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1 Introduction

Over the last century, recreational activities, transportation, and constructions
in high-altitude areas (ski resorts, dams) have shown a rapid growth in many
mountain ranges in Europe and North America. In these areas, snow avalanches
are a major threat, causing damage and death. A typical example in recent
years is provided by the 1999 winter, where several snow storms hit the Alps,
producing huge avalanches, which reached the valley bottoms and killed 62
people inhabitants. The growth in winter sports has also led to a significant
increase in avalanche deaths over the last few decades, with some 200 skiers or
alpinists killed worldwide on average every year. Some years such as in 2006,
the death toll can be as high as 300 persons killed by avalanches in Europe.
There is thus a rising demand for higher safety measures.

For more than a century, scientists have been studying avalanches to try to
improve predictions of when they will occur and to optimize defences against
them. In the late 19th century, the Swiss forest engineer Johann Coaz started
studying snow and monitoring several paths around Davos, which allowed him
to publish the first monograph on snow avalanches (Coaz, 1881). Another forest
engineer, Paul Mougin, proposed a very simple model in the 1920s to compute
avalanche velocity and run-out distance (Mougin, 1922). The model assumes
that avalanches behave like sliding blocks. It is still used (in a modified form
known as the Voellmy model) by engineers today. A more realistic generation
of models, first put forward in the 1970s by Soviet researchers Sergei Grigorian
and Margarita Eglit, relies instead on an analogy with flash floods and uses
differential equations that describe the motion of water waves (Grigorian et al.,
1967).

In spite of substantial progress accomplished over the last century, we still
do not know precisely what combination of physical conditions gives rise to
avalanches and what exactly governs the way they flow. Our ability to predict
when avalanches will occur is limited because the weather conditions that give
rise to them are far from clear cut (Schweizer et al., 2003). Il is also difficult
to construct defences against avalanches because we only have a limited under-
standing of how they flow. Building walls to either stop or divert avalanches
requires a knowledge of how far a potential avalanche is likely to travel, how
fast it will be traveling when it reaches the barrier and how broad it will be.
Predicting these things is still quite hit and miss.

This chapter summarizes the paramount features of avalanches (formation
and motion) and outlines the main approaches used for describing their move-
ment. We do not tackle specific problems related to snow mechanics and
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avalanche forecasting. For more information on the subject, the reader is re-
ferred to the main textbooks published in Alpine countries (Ancey, 2006; Puda-
saini & Hutter, 2006; Amman et al., 1997; Hutter, 1996; McClung & Schaerer,
1993; La Chapelle, 1977).

1.1 A physical picture of avalanches

Avalanches are rapid gravity-driven masses of snow moving down mountain
slopes. Many, if not most, catastrophic avalanches follow the same basic princi-
ple: fresh snow accumulates on the slope of a mountain until the gravitational
force at the top of the slope exceeds the binding force holding the snow to-
gether. A solid slab of the surface layer of now can then push its way across the
underlying layer, resulting in an avalanche. The failure may also arise from a
temperature increase, which reduces snow cohesion. Typically, most avalanches
travel for a few hundred meters at a rather low velocity (a few meters per sec-
ond), but some can move up to 15 km and achieve velocities as high as 100 m/s.
They can also pack an incredible punch, up to several atmospheres of pressure.

1.2 Avalanche release

Successive snowfalls during the winter and spring accumulate to form snow
cover. Depending on the weather conditions, significant changes in snow (types
of crystal) occur as a result of various mechanical (creep, settlement) and ther-
modynamic processes (mass transfer) (Colbeck, 1991; Schweizer et al., 2003).
This induces considerable variations in its mechanical properties (cohesion, shear
strength). Due to its layer structure, the snow cover is liable to internal slides
between layers induced by gravity. When the shear deformation exceeds the
maximum value that the layers of snow can undergo, a failure arises, usually
developing first along the sliding surface, then propagating throughout the up-
per layers across a crack perpendicular to the downward direction. This kind of
release is very frequent. In the field, evidence of such failures consists of a clear
fracture corresponding to the breakaway wall at the top edge of the slab and a
bed surface over which the slab has slid (see Fig. 1). If the snow is too loose, the
failure processes differ significantly from the ones governing slab release. Loose
snow avalanches form near the surface. They usually start from a single point,
then they spread out laterally by pushing and incorporating more snow.

The stability of a snow cover depends on many parameters. We can dis-
tinguish the fixed parameters related to the avalanche path and the varying
parameters, generally connected to weather conditions (Ancey, 1998; de Quer-
vain, 1981; Bernard, 1927). Fixed parameters include:

• Mean slope. In most cases, the average inclination of starting zones ranges
from 27◦ to 50◦. On rare occasions, avalanches can start on gentle slopes
of less than 25◦ (e.g. slushflow involving wet snow with high water con-
tent), but generally the shear stress induced by gravity is not large enough
to cause failure (Lackinger, 1986). For inclinations in excess of 45◦ to
50◦, many slides (sluffs) occur during snowfalls; thus amounts of snow
deposited on steep slopes are limited.

• Roughness. Ground surface roughness is a key factor in the anchorage of
the snow cover to the ground. Dense forests, broken terrain, starting zones
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(a)

(b)

Fig. 1: (a) slab avalanche released by gliding wet snow; note also that single-
point releases can also be observed. (b) Dry-snow slab avalanche in the
La Sionne field site (courtesy of SLF).
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cut by several ridges, ground covered by large boulders generally limit the
amount of snow that can be involved in the start of an avalanche. Con-
versely, widely-spaced forests, large and open slopes with smooth ground
facilitate avalanche release.

• Shape and curvature of starting zone. The stress distribution within the
snowpack and the variation in its depth depend on the longitudinal shape
of the ground. For instance, convex slopes concentrate tensile stresses
and are generally associated with a significant variation in the snowcover
depth, favoring snowpack instability.

• Orientation to the sun. The orientation of slopes with respect to the sun
has a strong influence on the day-to-day stability of the snowpack. For
instance, in winter, shady slopes receive little incoming radiation from
the sun and conversely lose heat by long-wave radiation. It is generally
observed that for these slopes, the snowpack is cold and tends to develop
weak layers (faceted crystals, depth hoar). Many fatalities occur each year
in such conditions. In late winter and in spring, the temperature increase
enhances stability of snowpacks on shady slopes and instability on sunny
slopes.

Among the varying factors intervening in avalanche release, experience clearly
shows that in most cases, avalanches result from changes in weather conditions:

• New snow. Most of the time, snowfall is the cause of avalanches. The
hazard increases significantly with the increase in the depth of new snow.
For instance, an accumulation of 30 cm/day may be sufficient to cause
widespread avalanching. In European mountain ranges, heavy snowfalls
with a total precipitation exceeding 1 m during the previous three days
may produce large avalanches, with possible extension down to the valley
bottom.

