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[1] Even under flow equilibrium conditions, river bed topography continuously evolves
with time, producing trains of irregular bed forms. The idea has recently emerged that
the variability in the bed form geometry results from some randomness in sediment flux. In
this paper, we address this issue by using the Exner equation and a population exchange
model derived in an earlier paper. In this model, particle entrainment and deposition

are idealized as population exchanges between the stream and the bed, which makes it
possible to use birth-death Markov process theory to track the number of moving grains.
The paper focuses on nascent bed forms on initially planar beds, a situation in which the
coupling between the stream and bed is weak. In a steady state, the number of moving
particles follows a negative binomial distribution. Although this probability distribution

does not enter the family of heavy-tailed distributions, it may give rise to large and
frequent fluctuations because the standard deviation can be much larger than the mean,
a feature that is not accounted for with classic probability laws (e.g., Hamamori’s law)
used so far for describing bed load fluctuations. In the large-system limit, the master
equation of the birth-death Markov process can be transformed into a Fokker-Planck
equation. This transformation is used here to show that the number of moving particles can
be described as an Ornstein-Uhlenbeck process. An important consequence is that in the
long term, the number of moving particles follows a Gaussian distribution. Laboratory
experiments show that this approximation is correct when the mean number per unit length
of stream, N/L, is sufficiently large (typically two particles per centimeter in our
experiments). The particle number fluctuations give rise to bed elevation fluctuations,
whose spectrum falls off like w* in the high-frequency regime (with w the angular
frequency) and variance grows linearly with time. These features are in agreement with
recent observations on bed form development (in particular, ripple growth).

Citation: Ancey, C. (2010), Stochastic modeling in sediment dynamics: Exner equation for planar bed incipient bed load
transport conditions, J. Geophys. Res., 115, FOOA11, doi:10.1029/2009JF001260.

1. Introduction

[2] The Exner equation has attracted considerable attention
in recent years. This equation expresses the mass balance of
the bed by stating that the local rate of change in the bed
elevation is related to the spatial gradient of the solid dis-
charge (see (14) below). The equation was termed in honor
of Felix Exner, an Austrian physicist, who notably inves-
tigated the development of dunes in sand bed rivers. In
his seminal paper, Exner [1925] assumed that the erosion/
deposition rate is proportional to the streamwise gradient of
the flow velocity. With this assumption, he showed that the
mass balance equation for the bed takes the form of a non-
linear hyperbolic advection equation, which accounts for
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formation and migration of bed forms [see also Kubatko and
Westerink, 2007].

[3] Much of the early work has considered bed load
transport as a continuous process, i.e., a process that can be
conveniently described within the framework of continuum
mechanics in terms of relations between mean values. How-
ever, field and laboratory observations have shown that bed
load transport exhibits considerable variability in time and
space, in particular at low flow rates [Ergenzinger, 1988].
Field surveys have shown that bed load transport time series
are highly fluctuating signals, which may be intermittent and
comprise pulses that are more or less correlated with the water
discharge [Carey, 1985; Gomez, 1991; Bunte and Abt, 2005;
Kuhnle and Willis, 1998; Ancey et al., 2006; Singh et al.,
2009; Radice, 2009; Ganti et al., 2009]. As a result of sedi-
ment transport, alluvial river beds do not remain planar, but
evolve toward a wavy morphology, which is continuously
changing with time and gives rise to sediment waves that
travel downstream or upstream depending on the Froude
number [Julien, 1994; Coleman and Melville, 1996]. In most
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investigations of bed dynamics, bed forms are seen as the
impact of turbulent structures on an erodible bed [Yalin,
1992] or the consequence of a loss of stability in the cou-
pled fluid-solid system [Furbish et al., 1998; Balmforth and
Provenzale, 2001]. More recently has emerged the idea that
bed forms arise from the random nature of particle trajecto-
ries. For instance, using a discrete element model with simple
rules for particle entrainment and motion, Ni7io et al. [2002]
simulated individual particle trajectories and tracked the
resulting bed evolution; they found that their model success-
fully mimicked many of the physical features of bed forms.
[4] These observations of the stochastic nature of bed load
transport have given impetus to a probabilistic formulation
of bed load transport equations. While Einstein [1936, 1950]
extensively studied some stochastic features of bed load
transport, in particular the probability distribution of heap
lengths and travel times, he did not devise a complete prob-
abilistic framework for sediment transport. Today there is
renewed interest in working out an appropriate probabilistic
framework, in particular driven by the need to overcome
some limitations of the active layer concept that underpins
most morphodynamic models. A first step toward this
objective was achieved by Parker et al. [2000], who used
heuristic arguments to derive a probabilistic formulation of the
Exner equation in terms of bed-elevation-specific entrainment
and deposition rates. Blom et al. [2008, 2006] and Blom and
Parker [2004] elaborated on this model, with emphasis given
to river beds covered by regular spatial patterns (triangular
dunes). Jerolmack and Mohrig [2005] used a Langevin-like
formulation of the Exner equation: they numerically solved
a coupled set of equations, including the Exner equation
where a white noise term was added to account for bed load
fluctuations. They observed that adding noise in the Exner
equation caused the formation of spatial patterns along
the bed, which looked like natural bed forms in that they
exhibited a continuous range of sizes and shapes (from ripples
to dunes) and that they grew and moved in a similar way to
what it is commonly observed in the field. Nakagawa and
Tsujimoto [1980, 1984] showed that entrainment and depo-
sition rates are in fact related to each other through the
probability distribution of step lengths, which enables con-
sideration of stochastic fluctuations in the Exner equation.
[5] Sediment transport is not the only physical system that is
driven (to a varying degree) by fluctuations. Brownian motion,
population dynamics, crystal growth, chemical reactions,
landscape, earthquakes provide typical examples of stochastic
systems [Turcotte, 1995; Sornette, 2000]. For these exten-
sively studied problems, a longstanding issue has been to
devise computational strategies to model complex systems
by distinguishing deterministic and stochastic components of
the behavior and applying appropriate generic procedures.
There are some analogies that we can draw between sediment
transport in waterways and systems made up of a large
number of chemically reacting molecules: motion, entrain-
ment, and deposition can be viewed as reactions between
two species (moving and resting particles), as shown in
Appendix B. In so doing, we can use all the mathematical
machinery developed to build up a consistent theoretical
framework and work out computational tools (Fokker-Plank
equation, approximation by Ornstein-Uhlenbeck process,
large-system limit expansion) [Gardiner, 1983]. A lesson
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learned in chemical kinetics is of particular relevance to our
issue: in a well-stirred and large system (i.e., a system made
up of a large number of molecules occupying all the
available space), how the concentration of each chemical
species evolves in time can be described using deterministic,
first-order ordinary differential equations (called the reaction
rate equations) [Gillespie, 2007]. This approximation breaks
when molecules are present in small numbers, when reactions
occur at low rates, or when molecules are heterogeneously
distributed in the system; in that case, large fluctuations affect
the system evolution to the point that dynamics are markedly
different from the predictions of reaction rate equations.

[6] The objective of this paper is to recast the Exner
equation in a probabilistic form (Langevin-like equation).
Given the complexity of this issue, we will focus here on
planar beds along which bed forms (nascent waves, ripples)
start to develop. To that end, we will use an Eulerian approach
and idealize particle entrainment and deposition as a birth-
death Markov process, which make it possible to track the
time variation in the number of moving particles N(¢) inside a
fixed control volume V. The statistical properties of the time
evolution of N can be investigated using Markov process
theory; this was presented at length in an earlier paper
[Ancey et al., 2008]. Here, we are interested in determining
how these properties change in the large-system limit (i.e.,
when the size of V is increased). The consequences in terms
of sediment mass balance can then be inferred.

[7] To begin with, we outline the statistical model developed
by Ancey et al. [2008] and compare it with other stochastic
approaches, most of them being Lagrangian descriptions of
particles experiencing random walks. A key issue is the defi-
nition of the solid discharge. As shown in Appendix A, there
are many equations that express sediment flux, but there is
no guarantee that they are all compatible and can equally
serve within a probabilistic framework. We use a relation that
links the solid discharge with the number of moving particles.
A generalized birth-death Markov process is used to compute
the number of moving particles N(7) as well as the entrainment
and deposition rates; see also Ancey et al. [2008] and
Appendix B for details. In section 3.2, we will see how the
streambed evolves under our model. We focus our attention
to initially planar beds and low sediment transport rates (i.e.,
for bottom shear stresses slightly in excess of the threshold
of incipient motion); as a result of sediment transport, bed
forms start to appear in the form of ripples (i.e., bed forms
with wave heights less than a few centimeters) [ Coleman and
Nikora, 2009]. Bed dynamics is accounted for through the
Exner equation. When the system contains a sufficiently
large number of particles, the master equation, which spe-
cifies how the probability of N(¢) evolves with time, can be
conveniently transformed into a Fokker-Planck equation,
which considers N(¢) as a continuous random variable rather
than a discrete one. This transformation makes it possible
to derive a probabilistic variant of the Exner equation in
section 3.2. The discrete and continuous probability dis-
tributions of N(¢) are then compared with experiments. In the
few experiments presented here, flow conditions are close to
those encountered with shallow mountain streams and coarse
sediment, but in principle our framework holds for a wide
range of waterways provided that the physical assumptions
used in the model (sediment flux is due to bed load transport
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Figure 1. The number of moving particles observed within
the window varies with time depending on the number of
particles entering/leaving the window or being entrained/
deposited from/on the stationary bed.

and not suspended load) make sense. Except for some crude
analytical approximations, there is no analytical solution to
the stochastic differential equations that specify the system
evolution. Numerical schemes must then be used (see
section 3.6); I here provide proof of concept without dwelling
on the algorithmic aspects.

