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1 Introduction

Debris flows are a major natural hazard, claiming thousands of lives and mil-
lions of dollars in lost property each year in almost all mountain areas on the
Earth. After a catastrophic eruption of Mount St. Helens in the USA in May
1980, deposited ash and melting snow/ice produced very large debris flows and
caused extensive damage and loss of life (Scott, 1988). During the 1985 eruption
of Nevado del Ruiz in Colombia, more than 20,000 people perished when a large
debris flow triggered by the rapid melting of snow and ice at the volcano sum-
mit swept through the town of Armero (Voight, 1990). In 1991, the eruption of
Pinatubo volcano in the Philippines disperses more than 5 cubic kilometers of
volcanic ash into surrounding valleys. Much of that sediment has subsequently
been mobilized as debris flows by typhoon rains and has devastated more than
300 square kilometers of agricultural land. Even, in European countries, re-
cent events that torrential floods may have very destructive effects (Sarno and
Quindici in southern Italy in May 1998, where approximately 200 people were
killed). In the summer of 1987, approximately 600 debris flows occurred after
heavy rainfalls over many parts of Switzerland, causing substantial damage to
inhabited areas (Rickenmann & Zimmermann, 1993).

The catastrophic character of these floods in mountainous watersheds is a
consequence of significant transport of materials associated with water flows.
Two limiting flow regimes can be distinguished. Bed load andsuspension refer
to dilute transport of sediments within water. This means that water is the
main agent in the flow dynamics and that the particle concentration does not
exceed a few percent. Such flows are typically two-phase flows. In contrast,
debris flows are mass movements of concentrated slurries of water, fine solids,
rocks and boulders. As a first approximation, debris flows can be treated as one-
phase flows and their flow properties can be studied using classical rheological
methods.

The study of debris flows is a very exciting albeit immature science, made
up of disparate elements borrowed from geomorphology, geology, hydrology, soil
mechanics, and fluid mechanics. The purpose of this chapter is to provide an
introduction to physical aspects of debris flows, with specific attention directed
to fluid-mechanics modeling. Despite attempts to provide a coherent view on
the topic, coverage is incomplete and the reader is referred to a series of papers
and books. A few books are particularly commendable (Brunsden & Prior,
1984; Coussot, 1997; Johnson & Rodine, 1984; Zimmermann et al., 1997). Some
review papers provide interesting overviews, introducing the newcomers to the
field to the main concepts (Ancey, 2007; Chen, 1987; Coussot & Meunier, 1996;
Iverson, 2005, 1997; Rickenmann, 1999; Takahashi, 1981).
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2 Typology of torrential flows

2.1 Watershed as a complex physical system

The notion of torrent refers to a steep stream, typically in a mountainous context
(Montgomery & Buffington, 1997; Wohl, 2000). According to a few authors, a
stream can be referred to as a torrent as soon as its mean slope exceeds 6%
(Bernard, 1927). For bed slopes ranging from 1% to 6%, it is called a torrential
river. For bed slopes lower than 1%, it can be merely called a river. In addition
to the slope, sediment supply is generally considered as another key ingredient in
torrential watersheds. Depending on the nature of the soil and relief, slopes can
provide a large quantity of poorly sorted solid materials to torrents. Supplied
materials have sizes ranging typically from 1 µm to 10 m. The situation is very
different from the one encountered for streams on an alluvial plain, where bed
material is much finer and sorted (typically 1 µm to 10 cm) since it generally
results from transport that occurred during previous floods (Church, 2006).
Finally, one of the chief ingredients of torrential watersheds is water. Due to the
small dimensions of torrential watersheds (typically from 0.1 km2 to 100 km2)
and the steep slopes, floods are sudden, short, and violent. The flood regime
differs significantly from plain floods, which are characterized by slower kinetics
and smoother variations with time.

Figure 1 depicts a typical watershed. The upper part is generally degraded
and submitted to erosion to a more or less large extent. It supplies water and
sediment to the floods. Below this basin, the torrent enters a gorge, sometimes
with very abrupt flanks depending on the nature of the soil. Then the torrent
discharges onto the alluvial fan. The slope transition between the gorge and
the alluvial provides interesting information on bed equilibrium. Generally, a
watershed with an abundant supply of sediment and intense bed load transport
in the past is characterized by a smooth transition from channel to fan.

 

Fig. 1: A typical watershed: the Brandy torrent (Savoie, France).
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For plain rivers, sediment transport results from the action of water: water
entrains materials either by pushing them along the bed (bed load transport)
or by keeping them in suspension as a result of turbulence (suspension) (Garcia
et al., 2007). In a torrential context, as soon as the bed inclination is sufficiently
high, gravity has a more pronounced role on sediment transport (Wohl, 2000;
Armanini & Gregoretti, 2005). Therefore, on the one hand, bed load transport
is more intense and on the other hand, a new mode of transport arises: debris
flow. We can define them as follows:

• Debris flows are highly concentrated mixtures of sediments and water,
flowing as a single-phase system. Debris flows look like mudslides and
landslides except that their velocity and the distances they travel are much
larger. It is worth noticing that in the literature there are many terms
used to refer to slides and/or debris flows, which is a source of confusion.

• Bed load transport involves transportation of sediment by water. Coarse
particles (sand, gravel, and boulders) roll and slide in a thin layer near the
bed. Generally fine particles (silts and clays) are brought into suspension
as a result of water turbulence. The system is typically made up of two
distinct phases: the liquid phase (water) and dispersed (solid) phase.

2.2 Types of transport

In the laboratory, it is possible to simulate torrential phenomena using an in-
clined channel with a mobile bed made up of sand and gravel. Figures 2 and 3
show two very different situations that can be observed when the channel slope
is increased by only a few percent. Figure 2(a) corresponds to a slope of 17%.
At high discharges, fine particles are in suspension while the coarsest particles
are pushed down to the bed. In this photograph, the largest particles are sta-
tionary and significantly affect water flow. The two phases (solid and liquid)
are well separated and water flows much faster than solid particles. When the
inclination exceeds a critical value (approximately 20%), a transition from a
two-phase flow to a single-phase flow occurs very quickly. The mixture takes
on the appearance of a homogeneous fluid flowing down the bed. Figure 2(b)
(slope of 27%) illustrates such a transition and the resulting mass movement.
Most laboratory experiments conducted with water flows on erodible beds have
shown that the bed inclination θ is a key factor in sediment transport dynamics
(Rickenmann, 1992; Smart & Jaeggi, 1983; Tognacca, 1999). On the whole it
has been observed that:

• For θ < 20%: at sufficiently high water discharges, water flow induces
intense bed load transport near the bed. As a first approximation, the
water and solid discharges (respectively qw and qs) are linearly linked:
qs ≈ 8.2 θ2qw; note that this relationship is an overly simplified expression
of discharge obtained by Smart & Jaeggi (1983) or Rickenmann (1992,
1997). Three layers can be distinguished: the bed made up of stationary
particles (that can be eroded), the (active) bed layer in which sediment of
all sizes is set in motion (rolling and sliding), and the water layer, where
fine particles are in suspension or in saltation. In two-phase flows of this
type the solid concentration (ratio of solid volume to total volume) does
not exceed 30%.
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• For θ > 20%: at sufficiently high water discharges, bed load transport is
unstable. It changes into a dense single-phase flow. The solid concentra-
tion is very high, ranging from 50% to 90% depending on the particle-size
distribution. Such flows simulated in the laboratory correspond to debris
flows in the field.

