s ; a, b):205

τ(r, s) = R(r, s ; a, b) =
(r − s)3

(r − b)3/2(s− a)3/2
F

[
3

2
,

3

2
, 1,

(r − a)(s− b)

(r − b)(s− b)

]
. (24)

where F is the hypergeometric function [Abramowitz and Stegun, 1964, p. 556]. A deriva-206

tion of (24) is provided in Appendix B.207

Identifying the function τ as in (24) and making use of (22), (18) becomes
∫
Γ U·ndη = 0.208

The oriented contour line Γ can be broken down into segments QM and MP, where the209

boundary conditions (23) hold, and the segments PO and OQ (Figure 3), leading to210

∫

Γ
U · ndη = −

∫ M

Q
V dr +

∫ P

M
Uds−

∫ O

P
V dr +

∫ Q

O
Uds = 0. (25)

After integrating the boundary integrals in (25) by parts and making use of (23), we211

rearrange the contribution along each segment of Γ as follows212

∫ M

Q
V dr =

1

2
[tτ ]MQ +

∫ M

Q
t

(
3

2

τ

r − b
− ∂τ

∂r

)
dr = −1

2
t(Q)τ(Q) +

1

2
t(a, b), (26)

∫ P

M
Uds =

1

2
[tτ ]PM +

∫ P

M
t

(
−3

2

τ

a− s
− ∂τ

∂s

)
ds =

1

2
t(P )τ(P )− 1

2
t(a, b), (27)
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∫ O

P
V dr = −1

2
[tR]OP +

∫ O

P
R(r, s ; a, b)

(
3

2

t

r + 2
+

∂t

∂r

)
dr, (28)

∫ Q

O
Uds = −1

2
[tR]QO +

∫ Q

O
R(r, s ; a, b)

(
−3

2

t

2− s
+

∂t

∂s

)
ds. (29)

In so doing, we obtain from the right-hand sides of (26)–(29) an integral representation213

of t that holds for any point M (a, b) inside the triangle OFB in the r − s plane214

t(a, b) =
1

2
t(P )R(P ; M) +

1

2
t(Q)R(Q ; M) +

∫ Q

P
(Uds− V dr).

Since on the boundaries PO and OQ we have tr = −cotanθ/2 and ts = 0, respectively,215

we can reduce the equation for t to216

t(a, b) = cotanθ
∫ a

2
R(r, −2 ; a, b)

2− 5r

4(r + 2)
dr. (30)

The variable ξ is then computed by integrating an s-characteristic, i.e., Eq. (16)217

ξ(r|s = cst) =
1

4
(3s + r)t(r, s) +

1

4

∫ 2

r
t(r′, s)dr′, (31)

where we have taken into account the boundary condition ξ = 0 at t = 0.218

Although equations (30) and (31) are not fully explicit expressions, these exact integral219

solutions can be evaluated numerically without any difficulty by using computing software220

such as Mathematica. The Mathematica notebook used to plot the figures in this paper is221

available online from our website (http://lhe.epfl.ch). The solutions can also be expressed222

in terms of Legendre functions and computed using tabulated values. Note that when223

θ → 0, time t tends toward infinity, which means that with this solution, we cannot recover224

the solution calculated by Hogg [2006] for a horizontal plane. This restriction results from225

the differing upstream boundary condition in the two problems. For a horizontal bottom,226

part of the fluid remains in the reservoir and the velocity at point B is zero, whereas for a227
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sloping bed, once the backward wave has reached the upstream end of the reservoir, the228

tail of the flood wave starts moving and its velocity is nonzero (see Table 1).229

Equations (30) and (31) form an implicit solution to Eqs. (8–9) that can be quite easily230

inverted to provide h(ξ, t) and v(ξ, t). Figure 4 shows the s- and r-characteristics obtained231

when the bed slopes at the angle θ = π/4. Figure 5 shows the flow-depth and velocity232

profiles at different times after the dam collapse for θ = π/4. The graphs of Figure 5233

depict the flow depth and velocity profiles in a frame moving at velocity t tan θ. Note234

that the velocity variations are nearly linear and the flow depth profile is increasingly235

symmetric as elapsed time increases. These features are reminiscent of the parabolic-cap236

similarity solution of Savage and Hutter [1989]. A shown in Appendix C, however, the237

parabolic cap solution differs from the long-time asymptotic solution of the shallow-water238

equations we present here.239

Expressing our solution in terms of the original dimensionless variables x and t is240

straightforward. The value of x is given by x = ξ + 1
2
tan θt2, while t remains unchanged.241