[8] The notation used in this paper tries to be as much
standard as possible. Greek letters generally denote para-
meters, e.g., entrainment and deposition coefficients in our
model. Roman letters are used for random variables and the
particular value they can take is denoted by lowercase letters.
For instance, N is a random variable describing the number
of moving particles; the probability that N takes the value n
is denoted by P(n) = Pr(N = n). The average or expectation
of a distribution is denoted by a bar, e.g., N is the mean
number of particles; for the sake of simplicity, I use the
same symbol to refer to sample averages and theoretical
expectations. The variance is denoted var. The symbol o is a
shorthand notation for ‘much smaller than,” e.g., u = o(v)
means that ¥ < v. The symbol O indicates that there is a
one-sided bound, e.g., u = O(v) means that the limit of u/v
exists and is finite (neither zero nor infinity). Here probability
functions P are probability density functions (or probability
mass functions for discrete variables). A variable index can
be found at the end of this paper.

2. Model Outline

2.1.

[v] We have recently developed a model that computes the
number of moving particles inside a control volume [4ncey et
al., 2008]. The problem we addressed was an idealization of
bed load transport in a mountain stream, where sediment was
replaced by spherical particles of equal size and the problem
was purely two dimensional. We adopted an Eulerian point
of view by considering a fixed volume of control. Figure 1
depicts the control volume in which we count the number N
of particles. This number N varies with time as a result of
inflow, outflow, deposition, and entrainment of particles from
the bed. More specifically, we assumed that particles enter
and leave the window at rates v/;, and v,,,,, (in beads/s and 1/s,
respectively). In other words, the probability that one particle

Earlier Results
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enters the window within a small time increment ¢ is
v;,0t; the probability that two particles enter the window at
the same time or over short time spans 0¢ is zero, which is
a reasonable assumption for dilute to moderately concen-
trated bed load transport. For outflow, the probability that
a given bead leaves the window is v,,0f, but since there
are N = n particles within the window, the probability that
any particle leaves the window is nv,,5t. For entrainment,
we consider two processes: a particle can be dislodged from
the bed as a result of fluid action (this is the classical
assumption in sediment transport), but it can also be desta-
bilized because of the moving particles, which can interact
directly (collision) or indirectly (wake effect, advection of
turbulent structure) with the bed particles. Individual entrain-
ment occurs at rate A, while collective entrainment is at rate y;
entrainment rate is then dependent on the number of moving
particles: £ o< A + uN. For deposition, we could also
distinguish various processes, but they are all dependent on N
and therefore, we just refer to o as the total deposition rate.

[10] Particle exchanges can be described using a birth-death
emigration-immigration Markov model (see Appendix B).
Under steady state conditions, several interesting features can
be derived. First of all, when x> 0 it can be shown that the
probability of finding N = n particles in the control volume is
the negative binomial distribution

L(r+n) ,

P(n) = NegBin(n; r,p) :Wp (I=p)",n=0,1,..., (1)

with r = (A + v;,)/pand p = 1 — p/(o + v,,,), and where I’
denotes the gamma function. The mean and the variance are
given by

_ l—p_

N=r = (/\ + Vin)/(0'+ Vour — ,LL) and
P
1 - A in ou )
N — 2p:( +I/)(U+l/2r)7
p (0 + Vou — 1)

respectively. When p = 0, P(n) is the Poisson distribution and
in that case, the variance equals the mean.

[11] Although the negative binomial distribution does not
belong to the family of heavy-tail distributions (i.e., with an
infinite variance), it has a tail falling off like n'(1 — p)”". Its
decay rate is thus slower than for an exponential distribu-
tion. Furthermore, when p — 0, the coefficient of variation
V/var/N tends to /7. This coefficient of variation can be
much larger than unity, giving rise to large fluctuations and the
appearance of a heavy-tail behavior. Note that this behavior
is not shared by other classical discrete distributions such as
the Poisson or binomial distribution. Continuous probability
distributions used specifically in sediment transport for
describing fluctuations such as Hamamori’s distribution (5)
are also characterized by a constant coefficient of variation
(see section 2.2). Here, the potentially large variance results
from what we referred to as collective entrainment. If we
set 1 to 0, we retrieve an Einstein-like behavior, with a
Poissonian distribution for N [4ncey et al., 2006, 2008]. Note
also that in our model, the jump probability depends on the
number of moving particles (inside the control volume),
which is affected by immigration and emigration, i.e., by its
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neighborhood. It thus describes a nonlocal process, where the
local state depends on inflow and outflow.

[12] The second key feature is the autocorrelation function
R(?) of the number of particles in motion (within the control
volume), which is exponential

R(t) = e '/%, (3)

with t. = 1/(c + v, — ) the autocorrelation time. When
1> 0, the autocorrelation time is quite long compared to the
characteristic time of a moving particle ¢, = 1/o, which
probably reflects a memory effect due to the coupling
between entrainment and the number of moving particles.
This also shows that even though birth-death Markov models
are based on vanishing time increments ¢ in the counting
process, the typical time scale of N is very large compared
to particle time scale (z,, or 7).

[13] The third feature that can be derived under this model
is the waiting time between events. Once in motion, a particle
continues moving for a random, exponentially distributed
time (with parameter o); the time for which the particle is
stationary has a far more complicated distribution, which
cannot be specified in practice here. Indeed, there are major
impediments to this determination: in our Eulerian approach,
the details of a particle’s history are ignored; furthermore,
the waiting time for entrainment depends on the depth at
which the particle was buried in the bed. Therefore, contrary
to diffusion theory (see below), there is no clear relation
between Lagrangian and Eulerian points of view within our
framework. Other waiting times can be more easily com-
puted. For instance, the waiting time between two deposition
events within the control volume is distributed exponentially
with a rate 1/(no).

[14] There is no unique way to define the solid discharge
and the statistical properties of the solid discharge depend
greatly on the form selected. In Appendix A, we review the
main forms that are currently of common use and comment
on their strengths and weaknesses. Here we define the
sediment transport rate i1 = Q/v,, as

S
n=ZZu,-=Zup, 4)

where u, denotes the mean particle velocity, v, is the par-
ticle volume, and Q; is the total solid discharge. Fluctuations
in the solid discharge arise from the variations in the number
of moving particles in the control volume as well as their
velocities. Surprisingly enough, we observe that the particle
velocity i, weakly contributes to the solid-discharge variance
when the bed is mobile [Béhm et al., 2004; Ancey et al.,
2008]; furthermore, contrary to the case in which a single
particle is moving, collective motion of particles implies a
weak dependence of particle velocity on bottom shear stress
(see Appendix A). For a slope range of 7.5%—15% and a
sufficiently wide range of bottom shear stress (above the
threshold of incipient motion), Ancey et al. [2008] observed
no dependence of the particle velocity for the rolling regime
and weak dependence for the saltating regime; moreover the
statistical properties of N and O, (e.g., the shape of the
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empirical probability distribution function and the auto-
correlation function) were very close, confirming that N is the
key to understanding bed load fluctuations at low sediment
transport rates. Using a wide flume, M. W. Schmeeckle
(personal communication, 2007) obtained the same results
concerning the weak dependence of u, on 7,. These experi-
mental observations prompt the use of N as the main factor
explaining the O variance. More complicated dependences
can be accounted for without significantly altering the
structure of the model here. For instance, Bohm et al. [2004]
showed how to combine both N and #, fluctuations to com-
pute the statistical properties of 7.

2.2. Comparison With Other Approaches

[15] There are numerous approaches to computing the
solid discharge, but only a few yield both the dependence on
water flow rate and its statistical properties. Einstein [1936,
1950] devised a simple model where bed load transport
results from the imbalance between entrainment and depo-
sition rates. Fluctuations arise from the intermittent motion
of particles: once moving, particles perform steps of random
length and once they are deposited, the periods of rest are also
of random span. Note that setting = 0 (i.e., no collective
entrainment) in our model leads to an Einstein-like model.
This model has seen many refinements, the most popular
being Hamamori’s distribution which gives the probability
density function of the scaled variables z = (Q, — O,)/v/varQs

Pz) = -5 n +-

ML)

where Q, is the averaged solid discharge and the variance
is related to this mean value by: var Q5 = 70%/9, that is, a
coefficient of variation of \/7/3 [Carey, 1985; Kuhnle and
Willis, 1998]. Note that this distribution is bounded since
31 <z<9I\1 , which imposes that the maximum ampli-
tude of fluctuations (around the mean value) is four times
the mean rate.