• Wind. The wind is an additional factor which significantly influences the
stability of a snowpack. Indeed it causes uneven snow redistribution (accu-
mulation on lee slopes), accelerates snow metamorphism, forms cornices,
whose collapses may trigger avalanches. On the whole, influence of the
wind is very diverse, either consolidating snow (compacting and rounding
snow crystals) or weakening it.

• Rain and liquid water content. The rain plays a complex role in snow
metamorphism. Generally, for dry snow, a small increase in the liquid
water content (LWC< 0.5%) does not significantly affect the mechanical
properties of snow. However, heavy rain induces a rapid and noticeable
increase in LWC, which results in a drop in the shear stress strength. This
situation leads to widespread avalanche activity (wet snow avalanches)
(Conway & C.F., 1993).

• Snowpack structure. A given snowpack results from the successive snow-
falls. The stability of the resulting layer structure depends a great deal
on the bonds between layers and their cohesion. For instance, heteroge-
neous snowpacks, made up of weak and stiff layers, are more unstable than
homogeneous snowpacks (Schweizer et al., 2003).
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1.3 Avalanche motion

It is helpful to consider two limiting cases of avalanches depending on the flow
features (de Quervain, 1981; Ancey & Charlier, 1996):

• The flowing avalanche (avalanche coulante, Fliesslawine, valanga radente):
a flowing avalanche is an avalanche with a high-density core at the bottom.
Trajectory is dictated by the relief. The flow depth does not generally
exceed a few meters (see Fig. 2). The typical mean velocity ranges from
5m/s to 25 m/s. On average, the density is fairly high, generally ranging
from 150 kg/m3 to 500 kg/m3.

• The airborne avalanche (avalanche en aérosol, Staublawine, valanga nubi-
forme): it is a very rapid flow of a snow cloud, in which most of the snow
particles are suspended in the ambient air by turbulence (see Fig. 3).
Relief has usually weak influence on this aerial flow. Typically, for the
flow depth, mean velocity, and mean density, the order of magnitude is
10–100m, 50–100 m/s, 5–50 kg/m3 respectively.

 

Fig. 2: Flowing avalanche impacting a wing-shaped structure in the Lauratet
experimental site, France (courtesy of O. Marco, Cemagref).

The avalanche classification proposed here only considers the form of motion
and not the quality of snow. In the literature, other terms and classifications
have been used. For instance, it is very frequent to see terms such as dry-
snow avalanches, wet-snow avalanches, powder avalanches, etc. In many cases
and probably in most cases in ordinary conditions, the motion form of large
avalanches is directly influenced by the quality of snow in the starting zone.
For instance, on a sufficiently steep slope, dry powder snow often gives rise to
an airborne avalanche (in this case no confusion is possible between airborne
and powder snow avalanches). However, in some cases, especially for extreme
avalanches (generally involving large volumes of snow), motion is independent
of the snow type. For instance, wet snow may be associated with an airborne
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Fig. 3: Airborne avalanche at le Roux-d’Abriès, France in 2004 (courtesy of
Maurice Chave).

part (e.g. Favrand avalanche in the Chamonix valley, France, on 16 May 1983).
Between the two limiting cases above, there is a fairly wide variety of avalanches,
which exhibit characteristics common to both airborne and flowing avalanches.
Sometimes, such flows are referred to as “mixed-motion avalanches”. The use
of this term is often inappropriate because it should be restricted to describing
complex flows for which both the dense core and the airborne play a role (from a
dynamic point of view). In some cases, the dense core is covered with a snow dust
cloud, made up of snow particles suspended by turbulent eddies of air resulting
from the friction exerted by the air on the core. This cloud can entirely hide
the high-density core, giving the appearance of an airborne avalanche, but in
fact, it plays no significant role in avalanche dynamics. It should be born in
mind that the mere observation of a cloud is generally not sufficient to specify
the type of an avalanche. Further elements such as the features of the deposit
or the destructive effects are required.

To conclude it should be noticed that there is currently a limited amount of
data on real events. Some of the main parameters, such as the mean density in
an airborne avalanche, are still unknown. Thus, many elements of our current
knowledge of avalanches have a speculative basis. Today a great deal of work is
underway to acquire further reliable data on avalanche dynamics. Experimental
sites, such as la Sionne (Switzerland) or the Lautaret pass (France), have been
developed for that purpose. However a survey of extreme past events shows
that the characteristics of extreme avalanches (involving very large volumes)
cannot be easily extrapolated from the features of ordinary avalanches. In this
respect, the situation is not very different from the problems encountered with
large rockfalls and landslides (Savage & Hutter, 1989). Many observations that
hold for ordinary events no longer hold for rare events. Examples include the
role of the forest, the influence of the snow type on avalanche motion, etc.
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2 Modeling avalanches

Avalanches are extremely complex phenomena. This complexity has led to the
development of several approaches based on very different points of view. Many
papers and reports have presented an overview of current models. These include
the reviews by Hopfinger (1983) and Hutter (1996) as well as a comprehensive
review of all existing models edited by Harbitz (1999). Here we shall only
outline three typical approaches: the statistical approach, the fluid-mechanics
approach, and small-scale models.

2.1 Statistical methods

In land-use planning (avalanche zoning), the main concern is to delineate areas
subject to avalanches. Avalanche mapping generally requires either accurate
knowledge of past avalanche extensions or methods for computing avalanche
boundaries. To that end several statistical methods have been proposed (Bovis
& Mears, 1976; Lied & Bakkehøi, 1980; McClung, 2001; Meunier & Ancey, 2004;
Keylock, 2005; Straub & Grêt-Regamey, 2006; Eckert et al., 2007, 2008).

The two main models used throughout the world are the one developed by
Lied & Bakkehøi (1980) and the one developed subsequently by McClung &
Lied (1987). Both attempt to predict the extension (stopping position) of the
long-return period avalanche for a given avalanche path. Generally, authors
have considered avalanches with a return period of approximately 100 years.
All these methods rely on the correlations existing between the runout distance
and some topographic parameters. They assume that the longitudinal profile
of the avalanche path governs avalanche dynamics. The topographic parame-
ters generally include the location of the top point of the starting zone (called
point A) and a point of deceleration (point B) of the path profile where the
local slope equals a given angle, most often 10◦. The position of the stopping
position (point C) is described using the angle α, which is the angle of the line
joining the starting and stopping points with respect to the horizontal (see Fig.
4). Likewise, β is the average inclination of the avalanche path between the
horizontal and the line joining the starting point A to point B.

To smooth irregularities in the natural path profile, a regular curve (e.g. a
parabola) can be fit to the longitudinal profile.