(a)

(b)

Fig. 2: (a) Small-scale simulation of bed load transport in the laboratory. The
solid and liquid phases are distinct (water was colored with fluoresceine).
The typical flow depth in these experiments was 1 cm. (b) Small-scale
simulation of a debris flow in the laboratory resulting from the “lique-
faction” of the granular bed. The solid and liquid phases are well mixed.
The photograph shows the snout propagating along the bed and eroding
the upper layer.

In the laboratory, the transition from bed load transport to debris flow is
reflected by a discontinuity in the solid concentration. It is suspected that such
a discontinuity still exists in the field, at least in the Alps, but the underlying
mechanisms are unknown. It is worth noticing that in the field, debris flows can
also form from landslides (Iverson et al., 1997). In this case, the transformation
mechanisms are similar to soil liquefaction processes (rapid creep of saturated
soils). In the following, we will focus on debris flows.

3 Initiation, motion, effects of debris Flow

3.1 Initiation

The torrential activity of a watershed depends on many parameters. Debris
flows are common in some areas and uncommon in others. In areas prone to
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debris flow formation, their frequency also varies. In some watersheds, several
debris flows occur each year while for other torrents, they are rare. Conditions
for initiation of most debris flows usually include (Iverson, 1997; Iverson et al.,
1997; Coe et al., 2008; Montgomery et al., 2009):

• Steep slopes. In the Alps, slopes in excess of 70% are liable to surface
erosion (sediment transport induced by runoff) and landslides (soil failure
leading to large masses of saturated materials coming loose).

• Abundant supply of unconsolidated materials. Debris flows originate either
from the simultaneous contributions of many material sources or from a
single source (landslides):

– Slow and continuous erosive processes on slopes in the drainage basin
form deposits of materials in the torrent bed. Such deposits can be
subsequently mobilized during intense floods and then transform into
debris flows. In this case, debris flow originate as a slurry, primarily of
water and fine particles, which erodes its channel and grows in size.
Presumably instabilities in the bed load transport (such as those
observed in the laboratory) arise and enable debris flow initiation.
Usually the volume produced every year by erosion over the whole
drainage basin is small and thus the amount of sediments that can be
involved by a single debris flow is limited (< 105 m3). In the field, the
absence of failure surfaces and the presence of rills in the drainage
basin are generally evidence that a debris flow has picked up coarse
materials from the bed.

– Old ill-consolidated deposits (moraines, massive rockfall deposit, etc.)
can mobilize into landslides to form debris flows. In this case, the
volume of materials involved can be very large (> 105 m3) depending
on the total volume made available by the source. Likewise, cer-
tain soils (e.g. gypsum) are very liable to landslides and can supply
materials to debris flows. Presumably, initiation is due to a combi-
nation of several mechanisms: rapid creep deformation, increase in
pore pressure, increase in load, erosion at the foot of the landsliding
mass, etc. In the field, the presence of a failure surface can clearly
serve to identify the source of material.

• Large source of moisture. Most of debris flows occur during or after heavy
and/or sustained rainfalls. In some cases, snowmelt can be sufficient to
form debris flows. There are many other ways in which water can be
provided for the formation of debris flows: thawing soil, sudden drainage
of lakes, dam break, etc., but these are much less frequent. A high liquid
water content seems to be a necessary condition for the soil to be saturated,
which causes: intense surface runoff, and an increase in the pore–water
pressure (presumably leading to Coulomb slope failure).

• Sparse vegetation. Vegetation plays a role by intercepting rainfall (limita-
tion of runoff) and increasing soil cohesion (root anchorage). Vegetation
reduces the initiation potential to a certain extent but does not completely
inhibit formation of debris flows. Many observations have shown that de-
bris flows also occur in forested areas.
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3.2 Motion

On the whole, debris flows are typically characterized by three regions, which
can change with time (see Fig. 3):

• At the leading edge, a granular front or snout contains the largest concen-
tration of big rocks. Boulders seem to be pushed and rolled by the body
of the debris flow. The front is usually higher than the rest of the flow.
In some cases no front is observed because either it has been overtaken
by the body (this is very frequent when the debris flow spreads onto the
alluvial fan), or the materials are well sorted and no significant variation
in the bulk composition can be detected.

• Behind the front, the body has the appearance of a more fluid flow of a rock
and mud mixture. Usually, the debris flow body is not in a steady state
but presents unsteady surges. It can transport blocks of any size. Many
authors have reported that boulders of relatively small size seem to float at
the free surface while blocks of a few meters in size move merely by being
overturned by the debris flow. The morphological characteristics of the de-
bris flow are diverse depending on debris characteristics (size distribution,
concentration, mineralogy) and channel geometry (slope, shape, sinuosity,
width). Debris-flow velocity varies very widely but, on the whole, ranges
from 1 m/s to 10m/s (Major, 1996). The fastest debris flows are reported
to move at more than 20 m/s (Major, 1996). Flowing debris can resemble
wet concrete, dirty water, or granular material but whatever the debris
characteristics and appearance, viscosity is much higher than for water.
Most of the time, debris flows move in a completely laminar fashion, but
they can also display minor turbulence; on some occasions, part of the
debris flow may be highly turbulent.

• In the tail, the solid concentration decreases significantly and the flow
looks like a turbulent muddy water flow.

In recent years, many outdoor and laboratory experiments have shed light
on the connections existing between particle-size distribution, water content,
and flow features for fixed volumes of bulk material (Davies, 1986; Iverson,
1997; Parsons et al., 2001; Chambon et al., 2009). In particular, experiments
performed by Parsons et al. (2001) and Iverson (1997) have shown that the flow
of poorly sorted materials was characterized by the coexistence of two zones,
each one with a distinctive rheological behavior: the flow border was rich in
coarse-grained materials (Coulomb frictional behavior), while the core was fine-
grained (viscoplastic behavior). This self-organization has a great influence on
the flow behavior; notably the run-out distance can be significantly enhanced
as a result of levee formation limiting lateral spreading.

Parsons et al. (2001) ran a series of experiments to investigate the transi-
tion between viscoplasticity-dominated and friction-dominated regimes. They
used a semi-circular inclined flume and measured the velocity profile at the free
surface. Different slurries were prepared by altering the sand, clay, and silt
fractions. They obtained muddy slurries, when the matrix was rich in silt and
clay, and poorly sorted mixtures, when the silt and clay contents were reduced.
Surprisingly enough, the change in the fine-particle content did not significantly
modify the appearance of the body, whereas it markedly altered the composition



3 Initiation, motion, effects of debris Flow 7
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body

tail

levee

Fig. 3: Idealized representations of a debris flow (longitudinal profile and cross
section). The different sections correspond to the dashed lines of the
upper panel. Adapted from (Johnson & Rodine, 1984).

of the front and its behavior. Reducing the fine fraction in the slurries induced
a radical change of behavior for the front (see Fig. 4):

• For muddy slurries, the front takes the form of a blunt nose. Lack of slip
along the flume bottom caused a conveyer-belt-like flow at the front.

• For coarse-grained slurries, the front takes the form of a dry granular
locked nose slipping along the bed as a result of the driving force exerted
by the fluid accumulating behind the snout. Additional material was
gradually incorporated into the snout, which grew in size until it was able
to slow down the body.

Interestingly enough, the changes in the rheological properties mainly affected
the structure of the flow, especially within the tip region.