[16] In recent years, growing attention has been paid to
models based on diffusion theory. Originally, linear diffusion
theory was used to model erosion processes in sedimentary
basins over geological timescales [e.g., see Paola et al., 1992].
In the particular case of a one-dimensional stream, the gov-
erning equation takes the form of a parabolic partial differential
equation

B (6)

Ob(x,t) 0
o ox <K

Ob(x, t)) 7

with b(x, f) the bed elevation and K is a constant reflecting
soil diffusivity. Field surveys giving little hope for linearity
[Heimsath et al., 2005], emphasis was then given to non-
linear forms of (6), where K is assumed to be a function of
b [Postma et al., 2008], and anomalous diffusion, where
derivatives are replaced with fractional derivatives [ Voller and
Paola, 2010; Stark et al., 2009].

[17] It is also very tempting to use advection-diffusion
equations to model sediment transport on shorter time scales
than geological times [Graf, 1984]. For instance, the fol-
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lowing equation describes how the concentration in particles
varies with time and position

oc oc 0 Oc
5?“&*&(%)7 0

where u is the mean velocity at which the particles are
transported and K is a (constant) diffusion coefficient. A
particular strength of this formulation is that it can be derived
using an Eulerian continuum-based approach or a Lagrangian
discrete particle approach. The correspondence between both
approaches is detailed at length by Schumer et al. [2009], but
it is worth recalling some fundamentals here. The solid con-
centration is the volume fraction occupied by particles and
is related to the probability P(x, ¢) of finding a particle
placed at x at time ¢ [Herczynski and Pienkowska, 1980]:

c(x,t) = NPy(x,1), (8)

with N the number of particles. Solving (7) for ¢ is then
equivalent to finding the probability P(x, f), which gives an
unusually simple relation for connecting probabilistic and
deterministic descriptions. If the flow of particles is dilute,
we can reasonably assume that the motion of a single particle
can be closely described using a random walk: the particle
randomly jumps from one position to another one. The jumps
of length X; are randomly distributed with mean m and finite
variance v. There is no waiting time between jumps. The
times of flight are constant and equal to A¢. The distance d
traveled by the particle at time 7 is

d(t) =3 x, 9)

where k is the number of jumps achieved until time ¢ for
sufficiently large values of ¢, we have k ~ #/At. The law of
large numbers states that the sum of independent and iden-
tically distributed random variables (with finite variance v)
scaled by v/vk converges to the standard normal distribution
N(0, 1) (of mean 0 and variance 1)

k
Zi:lXi — km

N — N(0,1),

(10)

which can be recast in the following form

d(t) z%t +\/_§WN(O,1).

This shows that the probability P, (x, ) of finding the particle
at x = d is given by a normal law with mean m/A¢ and var-
iance v/At. The random walk model can be made more
complex, e.g., by considering infinite variance for particle
jumps or by allowing random waiting times between jumps.
This results in fractional advection-diffusion equations,
widely used to investigate solute transport in groundwater
[Berkowitz et al., 2006]. A key feature is that the probability
distribution P; (or the solid concentration) is a heavy-tailed
distribution, which explains why wide and frequent fluc-
tuations occur in solute transport. For instance, if the distri-

(11)
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bution of particle step lengths is heavy tailed (i.e., with
infinite variance), then P; or c satisfies a fractional-in-space
advection-diffusion equation, which generalizes the classic
advection-diffusion equation [Metzler and Klafter, 2004;
Schumer et al., 2009]:

o _ e
ot Ox

e
oxV’

(12)

where 0 <y <2 is the fractional exponent and we introduced
the fractional derivative

d'c 1 /'X Oc(x — y,t)

7F(17'y)_0 Ox

i (13)

y " dy.

The solution to (12) has no analytical expression, but one can
infer its main features: it is positively skewed and has a tail
that falls off like xf““fl, 1.e., much slower than the tails of
exponential or Gaussian distributions. Note that since the
fractional derivative (13) is equivalent to a convolution with
a power law weighting function, fractional diffusion is a
nonlocal process [Tucker and Bradley, 2010].

[18] The question arises as to whether the fractional diffu-
sion framework will help improve our understanding of bed
load transport. Although there is abundant literature in porous
medium and groundwater problems on fractional diffusion
equations and random walks, there are not many results
available for sediment transport. Much of the literature has
focused on tracers in gravel bed rivers and flumes. By
observing the final distribution of particle displacements,
Einstein [1936] and Hubbell and Sayre [1964] deduced that
the deposition patterns are consistent with a gamma distri-
bution of step lengths. On the whole, subsequent field surveys
led to similar conclusions, but they also pointed out that
data were noisy and the final distribution of particle dis-
placements could be complicated since particles could be
trapped in river bars and their movement could be affected by
local hydraulic conditions depending on channel morphology
[Hassan and Church, 1991; Schmidt and Ergenziger, 1992;
Pryce and Ashmore, 2003; Ferguson et al., 2002; McNamara
and Borden, 2004]. More recently, new techniques such as
radio tracking has made it possible to follow up the travel path
of individual particles; Habersack [2001] reported that for
observation time scales of a few minutes, the rest periods are
exponentially distributed, while the distribution of step
lengths is closely approximated by a gamma distribution. In
contrast with other authors, Nikora et al. [2002] focused on
particle movement as a function of time rather than step
length distribution at a given time. From their flume experi-
ments, they deduced that var d(¢) o< 7 with v > 2 for short time
scales (typically on the order of a few seconds), but v <2 for
long time scales (typically on the order of a few minutes),
which means that particle displacements exhibit anomalous
diffusive properties, either superdiffusive or subdiffusive
depending on the time scale. This behavior can be understood
by considering that the longer the time scale is, the more
likely the particle is to be trapped in the bed. In summary,
while there is growing evidence of wide and frequent fluc-
tuations in bed load transport (in particular at low flow rates)
[Carey, 1985; Kuhnle and Southard, 1988; Kuhnle and Willis,
1998; Bunte and Abt, 2005; Ancey et al., 2006; Singh et al.,
2009; Radice, 2009], the origins of these fluctuations are
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Figure 2. Definition sketch of the model. The reference level is the x axis.

not clear-cut: while there are some data supporting the idea
of fractional diffusion [Nikora et al., 2002], the few data
collected so far in the field or laboratory do not reveal typical
fractional diffusion behavior for particle displacements or
bed load concentration.

3. Bed Dynamics and Exner Equation

3.1. Setting

[19] We consider a two-dimensional, steady water stream
flowing down an erodible bed y = b(x, ¢), with x the down-
stream spatial coordinate, ¢ time, and y the vertical coordinate
measured from a fixed reference level. The x axis is tilted at a
constant angle 6 to the horizontal. Moving and resting parti-
cles are spherical particles of equal radius a and density g,,.
The free surface is at elevation y = s(x, f) and the flow depth
h(x, t) = s(x, t) — b(x, t) is measured normal to the reference
level (i.e., in the y direction). Figure 2 shows the flow
configuration.

3.2. Exner Equation and Bed Dynamics

[20] Even under bed equilibrium conditions, the bed does
not remain flat and bed forms develop. We must then use an
equation specifying the bed mass balance. When the sus-
pended load stored in the water column is negligible com-
pared to bed load, the Exner equation fulfills this objective

ob _Ogy
(1-0) G -D-5 -5,

g (14)

where ¢, is the bed porosity, D (E) denotes the volume rate
of deposition (entrainment) per unit time and per unit bed
surface onto the bed, and ¢, represents the solid discharge
per unit width.

[21] The entrainment and deposition rates are assumed to
be single-valued functions of the bottom shear stress: D =
D(7p) and E = E(7,). Under steady uniform flow conditions,
the bottom shear stress is 7,(h) = pgh sin 6. Here we focus
on planar bed lower-regime flow conditions, which describe
situations where the bed remains nearly planar even though
bed forms start to appear as a result of incipient bed load
transport [Julien, 1994; Coleman and Nikora, 2009]. The
water stream is in a nearly uniform or gradually varied regime
and is not yet disturbed by nascent bed forms. Sediment
transport occurs at low rate; that is, the bottom shear stress 7,
just exceeds the threshold of incipient motion 7. or in other

words, the transport stage parameter 7 is low, typically 7 <3
with 7' = 7,/7. — 1 [van Rijn, 1984]. In this case, the bottom
shear stress remains, as a first approximation, very close to
its value in a steady uniform regime. A first-order correc-
tion of the uniform regime is

0b 8h)’ (15)

(1, b, h) = pghcos&(tan@ ~ % B

which accommodates for both slight changes in bed gradient
0:b and flow-depth deviations from the uniform regime 0,/
[Julien, 1994].