Statistical methods have so far been applied to flowing avalanches. In prin-
ciple, nothing precludes using them for airborne avalanches. But in this case,
one is faced with the limited amount of data and their poor quality (airborne
avalanches are rare and the limits of their deposits are hard to delineate in the
field). As an example of statistical models, we indicate the results obtained by
Lied & Toppe (1989). Using regression analysis on data corresponding to the
longest runout distance observed for 113 avalanche paths in western Norway,
these authors have found that

α = 0.96β − 1.7◦. (1)

The regression coefficient R is fairly good (R2 = 0.93) and the standard devi-
ation s is relatively small (s = 1.4◦). Table 1 summarizes the values of α for
various mountain ranges.

Many extensions of the early model developed by Lied and Bakkehøi have
been proposed over the last twenty years either to tune the model parameters
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Fig. 4: Topographic parameters describing the profile. The dashed line repre-
sents the fit parabola.

Range or contry N α R s
Canada 126 α = 0.93β 0.86
Alaska 127 α = 0.74β + 3, 67◦ 0.76
Colorado 52 α = 0.63β + 4, 68◦ 0.70
Sierra Nevada 130 α = 0.67β + 2, 50◦ 0.77
Haute Tarentaise 168 α = 0.82β + 2.82◦ 0.81 2.69◦

Tab. 1: Determination of α for different mountain ranges. N refers to the num-
ber of sites for each regression analysis. Data collected from (McClung
& Mears, 1991; Adjel, 1996).

to a given mountainous region or adapt the computations to other standards.
For instance, subsequent work on statistical prediction of avalanche runout dis-
tance has accounted for other topographic parameters such as the inclination of
the starting zone or the height difference between the starting and deposition
zones. Although statistical methods have been extensively used throughout the
world over the last twenty years and have given fairly reliable and objective re-
sults, many cases exist in which their estimates are wrong. Such shortcomings
can be explained (at least in part) by the fact that for some avalanche paths,
the dynamic behavior of avalanches cannot be merely related or governed by
topographic features (Meunier & Ancey, 2004; Meunier et al., 2004).

2.2 Fluid-mechanics approach (avalanche-dynamics models)

Snow avalanches usually take the appearance of viscous fluids flowing down
a slope and this observation has prompted the use of fluid-mechanics tools for
describing their motion. However, the impediments to a full fluid-mechanics ap-
proach are many: a wide range of particle size (often in the 10−3 − 1-m range),
composition that may change with time and/or position, ill-known boundary
conditions (e.g., erodible basal surface) and initial conditions, time-dependent
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flows with abrupt changes (e.g., surge front, instabilities along the free surface),
etc. Testing the rheometrical properties of samples collected in the field remains
difficult. To give examples of materials involved in rapid mass movements, Fig. 5
reports different types of snow observed in avalanche deposits. Because of par-
ticle size and thermodynamic alteration (snow is highly sensitive to changes in
air temperature), using classic rheometers with these materials does not make
sense. All these difficulties pose great challenges in any fluid-mechanics ap-
proach for modeling rapid mass movements and have given impetus to extensive
research combining laboratory and field experiments, theory, field observation,
and numerical simulations (Pudasaini & Hutter, 2006; Ancey, 2007).

Fig. 5: Different types of snow observed in avalanche deposits. (a) Block of wet
snow (size: 1 m). (b) Slurry of dry snow including weak snowballs formed
during the course of the avalanche (the heap height was approximately 2
m). (c) Ice balls involved in a huge avalanche coming from the North face
of the Mont Blanc (France); the typical diameter was 10 cm. (d) Sintered
snow forming broken slabs (typical length: 40 cm, typical thickness 10
cm).

A number of experiments on snow have been done in the laboratory. Authors
such as Dent & Lang (1982) and Maeno (1993) have measured the velocity profile
within snow flows and generally deduced that snow generates a non-Newtonian
viscoplastic flow, whose properties depend a great deal on density. Carrying
these laboratory results over real avalanches is not clearly reliable due to size-
scale effects and similarity conditions. Furthermore, given the severe difficulties
inherent to snow rheometry (sample fracture during shearing tests, variation in
the snow microstructure resulting from thermodynamic transformations of crys-
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tals, etc.), properly identifying the constitutive equation of snow with modern
rheometers is out of reach for the moment. More recently, Ancey & Meunier
(2004) showed how avalanche-velocity records can be used to determine the
bulk frictional force; a striking result is that the bulk behavior of most snow
avalanches can be approximated using a Coulomb frictional model. Kern et al.
(2004) and Kern et al. (2009) used outdoor and field experiments to measure
shear-rate profiles inside snow flows to infer rheological properties; this is rather
encouraging and clears the way for precise rheometrical investigations of real
snow avalanches.

Since there are little sound field or laboratory data available on the basic rhe-
ological processes involved in avalanche release and flow, all avalanche-dynamics
models proposed so far rely on analogy with other physical phenomena: typical
examples include analogies with granular flows (Savage & Hutter, 1989; Sav-
age, 1989; Tai et al., 2001; Cui et al., 2007), Newtonian fluids (Hunt, 1994),
power-law fluids (Norem et al., 1986), and viscoplastic flows (Dent & Lang,
1982; Ancey, 1994). From a purely rheological point of view, these models rely
on a purely speculative foundation. Indeed, most of the time, the rheological
parameters used in these models have been estimated by matching the model
predictions (such as the leading-edge velocity and the run-out distance) with
field data (Buser & Frutiger, 1980; Dent & Lang, 1980; Ancey et al., 2004).
However, this obviously does not provide evidence that the constitutive equa-
tion is appropriate.

Avalanches can be considered at different spatial scales (see Fig. 6). The
larger scale, corresponding to the entire flow, leads to the simplest models.
The chief parameters include the location of the gravity center and its velocity.
Mechanical behavior is mainly reflected by the friction force F exerted by the
bottom (ground or snowpack) on the avalanche. The smallest scale, close to
the size of snow particles involved in the avalanches, leads to complicated rhe-
ological and numerical problems. The flow characteristics (velocity, stress) are
computed at any point of the occupied space. Intermediate models have also
been developed. They benefit from being less complex than three-dimensional
numerical models and yet more accurate than simple ones. Such intermediate
models are generally obtained by integrating the motion equations across the
flow depth in a way similar to what is done in hydraulics for shallow water
equations.

2.3 Simple models

Simple models have been developed for almost 80 years in order to crude estima-
tions of avalanche features (velocity, pressure, runout distance). They are used
extensively in engineering throughout the world. Despite their simplicity and
approximate character, they can provide valuable results, the more so as their
parameters and the computation procedures combining expert rules and scien-
tific basis have benefited from many improvements over the last few decades
(Ancey et al., 2003; Ancey & Meunier, 2004; Ancey et al., 2004; Ancey, 2005).