(a)

(b)

Fig. 4: Schematic of the behavior contrast between fine-grained and coarse-
grained flows. (a) Conveyer-belt-like flow at the front. (b) Formation of
a frictional front. After Parsons et al. (2001).
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Iverson, Denlinger, and Major investigated slurries predominantly made up
of a water-saturated mixture of sand and gravel, with a fine fraction of only a
few percent (Major, 1996; Iverson, 1997, 2003a, 2005). Experiments were run
by releasing a volume of slurry (approximately 10 m3) down a 31-degree, 95-
m-long flume. At the base of the flume, the material spread out on a planar,
nearly horizontal, unconfined runout zone. Flow-depth, basal normal stress, and
basal interstitial-flow pressure were measured at different places along the flume.
Iverson and his co-workers observed that at early times, an abrupt front formed
at the head of the flow, followed by a gradually tapering body, then a thin, more
watery tail. The front remained relatively dry (with pore pressure dropping to
zero) and of constant thickness, while the body elongated gradually in the course
of the flow. Over the longest part of the flume, the basal pore pressure nearly
matched the total normal stress, which means that shear strength was close to
zero and the material was liquefied within the body (Iverson, 1997).

Fig. 5: Snapshots showing slurry flow discharging from the U.S. Geological Sur-
vey Debris-flow Flume and crossing the unconfined, nearly horizontal
runout zone. The dark-toned material around the perimeter of the flow
was predominantly gravel, while the light-toned material in the center
of the flow was liquified mud. Figure reproduced from (Iverson, 2003a);
courtesy of Richard M. Iverson.

Figure 5 shows a sequence of aerial photographs taken when the material
spread out on the runout surface. Self-organization of the slurry flow into a
coarse-grained boundary and a muddy core became quite visible as the flow
traveled the runout surface. Lateral levees were formed by the granular front
and confined the ensuing muddy body. Note the levee formation is probably not
induced by particle segregation since it is also observed for dry granular flows
involving spherical equal-size particles (Félix & Thomas, 2004). Figure 6 shows
the lateral levees, which can be used to evaluate the cross-section of the flow,
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Fig. 6: Cross-section of the Malleval stream after a debris flow in August 1999
(Hautes-Alpes, France).

while Fig. 7 shows a granular levee formed by a debris flow on the alluvial fan.

Fig. 7: Levees left by a debris flow in the Dunant river in July 2006 (Valais,
Switzerland). Courtesy of Alain Delalune.
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3.3 Deposition and effects

The distance that a debris flow can travel depends a great deal on the mechanical
characteristics of the debris as well as the total volume, channel geometry and
bed inclination. For instance it is generally observed that a debris flow moving
over a flat tilted plane thins by spreading laterally and stops suddenly, seemingly
when the thickness reaches a critical value. In contrast, if the debris flow is
channelized, it may travel quite a long distance over gentle slopes. In European
alpine countries, debris flows (of sufficient volume) generally begin to decelerate
when the slope ranges from 10% to 25%. For some torrents, (e.g. Illgraben
in Switerland and Boscodon in France), debris flows can propagate over gentle
slopes (of less than 5%). In volcanic soil areas, it has been also demonstrated
that lahars (debris flows involving water–ash mixtures) can propagate over very
slight slopes (less than 1%) (Major, 1996).

For some debris flows, constant deposition occurs all along the channel and
forms levees on the lateral boundaries of the torrent (see Figs. 6 and 7). De-
pending on the size distribution of the materials involved in the debris flow, a
levee can have various shapes. In most cases, the cross section reveals a curved
profile and, when the deposit is dry, it is characterized by strong cohesion. In
other cases, the cross section has a straight free surface and even when it is
dry, the deposit displays minor cohesion and looks like a sand or gravel heap.
Formation of levees is not systematic. Many observers have noticed that, after
a debris flow has passed through a channel, the channel bottom and sides have
been swept clean of debris.

The alluvial fan is the preferential area for debris-flow deposition owing to
the decrease in bed slope and widening of the channel. The slope decrease
usually leads to the sudden stopping of the granular front and increase in the
flow depth for the body. In many cases, debris flows overflow the channel banks
and spread as broad lobes on the alluvial fan. As for levees, the morphological
features of lobes vary widely. For instance, the longitudinal profile of a lobe
margin can be curved (parabola-shaped), straight and tilted, or step-shaped. In
the latter case, the deposit looks like an alluvial deposit. Although they move
at low velocities on the alluvial fan, debris flows can impact or bury structures.
Figure 8 shows the deposit of a large debris flow, which came down to inhabited
areas.

4 Modeling debris flows

4.1 Debris flow classification and rheological behavior

The diversity in the morphological features of debris flows provides evidence of
different families with specific bulk behavior. Several classifications have been
proposed in the last few years. To date, there is no agreement on the chief char-
acteristics on which classification should rely. Therefore, some classifications
are based on the size distribution of materials involved, others only consider the
mode of release, etc. Here we are mainly interested in the manner in which a
debris flow propagates and therefore we suggest using a classification based on
bulk mechanical behavior. We shall therefore consider three families (Bardou
et al., 2003):
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Fig. 8: Debris flow deposit in Fully (Valais, Switzerland) in October 2000 (Cour-
tesy of Crealp).

• Muddy debris flow. The transported material is usually characterized by a
wide particle-size distribution. It is sufficiently rich in clay-like materials
for the matrix to have a muddy consistency and lubricate contact between
coarse particles. Most of the time, bulk behavior is typically viscoplastic.
That means that the material exhibits both plastic and viscous properties
(Major & Pierson, 1992; Phillips & Davies, 1991; Coussot, 1997; Bardou
et al., 2007; Sosio & Crosta, 2009). When the stress level is low, the
material behaves as a solid body, but when the stress level exceeds of
a critical value (yield stress), it flows as a fluid does. This yield stress
confers specific properties to the material. For instance, when a given
volume of material is released and spreads down a tilted flat plane, the
flow depth decreases regularly. When the flow depth reaches a critical
value (depending on the yield stress and the plane inclination), the driving
shear stress is lower that the yield stress and the flow stops abruptly. In
most cases, the yield stress ranges from 0.5 kPa to 15 kPa. Muddy debris
flows can usually propagate over slopes greater than 5%. The limits of
deposits are sharp and well delineated. Boulders and gravel are randomly
distributed in a finer-grained cohesive matrix. Muddy debris flows are
very frequent in the Alps.

• Granular debris flow. Although the size distribution is wide, the mate-
rial is poor in fine (clay-like) particles. Bulk behavior is expected to be
frictional-collisional (Takahashi, 1991; Ancey, 2001; Chen, 1987; Jenkins,
1994): it is mainly governed by collisions and friction between coarse par-
ticles. Energy dissipation is usually much larger for granular debris flows
than for muddy debris flows and thus, granular debris flows require steep
slopes (> 15%) to flow. Presumably, as for very large rockfalls, a granular
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debris flow involving a very large amount of materials may travel large
distances over more gentle slopes. In the field, deposits are easily rec-
ognized by the irregular chaotic surface. Deposits are generally graded,
with coarser debris forming mass deposits and finer debris transported
downstream (due to drainage).

• Lahar-like debris flow. The particle-size distribution is narrow and the
material contains only a small proportion of clay-like materials. This type
of debris flow is typical of volcanic soil areas (soils made up of fine ash), but
it can be observed on other terrain (e.g. gypsum, loess) (Wan & Wang,
1994). Bulk behavior is expected to be frictional/viscous: at low shear
velocities, particles are in sustained frictional contact and bulk behavior
may be described using a Coulomb frictional equation. At high shear
velocity, due to dilatancy and increased fluid inertia, contacts between
coarse grains are lubricated by the interstitial fluid (Ancey & Coussot,
1999; Ancey, 2001). In the laboratory, such materials exhibit very surpris-
ing properties: at rest, they look like fine soil (silts) but once they have
been stirred up, they liquefy suddenly and can flow nearly as Newtonian
fluids. Contrary to muddy debris flows, the yield stress is low and there-
fore, lahars can move over gentle slopes of less than 1%. Deposits are very
thin and flat, and look like alluvial deposits.