Figure 6 uses these variables to depict the flow-depth and velocity profiles at different242

times after the dam collapse, and figure 7 shows details of the evolution of flow depth243

at early times. Combining the velocity and flow depth profiles at early times makes it244

possible to evaluate the discharge at the dam site and thereby to obtain a hydrograph245

that can be used to provide initial conditions in numerical models that route floods using246

the shallow-water equations. Finally, note that the shape of the characteristic curves in247

the x− t plane is significantly altered due to fluid acceleration. Figure 8 shows the β- and248

α-characteristics in the x− t plane for θ = π/4.249
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The physical variables x̂, t̂, û, and ĥ can be represented parametrically by using the250

dimensionless auxiliary variables r = v + 2
√

h and s = v − 2
√

h (i.e., the Riemann251

invariants)252

t̂(r, s) =

√
H0

g cos θ
t =

√
H0

g cos θ
cotanθ

∫ r

2
R(ξ, −2 ; r, s)

2− 5ξ

4(ξ + 2)
dξ, (32)

x̂(r, s) = H0x =
1

4

(
(3s + r)

√
gH0 cos θt̂ +

√
gH0 cos θ

∫ 2

r
t̂(ξ, s)dξ + 2 sin θgt̂2

)
, (33)

û(r, s) =
√

gH0 cos θu = v
√

gH0 cos θ + gt̂ sin θ, (34)

ĥ(r, s) = H0h, (35)

for r > s > −2 and −2 < r < 2 and where R is the Riemann function given by Eq. (24).253

For s = −2 and −2 < r < 2, which apply to the backward wave for 0 < t < tb, we have254

t̂(r,−2) =

√
H0

g cos θ

(
1− r

2

)
cotanθ, (36)

ĥ(r,−2) = H0


1− t̂

√
g cos θ

H0

tan θ


 . (37)

The case r = s (with s > −2) corresponds to t → ∞, while r = 2 (with s > −2)255

corresponds to the initial condition before the dam breaks. The particular value r = s = 2256

gives the position and velocity of the flow front, while r = s = −2 gives the position and257

velocity of the flow tail after the fluid has detached from point B (i.e., for t > tb):258

ĥ(2, 2) = 0 and û(2, 2) = gt̂ sin θ + 2
√

gH0 cos θ, (38)

ĥ(−2,−2) = 0 and û(−2,−2) = gt̂ sin θ − 2
√

gH0 cos θ. (39)

5. Conclusion

By employing the one-dimensional shallow-water equations, an accelerated reference259

frame, hodograph transformation, and Riemann’s method, we have derived a new exact260

solution describing the behavior of a dam-break flood of finite volume traveling down261
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a steep, planar slope. Although the solution assumes that the fluid is frictionless, it262

nonetheless provides an end-member test case suitable for assessing the accuracy and263

robustness of numerical methods used to simulate real floods. The solution employs an264

initial condition in which a triangular prism of static fluid is impounded by a dam face265

normal to the slope, and the flood is triggered when the dam instantaneously vanishes.266

Key aspects of the motion of the flood head and tail are illustrated by some elementary267

features of our solution obtained directly from the untransformed shallow-water equations.268

For example, the solution shows that the evolving speed of the flow front is the same as269

that of a frictionless point mass with an initial velocity û = 2
√

gH0 cos θ, where g is270

the magnitude of gravitational acceleration, H0 is the initial height of water behind the271

dam, and θ is the slope angle. Relative to motion of the flow front, motion of the tail is272

delayed by a time proportional to cotanθ, because motion of the tail does begin until a273

wave propagates upstream from the broken dam. This delay causes the downslope speed274

of the tail to persistently lag behind that of the front, and as a consequence of this delay275

and the fact that the tail subsequently accelerates like a frictionless point mass, the flood276

wave elongates at a constant rate. Our solution describes evolution of the elongating277

flood wave in terms of definite integrals that are readily evaluated using software such as278

Mathematica. This evaluation shows that the flood wave is initially quite asymmetric but279

becomes increasingly symmetric as time proceeds.280

Finally, we note that extension of our solution to more complex dam-break flows involv-281

ing materials other than ideal fluids may be possible. Motion of rock avalanches, snow282

avalanches, and debris flows, for example, obeys equations that are mathematically simi-283

lar to the shallow-water equations [Savage and Hutter , 1989; Pudasaini and Hutter , 2006;284
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Iverson and Denlinger , 2001; Mangeney-Castelnau et al., 2005; Balmforth and Kerswell ,285

2005], and these phenomena are good candidates for further analytical study. In partic-286

ular, the experimental and numerical results obtained by Greve et al. [1994] and Koch287

et al. [1994] for dam-break avalanches of granular materials down steep chutes appear288

very similar to results described in this paper.289
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Appendix A

In this paper, basal friction has been neglected. This assumption is likely to be valid302

in the bulk of the flow since the bottom friction contribution is usually of low magnitude303

compared to the inertia and pressure gradient terms in the momentum balance equation.304

Close to the front, this assumption no longer holds because the flow depth drops to zero.305