2.3.1 Simple models for flowing avalanches

The early models date back to the beginning of the 20th century (Mougin, 1922).
For the Olympic Games at Chamonix in 1924, the Swiss professor Lagotala
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Fig. 6: Different spatial scales used for describing avalanches

(1927) computed the velocity of avalanches in the Favrand path. His method
was then extended by Voellmy (1955), who popularized it. Many models have
elaborated on Voellmy’s work. The Voellmy–Salm–Gubler (VSG) model and the
Perla–Cheng–McClung model are probably the best-known avalanche-dynamics
models used throughout the world (Salm et al., 1990; Perla et al., 1980).

Here we outline the VSG model developed by Salm et al. (1990). The
avalanche is assumed to behave as a rigid body, which moves along an inclined
plane. The position of the center of mass is given by its abscissa x in the
downward direction. The momentum equation is

du

dt
= g sin θ − F

m
, (2)

with m the avalanche mass, u its velocity, θ the mean slope of the path, and F
the frictional force. In this model, a flowing avalanche is considered as a sliding
block subject to a frictional force combining a solid-friction component and a
square-velocity component:

F = mg
u2

ξh
+ µm g cos θ , (3)

with h the mean flow depth of the avalanche, µ a friction coefficient related
to the snow fluidity, and ξ a coefficient of dynamic friction related to path
roughness. If these last two parameters cannot be measured directly, they can
be adjusted from several series of past events. It is generally accepted that
the friction coefficient µ only depends on the avalanche size and ranges from
0.4 (small avalanches) to 0.155 (very large avalanches) (Salm et al., 1990); in
practice, lower values can be observed for large-volume avalanches (Ancey et al.,
2004). Likewise, the dynamic parameter ξ reflects the influence of the path on
avalanche motion. When an avalanche runs down a wide open rough slope, ξ is
close to 1000 or more. Conversely, for avalanches moving down confined straight
gullies, ξ can be taken as being equal to 400. In a steady state, the velocity is
directly inferred from the momentum balance equation:

u =
√

ξh cos θ (tan θ − µ) . (4)
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According to this equation two flow regimes can occur depending on path incli-
nation. For tan θ > µ, (4) has a real solution and a steady regime can occur.
For tan θ < µ, there is no real solution: the frictional force (3) outweighs the
downward component of the gravitational force. It is therefore considered that
the flow slows down. The point of the path for which tan θ = µ is called the
characteristic point (point P ). It plays an important role in avalanche dynamics
since it separates flowing and runout phases. In the stopping area, we deduce
from the momentum equation that the velocity decreases as follows:

1
2

du2

dx
+ u2 g

ξh
= g cos θ (tan θ − µ) . (5)

The runout distance is easily inferred from (5) by assuming that at a point
x = 0, the avalanche velocity is up. In practice the origin point is point P but
attention must be paid in the fact that, according to (4), the velocity at point
P should be vanishing; a specific procedure has been developed to avoid this
shortcoming (Salm et al., 1990). Neglecting the slope variations in the stopping
zone, we find:

xa =
ξh

2g
ln

(
1 +

u2
P

ξh cos θ (µ− tan θ)

)
. (6)

This model enables us to easily compute the runout distance, the maximum
velocities reached by the avalanche on various segments of the path, the flow
depth (by assuming that the mass flow rate is constant and given by the initial
flow rate just after the release), and the impact pressure.

Ancey & Meunier (2004) performed a back analysis on 15 well-documented
avalanches by inferring the bulk frictional force from avalanche velocity. To that
end, they used (2): if one has a record yielding the body velocity as a function of
the position along the path, then it is possible to directly deduce the frictional
force components and its relationship with the velocity u to a multiplicative
factor m. Plotting the resulting force per unit mass in a phase space (u, F/m)
can give an idea of the dependence of the frictional force on mean velocity.

For most events, the frictional force was found to be weakly dependent on
velocity or to fluctuate around a mean value during the entire course of the
avalanche. Figure 7 shows a typical example provided by the avalanche at the
Arraba site (Italy) on 21 December 1997. This figure reports the variation in
the frictional force per unit mass with velocity (solid line) and the downward
component of the driving force per unit mass g sin θ (dashed line). In the inset,
we have plotted the measured velocities (dots) together with its interpolation
curve (Legendre polynomials) used in the computations. On the same plot, we
have drawn the velocity variations as if the avalanche were in a purely Coulomb
regime (dashed line): assuming that the frictional force is in the Coulomb form
F = fmg cos θ, where f is the bulk friction coefficient, we numerically solved
the equation of motion (Eq. 2, in which F/m is replaced with the expression of
F above). As shown in Fig. 7, in the early phases (between points A and B), the
frictional force gently decreased with increasing velocity and was slightly lower
than the gravity acceleration g sin θ. Because of the small difference between
g sin θ and F/m, the avalanche accelerated less vigorously than an avalanche in
an inertial regime. At instant B, the avalanche reached its maximum velocity (24
m/s). At this point, the frictional force started exceeding the gravitational force
and the avalanche decelerated monotonically. Obviously, the frictional force did
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Fig. 7: Variation in the frictional force per unit mass F/m with the avalanche
velocity u for the avalanche of 21 December 1997 at the Arabba site (solid
line); F/m was obtained by applying Eq. (2) to the measured velocities
and path profile, both regularized using Legendre polynomials. The
dashed curve stands for the variation in the driving force per unit mass
g sin θ. In the inset, we have reported the variations in the measured
velocities (dots) with downstream distance x. In the inset, the solid line
represents the interpolated velocities while the dashed line stands for
the velocity of a rigid body sliding in a purely Coulomb regime (with
f = 0.66). Letters from A to C refer to various stages of the avalanche
run (see text). After Ancey & Meunier (2004).
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depend on the avalanche velocity, as shown in Fig. 4, but this dependence
remained slight since between B and C we have: F/m ∝ u0.1±0.05. Thus, as
a first approximation, the frictional force can be considered constant between
instants A and C: F/m = 5 ± 1.3 m/s2. As shown in the inset of Fig. 7, the
computed velocities obtained by assuming a purely Coulomb regime (dashed
curve) compare well with the data: like the recorded values, the computed
velocities exhibit an asymmetric U-shaped form, while the relative deviation
between the two curves is less than 20%.