4.2 Rheometry

Natural suspensions are made up of a great diversity of grains and fluids. This
observation motivates fundamental questions: how to distinguish between the
solid and fluid phases? What is the effect of colloidal particles in a suspension
composed of coarse and fine particles? We shall see that, when the particle
size distribution is bimodal (i.e, we can distinguish between fine and coarse
particles), the fine fraction and the interstitial fluid form a viscoplastic fluid
embedding the coarse particles, as suggested by Sengun & Probstein (1989a);
this leads to a wide range of viscoplastic constitutive equations, the most com-
mon being the Herschel-Bulkley model. The bimodal-suspension approximation
usually breaks for poorly sorted slurries. In that case, following Iverson and his
co-workers (Iverson, 1997, 2005), we will see that Coulomb plasticity can help
understand the complex, time-dependent rheological behavior of slurries.

Over the last 20 years, a large number of experiments have been carried out
to test the rheological properties of natural materials. The crux of the difficulty
lies in the design of specific rheometers compatible with the relatively large size
of particles involved in geophysical flows. Coaxial-cylinder (Couette) rheometers
and inclined flumes are the most popular geometries. Another source of trouble
stems from disturbing effects such as particle migration and segregation, flow
heterogeneities, fracturation, layering, etc. These effects are often very pro-
nounced with natural materials, which may explain the poor reproducibility of
rheometrical investigations (Major & Pierson, 1992; Contreras & Davies, 2000;
Iverson, 2003b). Poor reproducibility, complexity in the material response, and
data scattering have at times been interpreted as the failure of the one-phase ap-
proximation for describing rheological properties (Iverson, 2003b). In fact, these
experimental problems demonstrate above all that the bulk behavior of natural
material is characterized by fluctuations that can be as wide as the mean values.
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Authors Experiments
O’Brien & Julien (1988) viscometric tests on natural mudflow deposits
Coussot (1997), Coussot
& Piau (1995), Coussot
et al. (2003)

Couette rheometer on fine mud samples

Coussot et al. (1998) wide-gap Couette rheometer with debris-flow sam-
ples

Bardou et al. (2003) Couette rheometer and special rheometers used for
concrete on debris-flow samples

Remâıtre et al. (2005) Couette rheometer on fine mud samples
Major & Pierson (1992) Couette rheometer with fine-grained materials col-

lected on debris-flow deposits
Martino (2003) Couette rheometer with natural samples
Schatzmann et al. (2003) special BMS rheometer with natural samples
Parsons et al. (2001) flume with artificial mixtures made up of clay, silt,

and sand
Sosio & Crosta (2009) Couette rheometer on sand and clay samples

Tab. 1: Experimental investigations conducted on natural materials or nearly
natural materials providing evidence of viscoplastic behavior.

As for turbulence and Brownian motion, we should describe not only the mean
behavior, but also the fluctuating behavior to properly characterize the rheolog-
ical properties. For concentrated colloidal or granular materials (Lootens et al.,
2003; Tsai et al., 2001), experiments on well-controlled materials have provided
evidence that to some extent, these fluctuations originate from jamming in the
particle network (creation of force vaults sustaining normal stress and resisting
against shear stress, both of which suddenly relax). Other processes such as
ordering, aging, and chemical alteration occur in natural slurries, which may
explain their time-dependent properties (Marquez et al., 2006). Finally, there
are disturbing effects (e.g., slipping along the smooth surfaces of a rheometer),
which may bias measurement. Table 4.2 reports a number of experimental in-
vestigations run on natural samples collected in the field or materials mimicking
natural materials. The list is far from exhaustive. For Coulomb plastic mate-
rials, Major et al. (1997) and Major (1997, 2000) carried out geotechnical tests
on natural samples while Denlinger & Iverson (2001), Iverson (1997), and Ma-
jor (1996) investigated unsteady avalanches mobilizing natural mixtures down
a long steep flume. Apart from these authors, most authors have tried to doc-
ument that shear stress depends on the solid concentration or the shear rate,
as expected from kinetic theory or Bagnold-like phenomenological laws (Taka-
hashi, 1991; Aragon, 1995; Armanini et al., 2005; Egashira et al., 2001; Tubino
& Lanzoni, 1993; Pouliquen & Forterre, 2002; Nishimura et al., 1998). These
authors are not cited in Table 4.2.

When the bulk is made up of fine colloidal particles, phenomenological laws
are used to describe rheological behavior. One of the most popular is the
Herschel-Bulkley model, which generalizes the Bingham law

τ = τc + Kγ̇n, (1)

with τc the yield stress, K and n two constitutive parameters. In practice, this
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phenomenological expression successfully describes the rheological behavior of
many materials over a sufficiently wide range of shear rates (Bird et al., 1983),
except at very low shear rates (Coussot et al., 2002). For numerical purposes,
a viscoplastic model may be regularized using a biviscous model (Wilson et al.,
2002), Papanastasiou’s exponential model Papanastasiou (1987), or extended
forms Zhu et al. (2005). Indeed, the existence of a yield stress entails numerical
difficulties in tracking the shape and position of the yield surface(s) within the
flow.

When the bulk is made up of coarse noncolloidal particles, Coulomb friction
at the particle level imparts its key properties to the bulk, which explains (i)
the linear relationship between the shear stress τ and the effective normal stress
σ′ = σ − p (with p the interstitial pore pressure)

τ = σ′ tan ϕ, (2)

and (ii) the non-dependence of the shear stress on the shear rate γ̇. Some
authors have suggested that in high-velocity flows, particles undergo collisions,
which gives rise to a regime referred to as the frictional-collisional regime. The
first proposition of bulk stress tensor seems to be attributable to Savage (1982),
who split the shear stress into frictional and collisional contributions

τ = σ tan ϕ + µ(T )γ̇, (3)

with T the granular temperature. Elaborating on this model, Ancey & Evesque
(2000) suggested that there is a coupling between frictional and collisional pro-
cesses. Using heuristic arguments on energy balance, they concluded that the
collisional viscosity should depend on the Coulomb number Co = ρpa

2γ̇2/σ
(called the inertial number by Jop et al. (2005) and part of the French granular-
flow community) to allow for this coupling in a simple way

τ = σ tan ϕ + µ(Co)γ̇. (4)

Jop et al. (2005) proposed a slightly different version of this model, where both
the bulk frictional and collisional contributions collapse into a single term, which
is a function of the Coulomb number

τ = σ tanϕ(Co). (5)

Contrasting with other propositions, (Josserand et al., 2004) stated that the key
variable in shear stress was the solid concentration φ rather than the Coulomb
number

τ = K(φ)σ + µ(φ)γ̇2, (6)

with K a friction coefficient. Every model is successful in predicting experimen-
tal observations for some flow conditions, but to date, none is able to describe
the frictional-collisional regime for a wide range of flow conditions and material
properties.