[22] Under our model, the entrainment and deposition rates
are found to depend on the number of moving particles N as
follows:

E =VLi’(A+uN), and D =VLlaN,

(16)
where ) (in beads/s), o (in s '), and & (in s~ ") are functions
of 74, v, = 47%/3 denotes the particle volume and L is the
length of the control volume. The entrainment rate )\ is also
proportional to L, while the exchange rates ¢ and p are
independent of it. We can then introduce an entrainment rate
per unit length (X in beads m™' s7"), a scaled outflow rate
(Dpue I M sfl),Nand the concentration of moving particles
per unit length (N in beads m™):

A=L), um,l:%, and N = LN. (17)
This scaling holds since (1) for entrainment, the dependence
on L is encoded through N for collective entrainment (),
while for individual entrainment, the longer the window
is, the more probable particle entrainment is, and (2) for
outflow, as illustrated by Figure 5 in section 3.4 or more
rigorously by computing intercorrelation times [Bohm et al.,
2004], the outflow rate is related to the mean particle velocity
(i.e., Uous = u,). We can then express the entrainment and
deposition rates as follows:

E :VZ”(/\+ALN) = vy (A + pN) and D =VL—”0N =voN. (18)

The Exner equation (14) becomes

0b -
WG = (o= mF =X (19)
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with ¢ = 1 — ¢,. Equation (19) is a stochastic differential
equation because N is a random variable, the variations of
which are described by the master equation (20) or the
approximate governing equation (27), as shown in section 3.3.
This makes the analysis and numerical treatment of (19)
somewhat delicate and prompts us to seek analytical approx-
imation of N.

3.3. Behavior of N in the Large-System Limit

[23] The model outlined in section 2.1 is a birth-death
Markov process, which allows jumps only one step up or
down [Cox and Miller, 1965] over short time spans. For
n > 1, the governing equation that specifies the probability of
finding N = n particles in the control volume is

O ) = (14 )aP(n + 150 + {8+ (n — Du}P(n — 1:1)

ot
—{B+n(a+ p)}P(n;1), (20)

with the shorthand notation o = o + v,,, and = X + v;,.
For n = 0, we have

oP(0,1)
ot

= aP(1;t) — BP(0;1). (1)

At time ¢t = 0, there are N = N, particles within the control
volume, so we set

P(n;0) = 8(n — N), (22)

where 6 is the Kronecker delta function. The forward master
equation (20) offers some resistance to analysis. There are
some general techniques based on an appropriate transfor-
mation of the dependent variable (e.g., Laplace transform
and generating functions) to find analytical solutions to the
differential difference equation (20), but the inverse trans-
formation is not always easy to handle; for instance Ancey
et al. [2008] provided a general solution to (20) in terms
of the generating function G(z, ) = > -, z" P(n; 1). For
steady flow conditions, it can be shown that the solution to
(20) is a negative binomial distribution (1).

[24] Here we proceed differently by seeking an analytical
approximation of (20) for sufficiently large N values. The
idea is to transform (20) into a Fokker-Plank equation, which
provides further insight into the stochastic behavior of bed
load transport. There are standard techniques (Kramers-
Moyal and van Kampen expansions) described in the tech-
nical literature to achieve such a transformation [Gardiner,
1983]. Using a less rigorous, but far easier and more intui-
tive approach, we will proceed differently: essentially, we
interpret the contributions P(n + 1) and P(n — 1) as the terms
arising in a Taylor series expansion of P(n) since to first
order and n sufficiently large (compared to unity), we have
Pmn+1)—P(n—1)=4P'(n)and Pn+1)—2P(n)+ P(n—1)=
P"(n). In the large-number limit, we find that the forward
master equation (20) can be approximated by

9 0 10
5, P31) = =5 (AP) + 5 = (

BP
Ot On ),

(23)
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where 4 = + n(u — «) is called the drift function and B =
(a + p)n + G is the diffusion function. Function 4 describes
the deterministic component, while function B reflects the
random fluctuations of sediment transport rate. Indeed
when B is zero, (23) is strictly equivalent to the nonlinear
deterministic (Liouville) differential equation dN/dt = A(N)
(see (29) thereafter); when A4 is zero and B is constant, (23)
describes a special Wiener process (i.e., the random walk
of'a Brownian particle). A net advantage of (23) compared to
(20) is that we better understand how the different exchanges
between the bed and the stream gives rise to effects that can
be interpreted as deterministic process and stochastic dif-
fusion at the macroscopic scale (see also Gillespie [1992,
chapter 6] for further discussion).

[25] Another equivalent and useful form of the Fokker-
Planck equation (23) is the (Ito) stochastic differential equa-
tion [Gardiner, 1983]:

dN = A(N)dt + B'>(N)dW(1), (24)
where W() is the Wiener process. In the following, we will
use this equation in the Exner equation to evaluate the effect
of N, but prior to this, we will make a change of variables
that transforms the discrete random variable N into a con-
tinuous one N. We can express

N in_N~0u N
A:L(A—O—%—Q—N(u—o)) and
. 25)
B:L<(0+M)N+)\~+W),

which shows that in the large-system limit (L — o), the
following approximations hold to first order
A =%= A+ N(u—o0)+O(1/L) and
(26)
. B - .
B =7 = A+ (o + p)N +O(1/L).
This change of variables turns out very helpful in that the
system size appears in the governing equations, which is
crucial to simplifying these equations. Equation (24) can now
be expressed as a function of N:
AN = A(N)di + =B
VL

In the large-system limit, the factor ¢ = L™ " tends toward
zero, implying that the stochastic fluctuations generating
weak noise in the time evolution of N cancel out; in other
words, the system is entirely driven by the deterministic
component 4. This leads to posing a power series expan-
sion of N

(N)dW(2). (27)

N=N,+em(t)+---. (28)

The zero-order term in this expansion is also called the
sure function; it is the solution to the Liouville equation

i

= A(N) (29)

NS
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Figure 3. Sketch of the experimental setup.

subject to an initial condition in the form N = N at ¢ = 0.
When the bottom shear stress is constant or does not deviate
significantly from its mean value, the solution is

i K — ot (5 4+ No(ps —
R
o—

(30)

The number of moving particles decreases exponentially
toward a constant value. The solution N.(¢) represents the
deterministic component of the behavior when the stochastic
fluctuations are ignored. Note that at long times and for
constant bottom shear stress, the number of moving particles
approaches a stationary value

N *(t) - N 00 = A )

o—p

(31)

which is the steady state mean number [4ncey et al., 2008].
For large systems, the relaxation time is ¢, = (o — ,u)fl.
[26] The first-order correction term 7, is the solution to

~1/2

dn= (i~ oD + B (N.0)aw(),  (32)

subject to an initial condition in the form 7= 0 at = 0. Note
that the diffusion function is now B"*(N,()), which implies
that the fluctuation amplitude is imposed by the sure func-
tion N.. From (32), we deduce that n; is a continuous
Markov process with drift function (4 — o)1, (¢) and diffusion
function B(N.(f)); it represents additive noise. Since the
drift function is linear and the diffusion function is constant
when ¢ — oo, we deduce that the long-time behavior of
can be approximated by an Ornstein-Uhlenbeck process
with parameter k, = o — p and diffusion D, = B (N,,) [see
Gardiner, 1983, chapter 3]. Since the long-time behavior of
a Ornstein-Uhlenbeck process is a Gaussian process A/ with
mean 0 and variance D,/(2k,), we deduce that

D, _ o
t— oo,m ~/\/(0,%) _J\/<0,(U—#)2), (33)

In other words, this also means that in the limit of # — oo, the
number of moving particles follows a Gaussian distribution
- - A
N~ N(Nm & %) (34)
(0 —p)

or equivalently n ~ A/ (Nw, (Jiﬁ) The standard deviation

of the particle concentration N goes to zero with increasing
L like L™"?; this is the usual dependence on system size
for thermodynamic systems [Gardiner, 1983].

3.4. Experimental Validation

[27] Experiments were performed in a tilted, narrow, glass-
sided channel, 2 m in length and 20 cm in height, as depicted
in Figure 3. The channel width W was adjusted to 6.5 mm,
which was slightly larger than the particle diameter 2a =
6 mm. In this way, particle motion was approximately two
dimensional. The channel slope tanf ranged from 7.5%
to 15%.

[28] The channel base consisted of half-cylinders of equal
size (radius 7 = @) and randomly arranged on different levels.
Colored spherical glass beads with a density p, = 2500 kg/m’
(provided by Sigmund Lindner GmbH, Germany) were
injected from a reservoir into the channel using a wheel.
For the experiments presented here, the injection rate 72y was
5-21 beads per second, with an uncertainty of less than 5%.
This corresponded to a solid discharge per unit width g, =
O,/W of 9-38 x 107> m?s.