For a few events, the bulk frictional force exhibits a dependence on the mean
velocity, but no clear trend in the f(u) dependence was found by Ancey & Meu-
nier (2004). An interesting property of this simple Coulomb block model is that
knowing the run-out distance (point of furthest reach) of an avalanche makes it
possible to infer the f value. Since in different alpine regions, avalanche events
have been recorded over a long time period at different sites, we can deduce the
statistical properties of the f distribution at different places. If the bulk friction
coefficient f were a true physical parameter, its statistical properties should not
vary with space. Ancey (2005) thus conducted a statistical analysis on f values
by selecting 173 avalanche data collected from seven sites in France. These sites
are known to produce large avalanches and their activity has been followed up
since the beginning of the 20th century. Figure 8 shows the probability distri-
bution of f for each site together with the entire sample. Although the curves
are close and similar, they are not statistically identical. This means that the
probability distribution function of f is not uniquely determined and depends
on other parameters such as snow properties, site configuration, etc. Within
this approach, the Coulomb model successfully captures the flow features, but
its friction parameter is not a true physical parameter. This, however, should
not negate the interest of the Coulomb model because, given the number of
approximations underpinning the sliding-block model, the statistical deviance
may originate from crude assumptions.

2.3.2 Simple models for airborne avalanches

The first-generation models of airborne avalanches used the analogy of density
currents along inclined surfaces. Extending a model proposed by Ellison &
Turner (1959) on the motion of an inclined plume, Hopfinger & Tochon-Danguy
(1977) inferred the mean velocity of a steady current, assumed to represent the
avalanche body behind the head. They found that the front velocity of the
current was fairly independent of the bed slope. Further important theoretical
contributions to modeling steady density currents were provided by Parker et al.
(1986) and Baines (2001). The second generation of models has considered the
avalanche as a finite-volume turbulent flow of a snow suspension. Kulikovskiy &
Svehnikova (1977) set forth a fairly simple theoretical model (the KS model), in
which the cloud was assimilated to a semi-elliptic body whose volume varied with
time. The kinematics was entirely described by the mass center position and
two geometric parameters of the cloud (the two semi-axes of the ellipsis). The
cloud density can vary depending on air and snow entrainments. Kulikovskiy
and Sveshnikova obtained a set of four equations describing the mass, volume,
momentum, and Lagrangian kinetic energy balances. The idea was subsequently
redeveloped by many authors including Beghin (1979), Beghin et al. (1981),
Beghin & Brugnot (1983), Fukushima & Parker (1990), Beghin & Olagne (1991),
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Fig. 8: Empirical probability distribution functions (pdf) of the 173 f values
collected from the seven paths. The thick line represents the distribu-
tion function of the total sample, whereas the thin lines are related to
individual paths. Each curve has been split into three parts: the central
part (solid line) corresponds to the range of computed µ values, while
the end parts have been extrapolated. After Ancey (2005).

Fukushima et al. (2000), Ancey (2004), and Turnbull et al. (2007).
Here we outline the KSB model as presented and extended by Ancey (2004),

we will consider the two-dimensional motion of a cloud along a plane inclined at
an angle tan θ with respect to the horizontal. Figure 9 depicts a typical cloud
entraining particles from the bed. In the following, H denotes the cloud height,
L its length, m its mass, V its volume. The cloud velocity is U = dx/dt but,
since the body is deformable, the velocity varies inside the body. The front
position is given by the abscissa xf while its velocity is Uf = dxf/dt. The
volume solid concentration is φ and it is assumed that the cloud is a homo-
geneous suspension of particles of density ρp (no density stratification) in the
ambient fluid of density ρa and viscosity µa. The bulk cloud density is then:
ρ̄ = φρp +(1−φ)ρa. Ahead of the front, there is a particle bed whose thickness
is denoted by hn, and which is made up of the same particles as the cloud. The
apparent density of the layer is ρs = φmρp + (1− φm)ρa, where φm denotes the
maximum random volume concentration of particles.

The surface area (per unit width) exposed to the surrounding fluid is denoted
by S and can be related to H and L as follows: S = ks

√
HL, where ks is a

shape factor. Here we assume that the cloud keeps a semi-elliptic form, whose
aspect ratio k = H/L remains constant during the cloud run when the slope is
constant. We then obtain

ks = E(1− 4k2)/
√

k, (7)

where E denotes the elliptic integral function. Similarly, we can also express the
volume V (per unit width) as: V = kvHL, where kv is another shape factor for
a half ellipsis. Here we have

kv = π/4. (8)

In the following, we will also need to use the volume, height, and length growth
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Fig. 9: Sketch of the physical system studied here.

rates:
αv =

1√
V

dV

dx
, αh =

dH

dx
, αl =

dL

dx
. (9)

Experimentally, it is easier to measure the growth rates by deriving the quantity
at hand by the front abscissa instead of the mass center abscissa; we will refer
to these rates as:

α̃v =
1√
V

dV

dxf
, α̃h =

dH

dxf
, α̃l =

dL

dxf
. (10)

Note that all these quantities are interrelated. For instance, using x = xf−L/2,
we find: α̃h = (dH/dx)(dx/dxf ) = αh(1− α̃l/2). Similarly, using the definition
of k and kv, we obtain:

αh =
αv

2

√
k

kv
and αl =

αv

2
√

kkv

. (11)

The KSB model outlined here includes three equations: volume, mass, and
momentum balances. The volume variations mainly result from the entrainment
of the ambient, less dense fluid. Various mixing processes are responsible for
the entrainment of the ambient fluid into the cloud. It has been shown for
jets, plumes, and currents that (i) different shear instabilities can occur at the
interface between dense and less dense fluids, (ii) the rate of growth of these
instabilities is controlled by a Richardson number, defined here :

Ri =
g′H cos θ

U2
, (12)

where g′ denotes the reduced gravity g′ = g∆ρ̄/ρa and ∆ρ̄ = ρ̄ − ρa is the
buoyant density.

Usually a smaller Ri value implies predominance of inertia effects over the
restoring action of gravity, thus greater instability and therefore a higher en-
trainment rate; it is then expected that the entrainment rate is a decreasing
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function of the Richardson number. Although the details of the mixing mecha-
nisms are very complex, a striking result of recent research is that their overall
effects can be described in quite a simple way (Fernando, 1991). To express the
volume balance equation, the commonest assumption is to state that the volume
variations come from the entrainment of the ambient fluid into the cloud and
that the inflow rate is proportional to the exposed surface area and a charac-
teristic velocity ue. This leads to the equation:

dV

dt
= EvSue (13)

where Ev is the bulk entrainment coefficient. According to the flow condi-
tions, different expressions of Ev have been drawn from experiments. Interest-
ingly enough, the value of Ev has been expressed very differently depending on
whether the current is steady or unsteady. There is, however, no clear physical
reason justifying this partitioning. Indeed, for most experiments, the currents
were gradually accelerating and mixing still occurred as a result of the devel-
opment of Kelvin-Helmotz billows, thus very similarly to the steady case. This
prompted Ancey (2004) to propose a new expression of the entrainment coeffi-
cient for clouds, which holds for both steady and slightly unsteady conditions:
Ancey (2004) related Ev (or αv) as a function of Ri (instead of θ as done by
previous authors): for Ri ≤ 1, αv = e−1.6Ri2 while for Ri > 1, αv = 0.2/Ri.