To estimate the typical extent η of the friction-affected region, the usual approach is306

to use a balance between friction and pressure gradient, i.e., if we use a Chézy law for307

representing the bottom drag, we have ρgĥ cos θ∂ĥ/∂x̂ ∼ Cdρû2, where Cd denotes a308

Chézy-like coefficient, in the drag-affected region [Whitham, 1954; Hogg and Pritchard ,309

2004]. A difficulty arises here since ĥ and û are not explicitly known.310

To proceed further in this analysis, we first need to approximate ĥ and û for the head.311

This can be readily done by making a first-order approximation of the integral represen-312

tations (30) and (31) of t(r, s) and ξ(r, s) for the head. Then solving the resulting linear313

system to find r and s, we find314

s = −2

3
+

4

3

ξ

t
, (A1)

r = 2. (A2)

Making use of Eq. (12) to find h and ū and returning to dimensional variables, we finally315

obtain316

ĥ =
1

9g cos θ

(
x̂f − x̂

t̂

)2

, (A3)

û =
1

3

(
2
x̂

t̂
+ ûf

)
, (A4)

where x̂f = 2
√

gH0 cos θt + 1
2
gt2 sin θ denotes the front position and ûf = 2

√
gH0 cos θ +317

gt sin θ its velocity. A remarkable feature is that the flow-depth and velocity profiles in318
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the close vicinity of the front have exactly the same shape as those found for the Ritter319

[1892] solution. Denoting η = x̂f − x̂, we find that within the tip region (η → 0), the320

dominant balance is321

g cos θ
ĥ2

t̂2
1

η
∼ Cdû

2
f , (A5)

which yields322

η3g
ĥ2

t̂2
∼ 81Cdg cos2 θû2

f t
3. (A6)

At short times, ûf ≈ 2
√

gH0 cos θ and therefore the extent of the drag-affected region323

scales as t4/3
324

η ∼ 4C
1/3
d g2/3 cos θH

1/3
0 t4/3, (A7)

which is consistent with the scaling found for dam-break waves on horizontal planes325

[Whitham, 1954; Hogg and Pritchard , 2004]. At long times, ûf ≈ gt sin θ, which results326

in a more pronounced dependence of η on t327

η ∼ 4Cdgt2 cos2/3 2θ. (A8)

Appendix B

The Riemann function R can be computed as follows [Garabedian, 1964, see problem328

9, § 5.1, p. 150]. Let us consider a partial differential equation of the form329

vxy +
λ

2

1

x + y
(vx + vy) = 0, (B1)

whose adjoint operator is330

N [v] = 0, with N [v] = vxy − (av)x − (bv)y + cv, and a = b =
λ

2

1

x + y
,
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and where c = 0. Following Garabedian [1964], we pose331

v =
(x + y)λ

(x + η)λ/2(x + η)λ/2
W (ζ), with ζ =

(x− ξ)(y − η)

(x + η)(y + ξ)
.

We find that W satisfies the equation332

−λ2W (ζ) + 4(1− (λ + 1)ζ)W ′(ζ) + ζ(1− ζ)W ′′(ζ) = 0,

whose solution is333

W (ζ) = F

[
λ

2
,

λ

2
, 1, ζ

]
,

where F is the hypergeometric function. With λ = 3, x = r and y = −s, we find the334

solution to the adjoint problem (22) with N given by Eq. (19). Alternative representa-335

tions (in particular, in terms of Legendre functions) can be obtained using properties of336

F [Abramowitz and Stegun, 1964, see pp. 559–562].337

Appendix C

In this appendix we relate our results to those of Savage and Savage and Hutter [1989],338

who obtained similarity solutions to the shallow-flow equations for motion of finite volumes339

of frictional material down a uniform slope. Of particular relevance here is their parabolic340

cap solution, which can be obtained by seeking symmetric flow-depth and velocity profiles341

for the governing equations (8) and (9). In Fig. 5, we note that at sufficiently late times,342

the flow-depth profile is bell-shaped, while the velocity profile is nearly linear with ξ. This343

prompts us to seek a solution, where the velocity profile is perfectly linear and takes the344

value v = ξ̇f at the front (ξ = ξf ), i.e.,345

v(ξ, t) =
ξ

ξf

ξ̇f , (C1)
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where ξf denotes the front position and ξ̇f its velocity in the ξ − t plane. For the mo-346

ment, ξf (t) is unknown; we expect that the similarity solution is the long-time asymptotic347

solution of the boundary initial value problem solved above and therefore assume that348

ξf ∝ 2t. Substituting v into the momentum balance equation (9), we derive an equation349

for h350

∂h

∂ξ
= − ξ̈f

ξf

ξ, (C2)

whose integration provides351

h(ξ, t) =
1

2

ξ̈f

ξf

(ξ2
f − ξ2). (C3)