[29] The experimental conditions (velocity profile, bed
friction, etc.) were specified in earlier papers [Ancey et al.,
2008]. Although the flume was narrow, we checked that
its hydraulic characteristics were like those observed in wide
channels with shallow flows [Frey and Reboud, 2001]. The
flow Reynolds number was in the 3000-7700 range. The
Froude number varied significantly over the experimental
duration and along the mainstream direction. Its mean values
were close to 1.5 (in the 14 range), which means that the
flows were supercritical on average, but its instantaneous
values fluctuated a great deal and frequent transitions to
subcritical regimes occurred. Note that we defined the solid
discharge 7 as the flux of beads per unit time. We can also
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Table 1. Flow Characteristics and Measured Values
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Experiment Number®

E7-6 E7-8 E7-9 E7-11 EI0-6 EI10-7 E10-8 E10-9 E10-16 E10-21 E12-9 EI2-16 EI2-21 EI15-16 EI15-21
tan 6 (%) 7.5 7.5 7.5 7.5 10.0 10.0 10.0 10.0 10.0 10.0 12.5 12.5 12.5 15.0 15.0
gy (102 m%s) 10.00 11.54 13.85 26.15 415 442 5.38 5.54 8.19 10.31 2.97 3.85 4.46 231 2.92
h (mm) 189 208 249 408 10.2 10.8 12.2 12.5 16.9 19.4 7.0 8.2 9.4 4.9 6.7
uy (m/s) 053 055 056 064 041 0.41 0.44  0.44 0.48 0.53 0.42 0.47 0.48 0.47 0.44
i (beads/s) 545 776 920 1099 572  6.85 7.74 941 15.56  20.57 9.52 15.52 19.86 15.45 20.55
u, 0.16 0.17 0.15 0.15 0.11 0.13 0.11 0.12 0.13 0.12 0.08 0.09 0.10 0.07 0.08
N, 4.62 601 833 996 831 751 1042 1135 1815 26,55 20.00 30.15 3373 41.87  45.56
N 225 322 394 521 2.35 299 328 3585 6.09 7.74 1.83 3.09 4.86 0.84 3.42
var N 22.53 3094 3543 3851 70.74 36.89 64.55 49.09 72.09 12991 12338 182.68 222.88 214.31
o (1/s) 4.67 528 504 490 512 486 494 473 4.52 4.39 4.83 4.77 451 4.20 3.90
1 (1/s) 373 414 380 346 496 407 433 391 3.55 3.66 4.33 4.32 4.15 3.64 2.73
A (beads/s) 6.59 11.21 15.13 2140 1.53 7.79 842 11.23 2207 2477 1095 14.64 13.62 2449 55.71
v, (beads/s) 544 7.76 9.19 1098 5.71 6.84 173 9.41 15.55  20.56 9.51 15.51 19.85 15.45 20.54
Vour (1/3) 077 078 0.75 0.73 060 0.69 056 0.68 0.68 0.60 0.43 0.47 0.51 0.35 0.42

“E7-6, experiment a; E7-8, experiment b; E7-9, experiment ¢; E7-11, experiment d; E10-6, experiment e; E10-7, experiment f; E10-8, experiment g;
E10-9, experiment h; E10-16, experiment i; E10-21, experiment j; E12-9, experiment k; E12-16, experiment 1; E12-21, experiment m; E15-16,

experiment n; E15-21, experiment o.

define the solid discharge Q; as the volume flow rate and
relate it 7 using O, = m(2a)’n/6. For i, we used the same
definition (4) as that used in the theoretical analysis. The
bottom shear stress is evaluated as 7, = pgh sin 0 [Frey and
Reboud, 2001].

[30] We ran 15 experiments (referred to as a—o) with dif-
ferent inclinations and various flow rates. Bed load equilib-
rium flows were achieved. The features of each run are
summarized in Table 1. We report the water discharge ¢,
the mean flow depth %, the mean water velocity us= g,,/h,
the solid discharge 7. The notation E10-6 means: tan 6 =
10% and 7 = 6 beads/s.

[31] The particles and the water stream were filmed
using a Pulnix partial scan video camera (progressive scan
TM-6705AN), placed perpendicular to the glass panes at
115 cm away from the channel, approximately 80 cm upstream
from the channel outlet. The camera was inclined at the same
angle as the channel, behind which lights were positioned. An
area of L =22.5 cm in length and 8 cm in height was filmed.
The camera resolution was 640 x 192 pixels for a frame rate
of 129.2 fps (exposure time: 0.2 ms, 256 gray levels). Each
sequence comprised 8000 images because of limited com-
puter memory; this corresponded to a duration of approxi-
mately one minute. Positions of the bead mass centers were
detected by means of an algorithm combining several image
processing operations; particle trajectories were calculated
using a tracking algorithm [Bohm et al., 2006].

[32] Table 1 reports the mean particle velocity in the
rolling regime i,, the mean particle velocity #,, the number
of particles in a rolling regime N, and in a saltating regime
N (the total number of moving particles being N = N, + Nj),
the entrainment and deposition rates A, o, p together with
the inflow and outflow rates v;, and v,,,,. The entrainment and
deposition rates p and A were estimated using (2) and the
equilibrium conditions for the bed (o + V4, )N = v, + A+ uN
and the control volume v,,,N = v;,, where N is the mean
number of moving particles. The deposition rate o was
measured using image processing, while v;, is imposed at the
flume inlet.

[33] A striking result is the weak dependence of the mean
particle velocity on bottom shear stress 7,. As shown in
Figure 4, for a given slope, the mean particle velocity reaches

a nearly constant level independently of 7, (but depending
on #). For instance, for § = 10%, for 7, = 10 Pa (run E10-6 in
Table 1), the mean particle velocity is i, = 11 cm/s against
i, = 12 cm/s for 7, = 20 Pa (run E10-21 in Table 1).
Using a wide flume, M. W. Schmeeckle (personal com-
munication, 2007) observed the same behavior, which leads
us to think that this behavior may be quite general for inter-
mittent bed load transport conditions. Note that this behavior
was induced by the experimental setup (in particular, the
narrow flume), but a consequence of collective motion; when
a single particle was in motion in the window, the particle
velocity markedly depend on fluid velocity [Ancey et al.,
2008].

[34] Interestingly enough, when we reported the emigra-
tion rate v,,,; as a function of the particle velocity, we found
out that v,,,, = u,/L', with L' = 20 cm, as shown in Figure 5.
This shows that the outflow rate is directly proportional to
the mean particle velocity, which is to be expected. Indeed
recall that theoretically, the particle flow rate was defined as
the volume average of particle velocities 7 = Niu,/L (see
equation (4)) and that in a steady state, the flux of outgoing
particles is v,V = 1, which gives v, = 4,/L under steady
state conditions. Experimentally we found that this relation
holds if we replaced L = 22.5 cm with L' = 20 cm; this 10%
deviation shows that defining the particle flow rate as volume
averages or fluxes does not lead strictly to the same values.
Note that we also ran experiments with various L values;
measuring the intercorrelation functions of N(f) measured in
neighboring windows confirmed that v, is related to particle
velocity [Béhm et al., 2004].

[35] We can compare the approximate solution (34) with
the exact solution (1) to the master equation (20) for steady
state conditions. For large systems (L — ), we have o =
0+ Vo — o while 8= X\ + v;,, > A, which means that
the variances and means of both distributions become closer.
We retrieve the fact that in the large-system limit, a negative
binomial distribution can be approximated by a normal dis-
tribution, with the only difference that normal distributions
are continuous real-valued functions (which can then take
negative values) whereas negative binomial distributions are
functions that take nonnegative integer values. Note also that
when g > 0 (collective entrainment), the ratio var N/N
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Figure 4. Relation between the bottom shear stress 7, and the mean particle velocity #,.

always exceeds unity, which implies that large and frequent
fluctuations occur. When = 0 (no collective entrainment),
this ratio is unity and we retrieve the usual Poissonian limit
of Einstein-like models. The autocorrelation time of the
exact solution (1) to the master equation (20) is 7. = (ov — 1) "
[Ancey et al., 2008]; in the large-system limit, we also find
that the relaxation time approaches the autocorrelation time:
t, — 1.

[36] Figure 6 shows the probability distribution function of
the number of moving particles N. We report the empirical
distribution (dots), the exact theoretical solution (1) (dashed
line), and the approximate analytical solution (34) (solid line).

I - . — — — S— - r

The parameters of the distributions were estimated using the
measured values var N and N reported in Table 1; for the sake
of readability, we plotted the discrete probability mass
functions as continuous curves. First note the fairly good
agreement between the data and theoretical probability dis-
tribution for all experiments. Local departures and data
scattering are seen, but they are usually associated with low
probabilities. Since 8000 data points were used for each run,
empirical probabilities lower than 10> are unimportant. The
plots confirm that the negative binomial distribution is a
good candidate for describing the statistical behavior of N
over a wide range of flow conditions.

—
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Figure 5. Relation between the measured v,,, values and the ratio u,/L" with L' = 20 cm.
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Figure 6. (a—o) Empirical probability density of the total number of moving beads N (black dots). The
dashed line is the probability density function of the negative binomial distribution. Experiments a—o. The
solid line represents the Gaussian approximation (34).
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[37] There is a significant change in the distribution shape
when the water discharge increases. When it is low (e.g.,
Figure 6e), the empirical distribution is close to a straight
line on a logarithmic scale, implying that the number of
particles decays exponentially within the observation win-
dow. For experiment e, the discrepancy between empirical
and theoretical probability distributions is the most pro-
nounced of all runs, which may mean that theory performs
less well for these low discharges. With increasing water
discharge, the probability distribution takes a bell shape,
which is first skewed, then nearly symmetric at the highest
slopes and flow rates (see Figure 6n). In the case of run n, the
discrete empirical probability distribution can be closely
approximated by a Gaussian distribution, as expected.