The cloud mass can vary as a result of the entrainment of the surrounding
fluid and/or the entrainment of particles from the bed. The former process is
easily accounted for: during a short time increment δt, the cloud volume V is
increased by a quantity δV mainly as a result of the air entrainment, thus the
corresponding increase in the cloud mass is ρaδV . The latter process is less well
known. In close analogy with sediment erosion in rivers and turbidity currents,
(Fukushima & Parker, 1990) assumed that particles are continuously entrained
from the bed when the drag force exerted by the cloud on the bed exceeds a
critical value. This implies that the particle entrainment rate is controlled by
the surface of the bed in contact with the cloud and the mismatch between the
drag force and the threshold of motion. Here, since in extreme conditions the
upper layers of the snowcover made up of new snow of weak cohesion can be
easily entrained, it is reasonable to think that all the recent layer ahead of the
cloud is incorporated into the cloud: when the front has traveled a distance
Ufδt, where Uf is the front velocity, the top layer of depth hn and density ρs

is entirely entrained into the cloud (see Fig. 9). The resulting mass variation
(per unit width) is written: ρsUfhnδt. At the same time, particles settle with
a velocity vs. During the time step δt, all the particles contained in the volume
Lvsδt deposit. Finally, by taking the limit δt → 0, we can express the mass
balance equation as follows:

dm

dt
= ρa

dV

dt
+ ρsUfhn − φρsLvs

where m = ρ̄V is the cloud mass. Usually the settling velocity vs is very low
compared to the mean forward velocity of the front so that it is possible to
ignore the third term in the right-hand side of the equation above. We then
obtain the following simplified equation:

d∆ρ̄V

dt
= ρsUfhn (14)
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The cloud undergoes the driving action of gravity and the resisting forces
due to the ambient fluid and the bottom drag. The driving force per unit volume
is ρ̄g sin θ. Most of the time, the bottom drag effect plays a minor role in the
accelerating and steady-flow phases but becomes significant in the decelerating
phase (Hogg & Woods, 2001). Since we have set aside a number of additional
effects (particle sedimentation, turbulent kinetic energy), it seems reasonable to
also discard this frictional force. The action of the ambient fluid can be broken
into two terms: a term analogous to a static pressure (Archimede’s theorem),
equal to ρaV g, and a dynamic pressure. As a first approximation, the latter
term can be evaluated by considering the ambient fluid as an inviscid fluid in
an irrotational flow. On the basis of this approximation, it can be shown that
the force exerted by the surrounding fluid on the half cylinder is ρaV χdU/dt,
where

χ = k (15)

is called the added mass coefficient. Since at the same time volume V varies
and the relative motion of the half cylinder is parallel to its axis of symmetry,
we finally take: ρaχd(UV )/dt. Note that this parameter could be ignored for
light interstitial fluids (e.g., air), whereas it has a significant influence for heavy
interstitial fluids (basically water). Thus the momentum balance equation can
be written as:

d(ρ̄ + χρa)V U

dt
= ∆ρ̄gV sin θ (16)

Analytical solutions can be found in the case of a Boussinesq flow (ρ̄/ρa → 1);
for the other cases, numerical methods must be used. In the Boussinesq limit,
since the final analytical solution is complicated, we only provide an asymptotic
expression at early and late times. To simplify the analytical expressions, with-
out loss of generality, here we take: U0 = 0 and x0 = 0 and we assume that the
erodible snowcover thickness hn and density ρs are constant. The other initial
conditions are: at t = 0 and x = 0, H = H0, L = L0, V0 = kvH0L0, and ρ̄ = ρ̄0.
At short times, the velocity is independent of the entrainment parameters and
the initial conditions (ρ̄0 and V0):

U ∝
√

2gx sin θ
∆ρ0

∆ρ0 + (1 + χ)ρa
≈

√
2gx sin θ (17)

where we used ρa ¿ ∆ρ̄0. This implies that the cloud accelerates vigorously in
the first instants (dU/dx → ∞ at x = 0), then its velocity grows more slowly.
At long times for an infinite plane, the velocity reaches a constant asymptotic
velocity that depends mainly on the entrainment conditions for flows in the air:

U∞ ∝
√

2ghn(1 + αl

2 ) sin θρs

α2
v(1 + χ)ρa

(18)

Because of the slow growth of the velocity, this asymptotic velocity is reached
only at very long times. Without particle entrainment, the velocity reaches a
maximum at approximately x2

m = (2ρ0/3ρa)α−2
v V0/(1 + χ):

U2
m ≈ 4√

3

√
ρ0

ρa

g
√

V0 sin θ

αv

√
1 + χ
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then it decreases asymptotically as:

U ∝
√

8∆ρ0

3ρa

gV0 sin θ

x

1
α2

v(1 + χ)
(19)

In this case, the front position varies with time as:

xf ∝ (g′0V0 sin θ)1/3t2/3 (20)

These simple calculations show the substantial influence of the particle entrain-
ment on cloud dynamics. In the absence of particle entrainment from the bed,
the fluid entrainment has a key role since it directly affects the value of the
maximum velocity that a cloud can reach.

Here, we examine only the avalanche of 25 February 1999, for which the
front velocity was recorded (Dufour et al., 2001). In Fig. 10, we have reported
the variation in the mean front velocity Uf as a function of the horizontal down-
stream distance yf : the dots correspond to the measured data while the curves
represent the solution obtained by integrating Eqs. (13–16) numerically and
by assuming that the growth rate coefficient depends on the overall Richard-
son number (solid line). For the initial conditions, we assume that u0 = 0,
h0 = 2.1m l0 = 20m, and ρ0 = ρs = 150 kg/m3. Due to the high path gra-
dient between the origin and the elevation z = 1800m (y = 1250 m) we have
considered that on average, the released snow layer hn is 0.7 m thick and is
entirely entrained into the avalanche. Using αv ∝ Ri−1 for Ri À 1, we apply
the following relationship: for Ri ≤ 1, αv = e−1.6Ri2 while for Ri > 1, we take
αv = 0.2/Ri.
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Fig. 10: Dependence of the front velocity on the erodible mass. Solid line:
ρshn = 105 kg/m2; dashed line: ρshn = 50 kg/m2; long-dashed line:
ρshn = 150 kg/m2. After (Ancey, 2004).