When the bulk is a bimodal suspension of coarse particles within a colloidal
dispersion, it still behaves like a viscoplastic material. Sengun & Probstein
(1989a,b) proposed different arguments to explain this behavior. Their expla-
nation consists of two approximations. First, as this is the interstitial phase,
the dispersion resulting from the mixing of fine colloidal particles and water
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Fig. 9: Variation in the bulk viscosity of coal slurry as a function of the shear
rate. The bulk viscosity curve is parallel to the curve obtained with the
fine fraction. After (Sengun & Probstein, 1989a).

imparts most of its rheological properties to the entire suspension. Secondly,
the coarse fraction is assumed to act independently of the fine fraction and to
enhance bulk viscosity. They introduced a net viscosity ηnr of a bimodal slurry
as the product of the fine relative viscosity ηfr and the coarse relative viscosity
ηcr. The fine relative viscosity is defined as the ratio of the apparent viscos-
ity ηf of the fine-particle suspension to the viscosity of the interstitial fluid µ:
ηfr = ηf/µ. The coarse relative viscosity is defined as the ratio of the appar-
ent viscosity ηc of the coarse-particle slurry to the viscosity of the fine-particle
suspension: ηcr = ηc/ηf . The two relative viscosities depend on the solid con-
centrations and a series of generalized Péclet numbers. For the coarse-particle
suspensions, all the generalized Péclet numbers are much greater than unity.
Using a dimensional analysis, Sengun and Probstein deduced that the coarse
relative viscosity cannot depend on shear rate. In contrast, bulk behavior in
fine-particle suspensions is governed by colloidal particles and thus at least one
of the generalized Péclet numbers is of the order of unity, implying that the fine
relative viscosity is shear-dependent. Sengun and Probstein’s experiments on
the viscosity of coal slurries confirmed the reliability of this concept (Sengun &
Probstein, 1989a). Plotting log ηnr and log ηfr against log γ̇, they found that
over a wide range of concentrations, the curves were parallel and their distance
was equal to log ηcr (see Fig. 9). However, for solid concentrations in the coarse
fraction exceeding 0.35, they observed a significant departure from parallelism
which they ascribed to nonuniformity in the shear rate distribution within the
bulk due to squeezing effects between coarse particles.

Ancey & Jorrot (2001) examined the effect of adding coarse particles in a
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colloidal dispersion. At first glance, since the volume occupied by the colloidal
particles is decreased, the bulk yield stress should decrease and, to first order,
they inferred

τc ∝
(

φf

1− φf

)c

(1− φ), (7)

where φ is the coarse-particle concentration and φf the concentration in fine
(colloidal) particles. To test this expectation, Ancey and Jorrot measured the
bulk yield stress of kaolin suspensions to which they added a given amount
of coarse particles. Figure 10 shows typical results obtained with a bimodal
distribution of glass beads (1 mm and 3 mm in diameter). The dimensionless
number ξ is the relative fraction of small beads (ξ = 0 means that there were
no small beads while ξ = 1 means that all coarse particles added to the kaolin
suspension were small beads). The total solid concentration φt is computed as
follows: φt = φk(1− φc) + φc. Comments on Fig. 10 are the following:

• Adding a small amount of coarse particles leads to a decrease in the bulk
yield stress (here for total solid concentrations as high as 0.55).

• Interestingly enough, in contrast with the authors’ expectation, the bulk
yield stress starts diverging when the total solid concentration comes closer
to the maximum solid concentration.

• A striking feature of this abrupt rise is that the increase rate is very close
to the value measured for a pure kaolin dispersion. This could mean that
coarse particles surrounded by colloidal particles may very well behave in
turn as colloidal particles (this statement is naturally wrong).

• At low and moderate concentrations of coarse particles, the bulk yield
stress was independent of the particle size (when equal size distributions
were tested), but it increased significantly with increasing relative fractions
of large particles.

• On the contrary, at high concentrations, the finer the distribution, the
larger the yield stress.

The main and unexpected result of this experimental study is that bulk yield
stress may be significantly affected by the concentration of coarse particles, but
its features (such as the growth rate with a solid concentration) are still governed
by the fine colloidal fraction.

When the bulk is made up of continuous distribution of particle distributions,
the bimodal-suspension approximation is no longer valid. Given substantial
experimental difficulties (particle size, sedimentation, etc.), few experimental
investigations have been conducted on poorly-sorted slurries. In soil mechanics,
testing bulk materials in quasi-static drained or non-drained flow configurations
has shown that shear strength is governed by compaction state and pore fluid
pressure (Davis & Sevladurai, 2002). Since geotechnical tests can hardly be run
under large deformations, Iverson and his colleagues carried out experiments in a
95-m long flume, specifically built in Oregon (USGS flume). In Iverson’s opinion,
the flow of poorly sorted mixtures is fundamentally an unsteady phenomenon,
which cannot be easily investigated under steady flow conditions. Indeed, the
shear strength adheres to the Coulomb law: τ = σ′ tan ϕ, with σ′=σ − p the
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Fig. 10: Variation in the bulk yield stress. The variation in the yield stress for
a kaolin suspension is reported as a function of the solid concentration
(φt coincides with the fine fraction). The thin solid line represents
the expectation of a decreasing bulk yield stress with increasing coarse
concentration [see Eq. (7)]. The symbols represent the experimental
data obtained by varying the ratio ξ of large and small beads. The
solid thick line stands for the model proposed by Zhou et al. (1999)
to compute yield stress of concentrated flocculated suspensions. After
Ancey & Jorrot (2001).
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effective stress. During the motion, the material contracts, which gives rise to
high pore pressure and thus a decrease in shear stress. Pore pressure can remain
elevated when pore pressure diffusion is slow (i.e., for low bulk permeability).
Consequently, shear strength is not a rheological property (Iverson, 2003a).

Is it possible to provide clear evidence for the prevalence of Coulomb fric-
tional behavior and dependence of shear strength on pore pressure in rapidly
sheared, poorly sorted slurries? Because of the unsteady nature of shear strength
together with the number of control variables that are also time-dependent (pore
pressure, solid concentration, normal stress), providing an indisputable reply to
this question remains difficult. There are, however, a number of laboratory and
field observations that support this theory. For instance, carrying out exper-
iments with poorly sorted materials in the USGS flume, Major observed that
increasing the fine fraction resulted in thinning the deposit layer, which meant
that the bulk strength decreased (Major, 1996) (see also (Iverson, 2003a)). This
observation conflicts with laboratory experiments showing an increase in yield
stress when the fine fraction is increased (see the asymptotic trend in Fig. 10
when φt → φm), but can be explained by recognizing that increasing the fine
content leads to a decrease in the bulk permeability and consequently reduces
pore pressure diffusion; the bulk stays longer in a liquified state, with high
pore-pressure levels and low shear strength. In the next section, we will present
laboratory experiments that also provide support for this explanation.

4.3 Application: sheet flows

Here we will examine the consequences of the rheological properties on the flow
features for thin free-surface flows (referred to as sheet flows), a typical flow
configuration for geophysical flows. In addition to rheological aspects, different
flow regimes can occur depending on the relative strength of inertial, pressure,
and viscous contributions in the governing equations. Dimensional analysis
helps clarify the notions of inertia-dominated and friction-dominated regimes
(Ancey & Cochard, 2009; Ancey et al., 2009). We will then focus on creeping
flows on gentle slopes and fast flows. In the analytical computations, we will
use the shallowness of sheet flows to derive approximate equations. Since the
Bingham model is the most studied and widespread constitutive equation, most
examples will be based on this model, but we will also refer to papers dealing
with alternative viscoplastic models or Coulomb friction.

We consider a shallow layer of fluid flowing over a rigid impermeable plane
inclined at an angle θ (see Fig. 11). The fluid is viscoplastic and incompressible;
its density is denoted by ρ and its bulk viscosity by η = τ/γ̇. The ratio ε =
H∗/L∗ between the typical vertical and horizontal lengthscales, H∗ and L∗
respectively, is assumed to be small. The streamwise and vertical coordinates
are denoted by x and y, respectively.

A two-dimensional flow regime is assumed, namely any cross-stream varia-
tion is neglected. The depth of the layer is given by h(x, t). The horizontal
and vertical velocity components of the velocity u are denoted by u and v, re-
spectively. The fluid pressure is referred to as p(x, y, t), where t denotes time.
The surrounding fluid (assumed to be air) is assumed to be dynamically passive
(i.e., inviscid and low density compared to the moving fluid) and surface tension
is neglected, which implies that the stress state at the free surface is zero.