[38] For each run, the sample variance exceeded the mean,
but the ratio var N/N decreased with increasing water dis-
charge. For instance, for slope tan § = 0.1, the ratio varN/N
was as high as 7 for run e and dropped to below 3 for run o.
Thus for each run, the number of moving particles varied
frequently and widely, but with increasing water discharges,
wide fluctuations became less frequent, which substantiates
the idea that at high water discharges, sediment transport
becomes more continuous.The normal distribution closely
approximates the empirical distribution of N when N is
sufficiently large (typically for N as large as 40). There is,
however, no precise criterion that can serve to mark the
lower bound from which this approximation holds.

3.5.

[39] The stochastic Exner equation is given by (19), where
the entrainment and deposition parameters o, u, and A depend
on the bottom shear stress (15) while the number of moving
particles N is the solution to the Ito differential equation (27).
The full problem (19), (15), and (27) is prohibitively complex
to be solved analytically because of nonlinearities arising in
the coupled equations and stochastic fluctuations. Analytical
approximations are available if we assume that the flow
depth is nearly constant, an assumption which is quite com-
mon for planar bed lower-regime flow conditions [Exner,
1925; Jerolmack and Mohrig, 2005]. In that case, the bot-
tom shear stress equation is constant: 7, = pgh sin 6.

[40] Different levels of approximation can be used to shed
light on the behavior of the system of equations (19) and
(27). The crudest approximation is to assume that N varies
so fast with time that for periods of time longer than the
relaxation time ¢#,, the number of moving particles reaches a
quasi-stationary state in which dN/dt — 0 (or dn; — 0). In
this case, using (28) and (32), we obtain

No A VB(n) aw

o—pu o—p dt’

Implication for the Exner Equation

(35)
which results in

b(x,t) = \/B(n, )W(t).

(36)
This equation shows that the probability distribution function
of bed elevation b is a Gaussian distribution; furthermore,
the variance of b grows linearly in time since the variance of
W grows like . A Gaussian distribution has often been
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found to be a correct approximation of bed elevation pro-
files [Nikora et al., 1998]. Experimental measurements
provided variance growing as a power function of time,
with an exponent ranging from 0.56 to 1.36 depending on
particle size [Coleman et al., 2005]. In spite of its crudeness,
this approximation provides a reasonably correct description
of the bed form evolution for planar bed incipient motion
flow conditions.

[41] In the large-system limit (L > 1) and slightly bumpy
bed (0,0 < tanf), another approximation consists in ex-
panding b into an e power series as we did for N: b(x, f) =
bo(x, t) + €by(x, 1) + ---. We then obtain a_hierarchy of
equations, where the exchanges rates o, i1, and )\ are constant.
To zeroth order, we obtain

0bg . ¢

Vg = (0= W)ix = A (37)

Since N« — N, = M(c — 1) when t — oo, then we get 6,6 — 0,
which means that at order ¢’ , the bed elevation reaches a
constant level. To first order, we obtain

Ob,

b = (o — m)m, (38)

with 7; solution to (32) subject to the initial condition
m(0) = 0:

m(f) = / exp(—(t — ) /6)B (n,())aW(?),  (39)

from which we deduce that

bi(x,0) = (0 — /dt/exp ¢ — ) ]6)B" (m (")) W),
(40)

At long times, we can compute the first moments of b;:
(b)) = 0 and (b7) = B(N.,,)t, which is consistent with the
crude approximation (36). In particular, we retrieve that
the variance varies linearly with time on the long range.
Another interesting point is related to the spectral density
function S(w) of 7;: since on the long term 7, is an
Ornstein-Uhlenbeck process with constant parameter k, =
o — p and diffusion D, = B (n.,), the spectrum of N is
[Gardiner, 1983]

S (41)

with w the angular frequency. This shows that the spectrum
tends toward a plateau when w — 0 and decreases as w ~ in
the limit of w — . The bed elevation following the same
trend, we retrieve the w 2 decay observed by Nikora et al.
[1997] in the high-frequency range, but the low-frequency
behavior S(w) o w " is not retrieved. As discussed by Nikora
et al. [1997], note that there is no consensus in the literature
about the decay rate of S in the high-frequency domain (some
authors providing S o w ).
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[42] The last point concerns the variation in the root
mean square of bed elevation w with length L. Since b =
by + €by + --- with e = L2 (b,) = 0, and (b7) = B (N,)t,
we have

Lk N 1/2 Lk 1/2
W(L7t) = ( Z(b(xht) _b) ) = E(%Zb%()@',[)) )
i=1 i=1

(42)

1

where b(x;, f) denotes the bed elevation at a site x; and time 7, k
is the number of sites over the length L, and b is the average of
b over the domain of length L. The sum of £ square Gaussian
variables of mean 0 and constant variance (at time ) is a
(noncentral) chi-square distribution with mean £. Since k o< L,
we then deduce that w(L, 7) o< eL = L"?. This is roughly
consistent with the results obtained by Jerolmack and Mohrig
[2005], who obtained w o< L%%*; although there is no perfect
match, both values are reasonably close (given that the data
span over a limited range of variations).

3.6. Numerical Simulations

[43] Two types of numerical models can be developed
depending on whether N is considered a continuous or dis-
crete random variable. The former type is the easiest to
implement since it involves solving a set of coupled first-
order differential equations including a stochastic differential
equation; there are many relatively simple, but fairly efficient
algorithms for that purpose [Higham, 2001]. The latter type
is a little more delicate to use in that it is based on exact or
approximate stochastic simulation algorithms, whose running
is known to be fairly slow [Gillespie, 2007].

[44] Here we address the case in which the flow depth is
nearly constant and N is considered a continuous variable.
We have to solve (19), (15), and (27). We use a first-order
explicit forward Euler scheme (a variant called Euler-
Maruyama method) to discretize the governing equations
with a constant time step At¢ [lacus, 2008]. The spatial
domain of length L is divided into S cells centered at nodes
x;i=(— %)Ax (1 <i<08) of size Ax. The bed elevation is
evaluated at each node x; and time #, = kAt, where At is a
very small time increment. At time %, = (kK + 1) Az, we
have

Nigr1 = Nig + AtA(Nig) + Cy/ AtB(N i) (43)
At . -
bigs1 = big +— ((0 + Vour — W)Nix — AM(7ix) ). (44)

(8

where ( is picked from a Gaussian distribution with mean 0
and variance 1. This scheme is first order in time and requires
tiny time steps to be accurate; there are other methods that
perform better and converge faster [Riimelin, 1982]. Typi-
cally, with the Euler-Maruyama scheme, the simulation of a
60 s run requires computational times as long as 6 h on a
standard personal computer.

[45] To illustrate this scheme, we present the results of a
numerical simulation for a virtual 25 m long flume tilted at
6 = 5° to the horizontal. The parameters of the simulation
are reported in the caption of Figure 7. As shown in Figure 7a,
the solid concentration varies substantially along the bed,
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causing large variations in the bed elevation (see Figure 7b).
The empirical distribution of the simulated N samples are
nearly Gaussian (see Figure 7d), while the bed elevation
sample is also Gaussian (see Figure 7c)with a variance that
grows nearly linearly with increasing time (see Figure 7e).
These results are in good agreement with the analytical
approximations seen in section 3.2.

4. Concluding Remarks

[46] In this paper we have built a reasonably simple
framework for simulating the bed evolution of a river bed
made up of coarse sediment when particles move sporadically
along the bed. In a first-order approximation of lower-regime
flow conditions, we ignore the details of fluid flow and focus
our attention on the sediment-stream interface. The model is
thus a first stab at modeling bed load transport when there is
no significant feedback from water flow.

[47] Our posit is that for bottom shear stresses just in
excess of the threshold of incipient motion (i.e., for transport
stage parameters 7 < 3), sediment flux is driven by the con-
centration in moving particles rather than particle velocity
(which varies weakly with increasing bottom shear stress).
Therefore, to compute the solid discharge or track the bed
evolution, it is fundamental to predicting how the number of
moving particles varies with time. With this objective in
mind, we idealized particle entrainment and deposition as
population exchanges between the stream and the bed inside a
finite control volume. We used an immigration-emigration
birth-death Markov process to theoretically describe the
probabilities that particles are entrained from or deposited on
the bed, while other particles may enter or leave the control
volume. In an earlier paper, Ancey et al. [2008] showed that
under steady state conditions, the probability distribution of
the number of moving particles is a negative binomial dis-
tribution. This distribution has interesting properties such as
its wide variance, which may explain the huge fluctuations
experienced by sediment flux, and thus is an interesting
alternative to more elaborated formalisms (based on frac-
tional diffusion) presented in this special issue. In this paper,
we extend theory by considering the limit of large systems.
When the size of the control volume or the number of moving
particles becomes large (typically N/L > 2 particles/cm), we
show that the concentration in moving particles behaves like
a Gaussian random variable. This approximation is here par-
ticularly helpful in that it transformed the Exner equation (14)
into an Ito stochastic differential equation (14). Some inter-
esting approximations can be directly inferred from this
equation. In particular, under planar bed lower-regime condi-
tions, it can be shown that the bed elevation density distribution
is Gaussian, with a variance growing linearly with time. Both
analytical approximations and numerical simulations support
the idea developed by Jerolmack and Mohrig [2005] according
to which accounting for fluctuations of sediment flux in the
Exner equation is crucial to obtaining bed topographies com-
parable to natural river beds.