As shown in Fig. 10, the avalanche accelerated vigorously after the release
and reached velocities as high as 80 m/s. The velocity variation in the release
phase is fairly well described by the KSB model. The model predicts a bell-
shaped velocity variation while field data provide a flatter velocity variation.
The computed flow depth at z = 1640m is approximately 60m which is con-
sistent with the value estimated from the video tapes. In order to evaluate the
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sensitivity of the simulation results, we examined different values of the erodible
mass. In Figure 10, we have reported the comparison between field data and
computations made with three different assumptions: ρshn = 50, 105, or 150
kg/m2. It can be seen that there is no significant variation in the computed
velocities in the accelerating phase, but both the maximum velocity and the
position at which the maximum velocity is reached depend on the ρshn value.
By increasing the erodible mass per unit surface from 50 to 150 kg/m2, the
maximum velocity is increased from 69 m/s to 105 m/s, i.e., by a factor of 1.5.
Note that the dependence of the maximum velocity on the snowcover thick-
ness is consistent with field measurements made by Dufour et al. (2001): for
instance, the avalanche of 10 February 1999 was approximately half as large
in terms of deposited volume as the avalanche of 25 February 1999, and its
maximum velocity was 25% lower than the maximum velocity recorded on 25
February 1999. This result is of great importance in engineering applications
since it means that the maximum velocity and, thereby, the destructive power
of a powder-snow avalanche mainly result from the ability to entrain snow from
the snowcover when the avalanche descends.

2.4 Intermediate models (depth-averaged models)

Simple models can provide approximate predictions concerning runout distance,
the impact pressure, or deposit thickness. However they are limited for many
reasons. For instance, they are restricted to one-dimensional path profiles (the
spreading of the avalanche cannot be computed) and the parameters used are
fit to past events and cannot be measured in the field or in the laboratory
(rheometry), apart from airborne models if the analogy with turbidity currents
is used. More refined models use depth-averaged mass and momentum equa-
tions to compute the flow characteristics. With such models, the limitations of
simple models are alleviated. For instance it is possible to compute the spread-
ing of avalanches in their runout zone or relate mechanical parameters used
in the models to the rheological properties of snow. As far as we know, the
early depth-averaged models were developed in the 1970s by Russian scientists
(Bozhinskiy & Losev, 1998) and French researchers (Brugnot & Pochat, 1981;
Vila, 1986) for flowing avalanches. For airborne avalanches, the first stage was
probably the model developed by Parker et al. (1986), which, though devoted
to submarine turbidity currents, contains almost all the ingredients used in
subsequent models of airborne avalanches. Considerable progress in the devel-
opment of numerical depth-averaged models has been made possible thanks to
the increase in computer power and breakthrough in the numerical treatment
of hyperbolic partial differential equation systems (LeVeque, 2002).

2.4.1 Depth-averaged motion equations

Here, we shall address the issue of slightly transient flows. We focus exclusively
on gradually varied flows, namely flows that are not far from a steady uniform
state for the time interval under consideration. Moreover, we first consider
flows without entrainment of the surrounding fluid and variation in density:
% ≈ %̄. Accordingly the bulk density may be merely replaced by its mean
value. In this context, the motion equations may be inferred in a way similar
to the usual procedure used in hydraulics to derive the shallow water equations
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(or Saint–Venant equations): it involves integrating the momentum and mass
balance equations over the depth. As such a method has been extensively used in
hydraulics for water flow (Chow, 1959) as well for non-Newtonian fluids (Savage
& Hutter, 1991; Bouchut et al., 2003); we shall briefly recall the principle and
then directly provide the resulting motion equations. Let us consider the local
mass balance: ∂%/∂t + ∇ · (%u) = 0. Integrating this equation over the flow
depth leads to:

h(x,t)∫

0

(
∂u

∂x
+

∂v

∂y

)
dy =

∂

∂x

h∫

0

u(x, y, t)dy − u(h)
∂h

∂x
− v(x, h, t)− v(x, 0, t) ,

(21)
where u and v denote the x- and y-component of the local velocity. At the
free surface and the bottom, the y-component of velocity satisfies the following
boundary conditions:

v(x, h, t) =
dh

dt
=

∂h

∂t
+ u(x, h, t)

∂h

∂x
, (22)

v(x, 0, t) = 0 . (23)

We easily deduce:
∂h

∂t
+

∂hu

∂x
= 0 , (24)

where we have introduced depth-averaged values defined as:

f̄(x, t) =
1

h(x, t)

h(x,t)∫

0

f(x, y, t)dy . (25)

The same procedure is applied to the momentum balance equation: %du/dt =
ρg+∇·σ, where σ denotes the stress tensor. Without difficulty, we can deduce
the averaged momentum equation from the x-component of the momentum
equation:

%̄

(
∂hu

∂t
+

∂hu2

∂x

)
= %̄gh sin θ +

∂hσ̄xx

∂x
− τp , (26)

where we have introduced the bottom shear stress: τp = σxy(x, 0, t). In the
present form, the motion equation system (24)–(26) is not closed since the num-
ber of variables exceeds the number of equations. A common approximation
involves introducing a parameter (sometimes called the Boussinesq momentum
coefficient) which links the mean velocity to the mean square velocity:

u2 =
1
h

h∫

0

u2(y) dy = αū2 . (27)

Usually α is set to unity, but this may cause trouble when computing the head
structure (Hogg & Pritchard, 2004; Ancey et al., 2006, 2007). A point often
neglected is that the shallow-flow approximation is in principle valid for flow
regimes that are not too far away from a steady-state uniform regime. In flow
parts where there are significant variations in the flow depth (e.g. at the leading
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edge and when the flow widens or narrows substantially), corrections should be
made to the first-order approximation of stress. Recent studies however showed
that errors made with the shallow-flow approximation for the leading edge are,
however, not significant (Ancey et al., 2007; Ancey & Cochard, 2009; Ancey
et al., 2009).

2.4.2 Flowing avalanches

As discussed in the introduction of this section (see Fig. 5), the diversity in snow
consistency makes any thorough rheometrical examination of snow involved in
avalanches a tricky undertaking. Authors who studied the rheological bulk be-
havior of snow, have generally found that snow is a non-Newtonian viscoplastic
material, which depends a great deal on density. Several constitutive equations
have been proposed: Newtonian fluid, Reiner–Ericksen fluid, Bingham fluid,
frictional Coulomb fluid, and so on. For instance, Savage and Hutter assumed
that flowing avalanches have many similarities with dry granular flows (Sav-
age, 1989; Savage & Hutter, 1991). They have further assumed that, as a first
approximation, the Coulomb law can be used to describe the bulk behavior of
flowing granular materials. Therefore they have expressed the bottom shear
stress as: τp = %gh tan δ cos θ, where δ denotes a bed friction angle. Likewise,
the normal mean shear stress can be written as: σ̄xx = −ka%gh cos θ/2, where
the coefficient ka is related to the earth pressure coefficient used in soil mechan-
ics. Eventually they obtained for flows down inclined planes:

∂h

∂t
+

∂hu

∂x
= 0 , (28)

∂ū

∂t
+ ū

∂ū

∂x
= g cos θ (tan θ − tan δ)− kag cos θ

∂h

∂x
. (29)

Laboratory tests with dry granular media have shown that such a model cap-
tures the flow features well for steep smooth inclined channels (Savage, 1989;
Savage & Hutter, 1989; Hutter et al., 1995, 1993; Gray et al., 1998, 2003;
Hákonardóttir & Hogg, 2005). Similar models were developed using different
constitutive equations. For instance, Eglit used empirical expressions for the
bottom shear stress (in a form similar to (3)) and treated the leading edge using
a specific boundary condition (Eglit, 1983, 1998).