The governing equations are given by the mass and momentum balance
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Fig. 11: The configuration of the flow.

equations
∇ · u = 0, (8)

ρ
du
dt

= ρ
∂u
∂t

+ ρ(u · ∇)u

= ρg −∇p +∇ · σ,
(9)

supplemented by the following boundary conditions at the free surface

v(x, h, t) =
dh

dt
=

∂h

∂t
+ u(x, h, t)

∂h

∂x
, v(x, 0, t) = 0 . (10)

There are many ways of transforming these governing equations into dimension-
less expressions (Liu & Mei, 1990a; Balmforth & Craster, 1999; Keller, 2003;
Ancey & Cochard, 2009). Here we depart slightly from the presentation given
by Liu & Mei (1990a). The characteristic streamwise and vertical velocities,
the timescale, the typical pressure, and the order of magnitude of bulk viscosity
are referred to as U∗, V∗, T∗, P∗, and η∗, respectively. Moreover, in addition to
the lengthscale ratio ε, we introduce the following dimensionless numbers that
characterize free-surface, gravity-driven flows: the flow Reynolds number and
the Froude number

Re =
ρU∗H∗

η∗
and Fr =

U∗√
gH∗ cos θ

.

The following dimensionless variables will be used in this section:

û =
u

U∗
, v̂ =

v

V∗
, x̂ =

x

L∗
, ŷ =

y

H∗
, and t̂ =

t

T∗

A natural choice for T∗ is T∗ = L∗/U∗. The stresses are scaled as follows:

σ̂xx =
η∗U∗
L∗

σxx, σ̂xy =
η∗U∗
H∗

σxy, σ̂yy =
η∗U∗
L∗

σyy, and p̂ =
p

P∗
,

where σxx, σxy, and σyy are the normal stress in the x direction, the shear stress,
and the normal stress in the x direction, respectively. Here we are interested in
free-surface flows. This leads us to set P∗ = ρgH∗ cos θ, since we expect that,
to leading order, the pressure adopts a hydrostatic distribution (see below). If
we define the vertical velocity scale as V∗ = εU∗, the mass balance equation (8)
takes the following dimensionless form

∂û

∂x̂
+

∂v̂

∂ŷ
= 0. (11)



4 Modeling debris flows 20

Substituting the dimensionless variables into the momentum balance equation
(9) leads to

εRe
dû

dt̂
=

εRe
Fr2

(
1
ε

tan θ − ∂p̂

∂x̂

)
+ ε2

∂σ̂xx

∂x̂
+

∂σ̂xy

∂ŷ
, (12)

ε3Re
dv̂

dt̂
=

εRe
Fr2

(
−1− ∂p̂

∂ŷ

)
+ ε2

∂σ̂xy

∂x̂
+ ε2

∂σ̂yy

∂ŷ
. (13)

The momentum balance equation expresses a balance between gravity accel-
eration, inertial terms, pressure gradient, and viscous dissipation, whose order
of magnitude is ρg sin θ, ρU2

∗/L∗, P∗/L∗, and η∗U∗/H2
∗ , respectively. Depend-

ing on the values considered for the characteristic scales, different types of flow
regime occur. At least four regimes, where two contributions prevail compared
to the others, could be achieved in principle

1. Inertial regime, where inertial and pressure-gradient terms are of the same
magnitude. We obtain

U∗ =
√

gH∗ cos θ.

The order of magnitude of the shear stress is ∂σxy/∂y = ρg O(ε−1Re−1).
This regime occurs when: εRe À 1 and Fr = O(1).

2. Diffusive regime, where the pressure gradient is balanced by viscous stresses
within the bulk. In that case, we have

U∗ =
ρg cos θH3

∗
η∗L∗

.

Inertial terms must be low compared to the pressured gradient and the
slope must be shallow (tan θ ¿ ε). This imposes the following constraint:
εRe ¿ 1. We deduced that Fr2 = O(εRe) ¿ 1.

3. Visco-inertial regime, where inertial and viscous contributions are nearly
equal. In that case, we have

U∗ =
1
ε

η∗
ρH∗

.

The pressure gradient must be low compared to the viscous stress, which
entails the following condition η∗ À ερ

√
gH3∗ . We obtain εRe ∼ 1 and

Fr = η∗/(ρε
√

gH3∗ ) À 1.

4. Nearly steady uniform regime, where the viscous contribution matches
gravity acceleration. In that case, we have

U∗ =
ρg sin θH2

∗
η∗

.

Inertia must be negligible, which means ε ¿ 1 (stretched flows). We
obtain Re = O(Fr2) and tan θ À ε (mild slopes).
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In the inertial regime, the rheological effects are so low that they can be ne-
glected and the final governing equations are the Euler equations. The visco-
inertial regime is more spurious and has no specific interest in geophysics, no-
tably because the flows are rapidly unstable. More interesting is the diffusive
regime that may achieved for very slow flows on gentle slopes (θ ¿ 1), typically
when flows come to rest, or within the head (Ancey & Cochard, 2009; Ancey
et al., 2009). We will further describe this regime in the following. When there
is no balance between two contributions, we have to solve the full governing
equations. This is usually a difficult task, even numerically. To simplify the
problem, one can use flow-depth averaged equations. The nearly-steady regime
will be exemplified below within the framework of the kinematic-wave approxi-
mation. Finally, it should be kept in mind that the partitioning into four regimes
holds for viscous (Newtonian) fluids and non-Newtonian materials for which the
bulk viscosity does not vary significantly with shear rate over a sufficiently wide
range of shear rates. In the converse case, further dimensionless groups (e.g.,
the Bingham number Bi = τcH∗/(µU∗)) must be introduced, which makes this
classification more complicated (Ancey, 2007; Ancey & Cochard, 2009; Ancey
et al., 2009).

4.3.1 Slow motion

Slow motion of a viscoplastic material has been investigated by Liu & Mei
(1990a,c), Mei et al. (2001), Coussot et al. (1996), Balmforth and Craster
(Balmforth & Craster, 1999; Balmforth et al., 2002), Matson & Hogg (2007),
and Hogg & Matson (2009).

Here we consider that the shear stress is given by (1). Taking the two
dominant contributions in Eqs. (12–13) and returning to the physical variables,
we deduce

σxy = ρg cos θ(h− y)
(

tan θ − ∂h

∂x

)
, (14)

p = ρg(h− y) cos θ. (15)

The bottom shear stress is then found to be τb = σxy|y=0. For bottom shear
stresses in excess of the yield stress τc, flow is possible. When this condition is
satisfied, there is a yield surface at depth y = h0 within the bulk, along which
the shear stress matches the yield stress

σxy|y=h0 = ρg cos θ(h− h0)
(

tan θ − ∂h

∂x

)
= τc. (16)

The yield surface separates the flow into two layers (Liu & Mei, 1990a; Balmforth
& Craster, 1999): the bottom layer, which is sheared, and the upper layer or plug
layer, where the shear rate is nearly zero. Indeed, using an asymptotic analysis,
(Balmforth & Craster, 1999) demonstrated that in the so-called plug layer, the
shear rate is close to zero, but nonzero. This result may seem anecdotic, but
it is in fact of great importance since it resolves a number of paradoxes raised
about viscoplastic solutions.