[48] There are several related topics that would deserve
further attention. First, as noted in Appendix A, there are
several ways of defining the solid discharge and it is currently
quite unclear whether these definitions somehow overlap and
match. In particular, the statistical properties of the solid
discharge depend a great deal on the definition used. A point
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Figure 7. Numerical results Ax = 0.25 m and Az = 10"* s; the exchange rates are grossly estimated
from our experiments (see Appendix A): A(7p) = 2(7, — 7) (beads/s), u(7p) = 4 (1/s), o(1p) =5 (1/s),
VilT) =5 + M(7p)/3 (beads/s), and v, (7p) = 7,/20 (1/s). The particle radius is @ = 3 mm. (a) Variation
of N along the flume at time ¢ = 50 s. (b) Bed elevation profile at time ¢ = 50 s. (c) Empirical probability
distribution of b as well as the fit by a normal distribution (dashed line) at # = 50 s; the empirical dis-
tribution was built using the same data as those reported in Figure 7b. (d) Empirical probability distribution
of N as well as the fit by a normal distribution (dashed line) at # = 50 s; the empirical distribution was built
using the same data as those reported in Figure 7a. (e) Evolution of the bed elevation variance.

that requires more consideration is the relation between the
solid discharge g, mean particle velocity #,, and particle
concentration N. Here, relying on laboratory observations,
we assumed that much of the g, variance is due to variations
in the particle concentration rather than particle velocity; this
contrasts with what is assumed in most theoretical bed load
transport models. Second, the statistics of bed load transport
is substantially influenced by the scale of observation (i.e.,
the length L of the control volume), with the important con-

sequence that the bed elevation features are also scale-
dependent, as noted by Jerolmack and Mohrig [2005]. For
short spatial scales, the number of moving particles resem-
bles a discrete and random process, while for long scales, the
behavior is more continuous and the system exhibits Gaussian
fluctuations. Note that even on small spatial scales (L = 40a,
with a the particle radius), the particle concentration can
exhibit Gaussian behavior when the particles move in large
numbers in the control volume. Third, in contrast with solute
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transport in porous media (see the discussion in section 2.2),
there is still no clear connection between Eulerian and
Lagrangian descriptions, which would be essential for both
theoretical and practical reasons.

[49] A strength of the theoretical model is its versatility,
which should allow consideration of scenarios much closer
to reality than the one briefly presented in section 3.6 and
extension to similar problems, such as long-term behavior
of rivers [Tipper, 2007] and landforms [Turcotte, 1995].
The model offers a simple and efficient way of describing
complex issues in sediment transport by avoiding some of
the impediments encountered with other approaches. For
instance, detailed experimental investigations have revealed
that instantaneous forces experienced by coarse particles
lying on the bed are not strongly correlated with the mean
velocity field of the flow [Schmeeckle et al., 2007]. This
suggests that a fully deterministic approach to sediment
transport remains a formidable challenge; our hybrid sto-
chastic-physical approach tries to get around this difficulty by
substituting the complex coupling between flow and sedi-
ment with a statistical description. Another great advantage is
that all parameters used in the model are physical quantities
that can be fairly easily measured in the laboratory or in the
field using image processing [Drake et al., 1988; Ancey et al.,
2008]. There are a few limitations of this approach that come
out. First, when there is no coupling between the water flow
and sediment transport (as assumed in the numerical simu-
lations presented in section 3.6), the model predicts bed
roughness growing like 7’2, There is a naturally an upper
bound to this growth imposed by the water flow [Coleman et
al., 2005], in particular by coherent turbulent structures that
are generated by bed forms, interfere with the bed interface,
and affect turbulence production/dissipation processes [Best,
2005]. Second, numerical methods for solving stochastic
problems require considerable amounts of computational
times and are not free of pitfalls. In particular, there is no
available analytical solution against which numerical models
can be checked.

Appendix A: Computation of the Solid Discharge

[s0] There is no unique way to define the solid discharge.
The random and time-evolving nature of solid discharge
raises the problem of a suitable statistical procedure that
enables computation and description of sediment flux. In
spite of valuable efforts in recent years to gain insight into this
issue, it is still unclear whether the different solid-discharge
forms lead to compatible results in terms of statistical prop-
erties. Here we review the main forms that are currently of
common use and comment on their strengths and weaknesses.

[s1] While theoretically the volume solid discharge can
always be defined as the flux of particles through a cross
section S of unit width:

qs :/up-de,
s

with u,, the particle velocity field and k the unit normal to S,
this definition is rarely used in practice as it is more suited to
continuous fields than discrete elements; the dimension of
g, is m* s~'. At least four different forms of the solid dis-
charge have been proposed for practical or theoretical purposes.

(A1)
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They all assume bed load at equilibrium or near equilibrium.
On average, they may provide the same values, but the
statistical properties of ¢, are influenced a great deal.

[52] A variant of equation (A1) is to count the number of
particles that passed through S over a short time increment
Ot. The main problem is that g is a step function, which
takes zero values except at the times of arrival of individual
particles; the resulting signal is then very noisy. In practice,
using hydrophones or piezoelectric sensors makes it possible
to evaluate g, by correlating acoustic signals (or vibrations)
and sediment rate [Bdnziger and Burch, 1991; Carling et al.,
1998; Tunnicliffe et al., 2000; Rickenmann and McArdell,
2007, 2008; Turowski et al., 2008]. Another related form is
to count the number of particles that arrive up to time 7 or to
integrate g, over a short period of time. In the laboratory, this
is done by weighting the material accumulated in a basket
located at the flume outlet while in the field, sediment traps
and bed load samplers are used. These techniques do not
provide g, directly, but the sediment volume per unit width
V() = | q4(¢) dt. Tn principe, it should be possible to dif-
ferentiate V to derive ¢, but in practice, fluctuations in the
V(#) records make this operation delicate, which explains
why sampling time is a key issue when trying to properly
evaluate the solid discharge [Bunte and Abt, 2005; Singh et
al., 2009].

[53] Another approach was taken by Einstein [1950]
according to whom sediment transport does not result from
an equilibrium in the momentum transfers between solid and
liquid phases, but rather from the difference between the
entrainment and deposition rates, £ and D, respectively,
which are functions of the flow conditions and bed geometry
[Einstein, 1950]. This amounts to writing that on a small
interval Ax, the solid discharge variation is 6g, = (E — D) Ax,
and so the solid discharge at bed equilibrium is the implicit
solution to the equation £ = D. Einstein found that the sedi-
ment transport rate is

qs = Egm (AZ)
where ¢ is the mean length traveled by individual particles
during each step. Several field measurement campaigns used
Einstein-like definitions to monitor bed load transport under
incipient motion conditions [Drake et al., 1988; Habersack,
2001; Wilcock, 1997; Pryce and Ashmore, 2003]. Laboratory
experiments as well as theoretical analyses made extensive
use of this definition [Fernandez Luque and van Beek, 1976;
Seminara et al., 2002]. The variance of g(f) records results
from both fluctuations in entrainment rates £ and heap
lengths £.

[s4] The use of tracer stones in gravel bed rivers has given
rise to a third relation. From the observation that particles
can be moving, lying at rest on the bed surface, or buried in
the bed, one can define a virtual velocity, which is the time-
averaged velocity U, (called virtual particle velocity) of a
single particle regardless of its state. Only the upper bed
layer participates in bed load transport and is therefore
termed the active layer; the thickness of this layer is L, and
represents the depth down to which the bed is continuously
reworked by fill and scour. Mass conservation then implies
that

qs = UpLa- (A3)
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The use of this equation has been documented for both
natural rivers [Ferguson et al., 2002; Ferguson and Hoey,
2002; DeVries, 2002; Cudden and Hoey, 2003] and flume
experiments [ Wong et al., 2007]. The statistical properties of
gs(?) depend on the fluctuations of U,, and L,, which are little
known in practice.

[s5s] Taking inspiration from kinetic theories of gas and
two-phase flow rheology [Drew and Passman, 1999;
Lhuillier, 1992], we can define the solid discharge as the
ensemble average of the particle flux

(gs) = /S /R2 P[up |x, f]u, - k|dx|dup, (A4)

where P[u, |x, {] is the probability that a particle crosses the
control surface S at position x and time ¢ with velocity u,,.
Note that u, is a velocity field, which is u,(x, 1) = ug + €2 x
(x — xg) where x lies inside a particle with velocity ug at the
center of mass X and rotational velocity €2 when x lies in
the fluid phase, this field is zero. Figure A1 shows a particle
crossing the control S.