2.4.3 Airborne avalanches

An airborne avalanche is a very turbulent flow of a dilute ice–particle suspen-
sion in air. It can be considered as a one-phase flow as a first approximation.
Indeed, the Stokes number defined as the ratio of a characteristic time of the
fluid to the relaxation time of the particles is low, implying that particles adjust
quickly to changes in the air motion. At the particle scale, fluid turbulence is
high enough to strongly shake the mixture since the particle size is quite small.
To take into account particle sedimentation, authors generally consider airborne
avalanches as turbulent stratified flows. Thus, contrary to flowing avalanches,
bulk behavior is well identified in the case of airborne avalanches. The main dif-
ferences between the various models proposed result from the different boundary
conditions, use of the Boussinesq approximation, and the closure equations for
turbulence. Parker et al. (1986) developed a complete depth-averaged model for
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turbidity currents. The motion equation set proposed by these authors is more
complicated than the corresponding set for dense flows presented above, since
it includes additional equations arising from the mass balance for the dispersed
phase, the mean and turbulent kinetic energy balances, and the boundary con-
ditions related to the entrainment of sediment and surrounding fluid:

∂h

∂t
+

∂hu

∂x
= Eau , (30)

∂(Ch)
∂t

+
∂(hUC)

∂x
= vsEs − vscb , (31)

∂hu

∂t
+

∂hu2

∂x
= RCgh sin θ − 1

2
Rg

∂Ch2

∂x
− u2

∗ , (32)

∂hK

∂t
+

∂huK

∂x
=

1
2
Eau3 + u2

∗u− ε0h− 1
2
EauRCgh− 1

2
Rghvs (2C + Es − cb) ,

(33)
where u is the mean velocity, h the flow depth, K the mean turbulent kinetic
energy, C the mean volume concentration (ratio of particle volume to total
volume), Ea a coefficient of entrainment of surrounding fluid into the current, vs

the settlement velocity, Es a coefficient of entrainment of particles from the bed
into the current, cb the near-bed particle concentration, R the specific submerged
gravity of particles (ratio of buoyant density to ambient fluid density), u2

∗ the bed
shear velocity, and ε0 the depth-averaged mean rate of dissipation of turbulent
energy due to viscosity. The main physical assumption in Parker et al.’s model
is that the flow is considered as one-phase from a momentum point of view
but treated as two-phase concerning the mass balance. Equation (30) states
that the total volume variation results from entrainment of surrounding fluid.
In (31), the variation in the mean solid concentration is due to the difference
between the rate of particles entrained from the bed and the sedimentation rate.
Equation (32) is the momentum balance equation: the momentum variation
results from the driving action of gravity and the resisting action of bottom shear
stress; depending on the flow depth profile, the pressure gradient can contribute
either to accelerate or decelerate the flow. Equation (33) takes into account the
turbulence expenditure for the particles to stay in suspension. Turbulent energy
is supplied by the boundary layers (at the flow interfaces with the surrounding
fluid and the bottom). Turbulent energy is lost by viscous dissipation (ε0h
in (33)) as well as by mixing the flow (fourth and fifth terms in (33)) and
maintaining the suspension against sedimentation flow mixing (last term on the
right-hand side of (33)).

Although originally devoted to submarine turbidity currents, this model has
been applied to airborne avalanches, with only small modifications in the en-
trainment functions (Fukushima & Parker, 1990; Gauer, 1995). A new gener-
ation of powder-snow avalanche models has recently appeared (Hutter, 1996).
Some rely on the numerical resolution of local equations of motion, including a
two-phase mixture approximation and closure equations, usually a k − ε model
for turbulence (Scheiwiller et al., 1987; Sampl, 1993; Naaim & Gurer, 1997).
Other researchers have tried to establish the relation existing between a dense
core and an airborne avalanche because they think that, most often, a powder-
snow avalanche is tightly related to a denser part that supplies the airborne
part with snow (Eglit, 1983; Nazarov, 1991; Issler, 1998). Though these recent
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developments are undoubtedly a promising approach to modeling powder-snow
avalanches, their level of sophistication contrasts with the crudeness of their
basic assumptions as regards the momentum exchanges between phases, turbu-
lence modification due to the dispersed phase, and so on. At this level of our
knowledge of physical and natural processes, it is of great interest to continue
to use simple models and to fully explore what they can describe and explain.

2.5 Three-dimensional computational models

The rapid increase in computer power has allowed researchers to integrate lo-
cal motion equations directly. Compared to the depth-averaged models, the
problems in the development of three-dimensional (3D) computational models
mainly concern numerical treatments. For instance, the treatment of the free
surface poses complicated issues. Naturally, problems linked to the constitu-
tive equations reliable for snow are more pronounced compared to intermediate
models since the entire constitutive equation must be known (not just the shear
and normal stress). The development of 3D models is currently undertaken
mainly for airborne avalanches generally using finite-volume codes for turbulent
flows. Examples include the models by Naaim & Gurer (1997), Hermann et al.
(1993), and Scheiwiller et al. (1987).

2.6 Small-scale models

A few authors have exploited the similarities between avalanches and other
gravity-driven flows. For instance, Hopfinger & Tochon-Danguy (1977) used
the analogy between airborne avalanches and saline density currents to perform
experiments in the laboratory in a water tank. In this way, examination of
various aspects of airborne dynamics has been possible: effect of a dam, struc-
ture of the cloud, determination of the entrainment coefficients, etc. The chief
issue raised by the analogy with density or gravity currents concerns the simi-
larity conditions based on both the Froude (or equally the Richardson number)
and Reynolds numbers (Hopfinger, 1983; Beghin & Olagne, 1991; Hopfinger
& Tochon-Danguy, 1977). Regarding flowing avalanches, authors have con-
sidered the analogy with granular flows. Various materials (ping-pong ball,
sand, beads) have been used. In engineering laboratory experiments simulating
flowing avalanches offer promising tools for studying practical and complicated
issues, such as the deflecting action of a dam (Chu et al., 1995; Faug et al.,
2008) or braking mounds (Hákonardóttir et al., 2003a,b).
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