On integrating the shear-stress distribution, we can derive a governing equa-
tion for the flow depth h(x, t). For this purpose, we must specify the con-
stitutive equation. For the sake of simplicity, we consider a Bingham fluid in



4 Modeling debris flows 22

one-dimensional flows as Liu & Mei (1990a) did; the extension to Herschel-
Bulkley and/or two-dimensional flows can be found in (Balmforth & Craster,
1999; Balmforth et al., 2002; Mei & Yuhi, 2001; Ancey & Cochard, 2009). In
the sheared zone, the velocity profile is parabolic

u(y) =
ρg cos θ

µ

(
tan θ − ∂h

∂x

)(
h0y − 1

2
y2

)
for y ≤ h0,

while the velocity is constant to leading order within the plug

u(y) = u0 =
ρgh2

0 cos θ

µ

(
tan θ − ∂h

∂x

)
for y ≥ h0,

The flow rate is then

q =
∫ h

0

u(y)dy =
ρgh2

0(3h− h0) cos θ

6µ

(
tan θ − ∂h

∂x

)
. (17)

Integrating the mass balance equation over the flow depth provides

∂h

∂t
+

∂q

∂x
= 0. (18)

Substituting q with its expression (17) and the yield surface elevation h0 with
Eq. (16) into Eq. (18), we obtain a governing equation for h, which takes the
form of a nonlinear diffusion equation

∂h

∂t
=

∂

∂x

[
F (h, h0)

(
∂h

∂x
− tan θ

)]
, (19)

with F = ρgh2
0(3h− h0) cos θ/(6µ).

A typical application of this analysis is the derivation of the shape of a
viscoplastic deposit. Contrary to a Newtonian fluid, the flow depth of a vis-
coplastic fluid cannot decrease indefinitely when the fluid spreads out along an
infinite plane. Because of the finite yield stress, when it comes to rest, the fluid
exhibits a nonuniform flow-depth profile, where the pressure gradient is exactly
balanced by the yield stress. On an infinite horizontal plane, the bottom shear
stress must equal the yield stress. Using Eq. (14) with θ = 0 and y = 0, we
eventually obtain (Liu & Mei, 1990a)

σxy|y=0 = τc = −ρgh
∂h

∂x
, (20)

which, on integrating, provides

h(x)− hi =
√

2τc

ρg
(xi − x), (21)

where h = hi at x = xi is a boundary condition. This equation shows that
the deposit-thickness profile depends on the square root of the distance. This is
good agreement with field observations (Coussot et al., 1996); Fig. 12 shows the
lobe of debris-flow deposit, whose profile can be closely approximated by (21).

When the slope is nonzero, an implicit solution for h(x) to Eq. (14) is found
(Liu & Mei, 1990a)

tan θ(h(x)− hi) +
τc

ρg cos θ
log

[
τc − ρgh sin θ

τc − ρghi sin θ

]
= tan2 θ(x− xi). (22)
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Fig. 12: Lobes of a debris-flow deposit near the Rif Paulin stream (Hautes-Alpes,
France).

The shape of a static two-dimensional pile of viscoplastic fluid was investigated
by Coussot et al. (1996), Mei & Yuhi (2001), Osmond & Griffiths (2001), and
Balmforth et al. (2002); the latter derived an exact solution, while the former
authors used numerical methods or ad hoc approximations to solve the two-
dimensional equivalent to Eq. (14). Similarity solutions to Eq. (19) have also
been provided by Balmforth et al. (2002) in the case of a viscoplastic flow
down a gently inclined, unconfined surface with a time-varying source at the
inlet. Ancey & Cochard (2009) used matched-asymptotic expansions to build
approximate analytical solutions for the movement of a finite volume of Herschel-
Bulkley fluid down a flume. Matson & Hogg (2007) and Hogg & Matson (2009)
investigating the slumping motion of a fixed volume on a plane or down an
inclined slope.

4.3.2 Fast motion

The most common method for solving fast-motion free-surface problems is to
take the depth-average the local equations of motion. In the literature, this
method is referred to as the Saint-Venant approach, the boundary-layer ap-
proximation, the lubrication approximation, the long-wave approximation, etc.
Here, by fast motion, we refer to situations where inertia, rheological effects,
and pressure play a role in flow dynamics. However, flow velocity must not be
too high; otherwise instabilities occur at the free surface (Trowbridge, 1987; Liu
& Mei, 1990b; Balmforth et al., 2004).

The Saint-Venant approach involves integrating the momentum and mass
balance equations over the depth. A considerable body of work has been pub-
lished on this method for Newtonian and non-Newtonian fluids, including vis-
coplastic (Coussot, 1997; Huang & Garc̀ıa, 1998; Siviglia & Cantelli, 2005)
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and granular materials (Savage & Hutter, 1989; Gray et al., 1998; Pouliquen
& Forterre, 2002; Iverson & Denlinger, 2001; Bouchut et al., 2003; Chugunov
et al., 2003; Pudasaini & Hutter, 2003; Kerswell, 2005). Here, we shall briefly
recall the principle and then directly provide the resulting governing equations.
Let us start with the local mass balance (8). Integrating this equation over the
flow depth leads to

h(x,t)∫

0

(
∂u

∂x
+

∂v

∂y

)
dy =

∂

∂x

h∫

0

u(x, y, t)dy − u(h)
∂h

∂x
− v(x, h, t)− v(x, 0, t).

(23)
At the free surface and the bottom, the y-component of velocity v satisfies the
boundary conditions (10). We then easily deduce

∂h

∂t
+

∂hu

∂x
= 0, (24)

where we have introduced depth-averaged variables defined as

f̄(x, t) =
1

h(x, t)

h(x,t)∫

0

f(x, y, t)dy.

The same procedure is applied to the momentum balance equation (9). Without
any difficulty, we can deduce the averaged momentum equation from the x-
component of the momentum equation

ρ̄

(
∂hu

∂t
+

∂hu2

∂x

)
= ρ̄gh sin θ − ∂hp̄

∂x
+

∂hσ̄xx

∂x
− τb, (25)

where we have introduced the bottom shear stress: τb = σxy(x, 0, t). In the
present form, the system of Eqs. (24–25) is not closed since the number of
variables exceeds the number of equations. A common approximation involves
introducing a parameter (sometimes called the Boussinesq momentum coeffi-
cient), which links the mean velocity to the mean square velocity

u2 =
1
h

h∫

0

u2(y) dy = αū2. (26)

Most of the time, the coefficient α is set to unity.
Another helpful (and common) approximation, not mentioned in the above

system, concerns the computation of stress. Within the framework of long wave
approximation, we assume that longitudinal motion outweighs vertical motion:
for any quantity m related to motion, we have ∂m/∂y À ∂m/∂x. This allows
us to consider that every vertical slice of flow can be treated as if it was locally
uniform. In such conditions, it is possible to infer the bottom shear stress by
extrapolating its steady-state value and expressing it as a function of u and h.
Using this approximation, Coussot (1994, 1997) obtained the following bottom
shear stress

τb = µ

(
1 + 2n

1 + n

)n
ūn

hn+1
0 ((2 + n−1)h− h0)n

,
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for Herschel-Bulkley fluids. Using the first-order approximation of the y-component
of the momentum balance equation (9), he found that the pressure was hydro-
static, which leads to a flow-depth averaged pressure

p̄ =
1
2
ρgh cos θ.

The effects of normal stresses can be neglected to first order. Note that this
derivation is not the only way of deriving the Saint-Venant equations for a Bing-
ham fluid; alternative procedures have been proposed (Huang & Garc̀ıa, 1997,
1998; Pastor et al., 2004). For instance, Huang and Garc̀ıa further considered
two partial differential equations to supplement the governing equations (24–25)
(Huang & Garc̀ıa, 1997, 1998): one equation governing the elevation h0 of the
yield surface and another providing the bottom shear stress.