The flow-depth profile is parabolic and symmetric around ξ = 0. Substituting the v and352

h relations into the mass equation (8), we derive an equation for the front position ξf353

d

dt
(ξf ξ̈f ) + ξ̇f ξ̈f = 0. (C4)

Integrating this equation leads to the second-order differential equation354

ξ2
f ξ̈f = c1, (C5)

with c1 a constant of integration, which can be determined using volume conservation355

V =
∫ ξf

−ξf

h(ξ, t)dξ =
2

3
ξ2
f ξ̈f =

2

3
c1, (C6)

where V = 1
2
|xb| = 1

2
cotanθ is the initial volume of material. We can now find ξf from356

(C5) using the boundary conditions357

lim
t→∞ ξf = 2t and ξf (0) = 0. (C7)

The former boundary condition enforces behavior similarity between this solution and the358

one found above using the method of characteristics. The latter condition is somewhat359
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formal, but is consistent with our objective of finding the long-time asymptotic solution.360

Integrating (C5) twice and using the boundary conditions (C7), we find an implicit relation361

relating ξf to t362

4
√

4ξ2
f − 3ξfV + 3V ln

∣∣∣∣∣∣
8ξf − 3V + 4

√
4ξ2

f − 3ξfV
3V

∣∣∣∣∣∣
= 16t, (C8)

which is valid for ξ > 3V/4. Differentiating this equation with respect to t, we find that363

the front velocity is given by364

ξ̇f =

√
ξf (4ξf − 3V)

ξf

. (C9)

We check that ξ̇f → 2 when ξf∞. The parabolic cap solution is given by365

v(ξ, t) =
ξ

ξf

ξ̇f , (C10)

h(ξ, t) =
3

4

V
ξ3
f

(
ξ2
f − ξ2

)
, (C11)

with ξf given by (C8) and ξ̇f given by (C9).366

In Fig. 9, we have plotted the parabolic cap solution for t = 100. We also have also367

shown the exact solution to the shallow-water equations. A key point is that although368

both velocity profiles superimpose remarkably, there is a substantial difference in the369

shape of the surge. For the exact solution, the flow-depth profile is always acute close to370

the fronts since the flow-depth gradient drops to zero (see Appendix A), whereas for the371

similarity solution, the height gradient at the front is nonzero (∂h/∂ξ = 3V/(2ξf )), which372

results in a finite front angle that the remaining flow must accommodate.373
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Figure 1. The initial configuration of the reservoir before the dam collapse.
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Figure 2. Characteristics corresponding to the boundaries of the moving fluid volume.

Computation is for slope angle θ = π/4.
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Table 1. Features of the boundaries delimiting the fluid domain.

c u v ξ r s

OF 0 t tan θ + 2 2 2t 2 2

OB 1− t tan θ/2 0 −t tan θ −t2 tan θ/4− t 2(1− t tan θ) −2

BC 0 t tan θ − 2 −2 −2t + cotanθ −2 −2

Table 2. Equations of the boundaries delimiting the fluid domain.

x t range

OF t2

2
tan θ + 2t t ≥ 0

OB t2

4
tan θ − t 0 ≤ t ≤ 2cotanθ

BC t2

2
tan θ − 2t + cotanθ t ≥ 2cotanθ
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Figure 3. Computation domain in the r − s plane.
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Figure 4. Characteristics in the ξ−t plane for slope angle θ = π/4. The r-characteristics

are shown as solid lines for r values ranging from 2 to −2, with an increment of 0.5. The

s-characteristics are shown as dashed lines for s values ranging from 2 to −2, with an

increment of 0.5.
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Figure 5. Flow depth and velocity profiles in the ξ − t plane for slope angle θ = π/4.

Profiles are shown for times t = 1, 2, 4, 8. The dashed line represents the initial flow

depth (still water).
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Figure 6. Flow depth and velocity profiles in the x − t plane for slope angle θ = π/4.

Profiles are shown for times t = 1, 2, 4, 8. The dashed line represents the initial flow

depth.
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Figure 7. Flow depth profiles in the x − t plane for slope angle θ = π/4. Profiles are

shown for times t = 0.25, 0.5, 0.75,1. The dashed line represents the initial flow depth.
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Figure 8. Characteristics in the x − t plane for slope angle θ = π/4. The α-

characteristics are shown as solid lines for α values ranging from 2 to−2, with an increment

of 0.5. The β-characteristics are shown as dashed lines for β values ranging from 2 to −2,

with an increment of 0.5.
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Figure 9. comparison between the exact solution to the shallow-water equations (solid

line) given implicitly by equations (30) and (31) and the parabolic cap solution (dashed

curve) given by equations (C10) and (C11) at t = 100. On the left: flow-depth profile; on

the right: flow-depth averaged velocity.
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