For Coulomb materials, the same procedure can be repeated. The only
modification concerns the momentum balance equation (25), which takes the
form (Savage & Hutter, 1989; Iverson & Denlinger, 2001)

ρ̄

(
∂hū

∂t
+

∂hū2

∂x

)
= ρ̄gh

(
sin θ − k cos θ

∂h

∂x

)
− τb, (27)

with k a proportionality coefficient between the normal stresses σ̄xx and σ̄yy,
which is computed by assuming limiting Coulomb equilibrium in compression
(∂xū < 0) or extension (∂xū > 0); the coefficient is called the active/passive
pressure coefficient. In Eq. (27), the bottom shear stress can be computed by
using the Coulomb law τb = (σ̄yy|y=0 − pb) tan ϕ, with σ̄yy|y=0 = ρ̄gh cos θ and
pb the pore pressure at the bed level.

Analytical solutions can be obtained for the Saint-Venant equations. Most of
them were derived by seeking self-similarity solutions; see (Savage & Nohguchi,
1988; Savage & Hutter, 1989; Chugunov et al., 2003) for the Coulomb model and
(Hogg & Pritchard, 2004) for viscoplastic and hydraulic models. Some solutions
can also be obtained using the method of characteristics. We are going to see
two applications based on these methods.

In the first application, we use the fact that the Saint-Venant equations for
Coulomb materials are structurally similar to those used in hydraulics when the
bottom drag can be neglected. The only difference lies in the nonhydrostatic
pressure term and the source term (bottom shear stress). However, using a
change in variable makes it possible to retrieve the usual shallow-water equa-
tions and seek similarity solutions to derive the Ritter solutions (Mangeney
et al., 2000; Karelsky et al., 2000; Kerswell, 2005). The Ritter solutions are the
solutions to the so-called dam-break problem, where an infinite volume of ma-
terial at rest is suddenly released and spreads over a dry bed (i.e., no material
laying along the bed). Much attention has been paid to this problem, notably
in geophysics because it is used as a paradigm for studying rapid surge motion.
We pose

x∗ = x− δ

2
t2, t∗ = t, u∗ = u− δt, and h∗ = h,

where we introduced the parameter δ = g cos θ(tan θ − µ). We deduce

∂h∗

∂t∗
+

∂h∗u∗

∂x∗
= 0, (28)
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∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
+ gk cos θ

∂h∗

∂x∗
= 0. (29)

For the dam-break problem, the initial and boundary conditions are

−∞ < x < ∞, u(x, 0) = 0,

x < 0, h(x, 0) = hi,

x > 0, h(x, 0) = 0.

(30)

The analytical solutions to Eqs. (28–29) are the well-known Ritter solutions.
We are looking for a similarity solution in the form (Gratton & Vigo, 1994)

ū∗ = t∗β/αU(ζ∗) and h∗ = t∗γ/αH(ζ∗),

with ζ∗ = x∗/t∗α the similarity variable, and H and U two unknown functions.
Substituting ū∗ and h∗ with their similarity forms into (28–29), we find: β+α =
1 and γ+2α = 2. For this solution to satisfy the initial and boundary conditions,
we must pose β = γ = 0, hence α = 1. We then infer

(
H U − ζ∗

U − ζ∗ kg cos θ

)
·
(

U ′

H ′

)
= 0,

where the prime denotes the ζ∗-derivative. For this system to admit a non-
constant solution, its determinant must vanish, which leads to kgH cos θ =
(U − ζ∗)2. On substituting this relation into the system above, we deduce
U ′ = 2ζ∗/3, thus U = 2(ζ∗ + c)/3, where c is a constant of integration,
H = 4(c− 1

2ζ∗)2/(9kg cos θ). The constant c is found using the boundary con-
ditions and by assuming that the undisturbed flow slides at constant velocity
δt: c =

√
kghi cos θ. Returning to the original variables, we find

ū(x, t) = ū∗ + δt =
2
3

(x

t
+ δt + c

)
, (31)

h(x, t) =
1

9kg cos θ

(
−x

t
+

δ

2
t + 2c

)2

. (32)

The boundary conditions also imply that the solution is valid over the ζ-range
[−c − δt, 2c + δt/2]; the lower bound corresponds to the upstream condition
ū = 0, while the upper bound is given by the downstream condition h = 0. It
is worth noting that the front velocity uf = 2c + δt/2 is constantly increasing
or decreasing depending on the sign of δ. When δ < 0 (friction in excess of
slope angle), the front velocity vanishes at t = 4c/|δ|. Figure 13 shows that the
shape of the tip region is parabolic at short times (δt ¿ c), in agreement with
experimental data (Balmforth & Kerswell, 2005; Siavoshi & Kudrolli, 2005).
Solutions corresponding to finite released volumes were also obtained by Ancey
et al. (2008), Hogg (2006), and Savage & Nohguchi (1988); Savage & Hutter
(1989).

In the second application, we use the method of characteristics to find a
solution to the governing equations for Bingham flows that are stretched thin
when they are nearly steady uniform. For mild slopes, when the aspect ratio
ε is very low, the inertial and pressure contributions can be neglected (see di-
mensional analysis above). This means that the flow-depth averaged velocity is
very close to the mean velocity reached for steady uniform flows

ūs = up

(
1− h0

3h

)
,



4 Modeling debris flows 27

-1.5 -1 -0.5 0 0.5 1 1.5 2

Ζ

0.2

0.4

0.6

0.8

1

1.2

1.4

h

Fig. 13: Flow-depth profile generated just after the wall retaining a granular ma-
terial is removed. Computations made with c = 1 m/s. The similarity
variable ζ is ζ = x/t.

where up is the plug velocity

up =
ρgh2

0 sin θ

2µ
,

with h the flow depth and h0 = h − τc/(ρg sin θ) the yield-surface elevation;
h0 must be positive or no steady flow occurs. We then use the kinematic-wave
approximation introduced by Lighthill & Whitham (1955) to study floods on
long rivers; this approximation was then extensively used in hydraulic applica-
tions (Weir, 1983; Arattano & Savage, 1994; Hunt, 1994; Huang & Garc̀ıa, 1997,
1998). It involves substituting the mean velocity into the mass balance equation
(24) by its steady-state value

∂h

∂t
+

∂

∂x
up

(
h− h0

3

)
= 0. (33)

Introducing the plug thickness hp = h−h0 = τc/(ρg sin θ), we obtain an expres-
sion that is a function of h and its time and space derivative

∂h

∂t
+ K

(
h2 − hhp

) ∂h

∂x
= 0,

with K = ρg sin θ/µ. The governing equation takes the form of a nonlinear
advection equation, which can be solved using the method of characteristics
(LeVeque, 2002).

Using the chain rule for interpreting this partial differential equation (33),
we can show that it is equivalent to the following ordinary equation

dh

dt
= 0, (34)

along the characteristic curve

dx

dt
= λ(h), (35)
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in the (x, t) plane, with λ(h) = Kh (h− hp). Equation (34) shows that the flow
depth is constant along the characteristic curve, hence the characteristic curves
are straight lines, the slope of which are given by the right-hand side term λ(h)
in Eq. (35). These characteristic curves can be used to solve an initial value
problem, where the initial value of h is known over a given interval: h = hi(xi)
(at t = 0). The value of h along each characteristic curve is the value of h at
the initial point x(0) = xi. We can thus write

h(x, t) = hi(xi) = hi(x− λ(hi(xi))t).

It is worth noting that because of the nonlinearity of Eq. (33), a smooth initial
condition can generate a discontinuous solution (shock) if the characteristic
curves intersect, since at the point of intersection h takes (at least) two values
(LeVeque, 2002).
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