[s6] Under near-equilibrium conditions, ensemble avera-
ges can be swapped with volume averages; equation (A4) can
then be recast in the following form

W= [ ey, (A3)

b

where we retrieve the correspondence between concentration
and probability of finding one particle at a given place (see
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section 2.2). This equation was used notably by Wiberg and
Smith [1989]. Similar expressions were also used by Bridge
and Dominic [1984], Yalin [1963], and Kovacs and Parker
[1994]. The equivalence between ensemble and volume
averages makes sense when the entire flow is homogeneous,
i.e., when the particles are homogeneously distributed in the
streamwise direction. For two-phase flows over mobile beds,
bed forms usually affect the distribution of moving particles,
which makes the assumption of homogeneity dubious. A
number of tricks have been developed to extend ensemble
and volume average techniques to nonuniform particle sus-
pensions; for instance, an infinite uniform suspension can be
approximated by the periodic repetition of a control volume.
Numerically, this amounts to carrying out the simulation in a
finite box with periodic boundary conditions [Marchioro et al.,
2000]. It is convenient to introduce a finite volume average
solid discharge

s Vp
<qS>L:;Z”in :fpzuiv (A6)
i=1 i=1

where v, is the particle volume and integration has been
performed over the control volume (V = L x S) of length L,
which is sufficiently long to contain a number of particles,
but is short enough compared to the scale of variation of g, on
the macroscopic scale. We let i; = u,, - k denote the streamwise
velocity component of particle i. Here we thus define the

particle flow rate 1 = Q,/v,, as

1Y N_
n:ZZui:ZuP,
i=1

where #,, denotes the mean particle velocity.

(A7)

Appendix B: Birth-Death Model

[57] To begin with, we set the scene by developing an
analogy between chemical reactions and particle transport in
streams. This makes it possible to use many of the com-
putational tools developed in chemical kinetics. We then
outline the stochastic basis of the model.

[s8] As depicted in Figure 1, we consider a control volume
V (per unit width) within which we track moving particles and
record deposition/entrainment events. A few solid particles
are entrained by the water stream: they can roll/slide along the
bed or they can leap and stay in saltation in the water stream
for short time periods. We refer to the former motion as the
rolling regime and to the latter as the saltating regime. As we
are especially interested in low bed load transport, we stress
flows with a fairly low fluid velocity: the trajectory of a single
particle then exhibits a succession of rests and moves in a rolling
or saltating regime. Below we do not discriminate between
rolling and saltation and treat both motions as a single
“chemical” species which we call the moving particles (M).
We assume that the number of particles (B) making up the
bed is infinite, i.e., whenever a particle at the bed interface
is set in motion, the shape of the interface is altered, but not
the number of particles available to entrainment at the bed
interface.

[s9] Let us write the exchanges between the bed and the
stream like chemical equations.
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[60] 1. A moving particle M can come to rest (at rate o)
and thus be transformed into a bed particle B

M — B. (B1)

[61] 2. The trajectory of a moving particle M can be dis-
turbed by a bed particle, transforming M into a bed particle
B (at rate o)

M+B—B+B. (B2)
[62] 3. A moving particle can interfere with a bed particle
and entrain it (at rate 1)
M+B—M+M. (B3)
[63] 4. A bed particle can be entrained by the fluid and set
in motion (at rate \)

B— M. (B4)

[64] Pursuing our analogy with chemical systems, we
denote the mean number of moving particles by [M]. B is
like a catalyst: it is needed in the transformation, but its
mean number does not vary with time; that is, [B] is fixed.
The resulting reaction rate equation is

LM = X+ ] — o],

(BS)
with ¢ = 0o + ;. As seen in (B5), we have no means of
differentiating the different deposition processes o and oy,
whereas entrainment includes both individual entrainment
events () and collective effects (u), a point that is essential
to explaining the appearance of wide fluctuations, i.e., non-
Gaussian fluctuations of sediment transport rate [Ancey et al.,
2008]. We can now place this model on a firmer theoretical
ground by describing the statistics of particle exchanges. Note
also that since we are counting particles in a finite and open
control window V, we must take into account that particles
can enter and leave V at any time. Inflow and outflow rates
are denoted by v;, and v,,,;, as shown in Figure 1. An earlier
paper gave further information on the physical mechanisms
[Ancey et al., 2008].

[65s] The model we have developed belongs to the class of
Markov process with discrete states in continuous times
since N(¢) is an integer-valued function of time; more pre-
cisely, we describe sediment transport using an emigration -
immigration birth-death process [see Cox and Miller, 1965,
chapter 5]. We consider the following exchanges over the
time increment A¢, which is assumed to be sufficiently small
that two events cannot occur in (¢, ¢ + Af).

[66] 1. Beads enter the window at rate v;, (immigration).
The probability that the number of particles in V is incre-
mented by one is then

P(n — n+ 1; At) = vy, At + o(A). (B6)
As explained in section 2, the probability that more than
one particle arrive at the same time or within the time
interval [#, ¢ + 0f) is zero in birth-death models, which
means physically that the particle flow is rather dilute and
that sufficiently short time increments can be selected for
this condition to be satisfied.
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[67] 2. Moving particles leave the window independently
at rate v,,, (emigration). Since there are n particles inside V),
the transition probability is

P(n — n—1; At) = nve At + o(At). (B7)

[68] 3. Two processes enable entrainment of particles from
the bed (birth): a particle can be dislodged from the bed by the
water stream at rate A > 0 or a moving particle can destabilize
a stationary one and set it moving. This occurs at rate p for
any moving particle within the observation window. The
corresponding transition probabilities are

P(n— n+ ;A1) = N\ At + o(Af) and (BS)
P(n— n+ 1;Ar) = unAt + o(At),

respectively.

[69] 4. A moving particle can come to rest within the
window, independently at rate o for each moving particle
(death). The transition probability is thus

P(n — n—1;At) = noAt + o(At). (B9)

[70] With these assumptions and the discrete Chapman-
Kolmogorov equation

P(n;t+ At) = ij P(n+i;0)P(n+i— n;Af),  (B10)

we obtain a set of equations [Ancey et al., 2008]
P(n;t+ At) = a(n + 1)AtP(n + 1;1)

+P(n—1;0{B+ (n—1)u}Ar

+ P(n;0){1 — At(B+ na+ np)} + o(At), (B11)
forn=1,2..., and

P(0;t+ At) = aP(1;t)At + P(0;1)(1 — BAL) + o(Ar), (B12)

for n = 0, with the shorthand notation a = o + v,,, and 8 =
A + v, On rearranging the terms and letting At — 0, we
obtain the master equation

QP(n;t) =m+1aPn+1;6)+ (B+ (n—1)p)Pn—1;1)

ot
— (B+n(a+ p)P(n;1) (B13)
8P((9(;, ) = aP(1;t) — BP(0;1). (B14)

[71] At time ¢ = 0, there are N = N, particles within the

control volume, so we set
P(n;0) = &(n — Np), (B15)

where 6 is the Kronecker delta function.
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Notation

Roman symbols

Qo s

S

:-2'02*2: 2T E xRS Y

N 2=

USIEY

Os

drift function, see equation (20).

particle radius.

elevation of the bed surface.

diffusion function, see equation (20).
concentration.

distance traveled by particles.

diffusion coefficient in the Ornstein-Uhlenbeck
process.

deposition rate in m® s,

entrainment rate in m> s .
gravity acceleration g = 9.81 m s %
flow depth.

diffusion coefficient in m* s
dummy variable.

unit vector.

parameter in the Ornstein-Uhlenbeck process.
window length.

heap length.

number of particles within the window.

random number of particles.

sure function, see equation (30).

initial number of particles within the window.
mean number of particles within the window.
instantaneous particle flow rate in beads/s, see
equation (4).

linear density of particles in beads/m.

asymptotic value of the linear density.

Gaussian distribution.

parameter of the negative binomial distribution,
see equation (1).

probability density function.

mean volume particle flow rate in m® s,
volume particle flow rate in m® s .

volume particle flow rate per unit width in m? s".
water flow rate per unit width in m? s
parameter of the negative binomial distribution,
see equation (1).

elevation of the free surface.

spectrum, see equation (41).

number of cells, see section 3.6.

cross section of the control volume, see
Appendix A.

time.

transport stage parameter 7' = 7,/7. — 1.
autocorrelation time, see equation (3).
characteristic time of motion, see equation (3).
relaxation time, see equation (30) and section 3.3.
fluid velocity in m s .

mean particle velocity in m s
particle velocity in m s
particle volume in m®.

control volume.

Wiener process.

flume width.

root mean square of the bed elevation,
see equation (42).
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x streamwise coordinate.
y normal coordinate.

Greek and compound symbols

shorthand notation for o = o + v,,,.
shorthand notation for 8 = X\ + v,,.
Kronecker symbol.
short time span.
time increment.
space increment.
small parameter € = L2
first-order term in the expansion (28).
fractional exponent in equation (12).
gamma function.
entrainment rate in beads/s.
entrainment rate per unit length in beads m ™' s™'.
collective entrainment rate in 1/s.
collective entrainment rate per unit length
inm "' s
vi, inflow rate in beads/s.
outflow rate in 1/s.

outflow rate per unit length in m™' s

w angular frequency.
¢, bed porosity in equation (14).

¥ 1 =1- ¢, in equation (19).

p fluid density in kg m™>.
pp  particle density in kg m .

o deposition rate in 1/s.
T, bottom shear stress in Pa.

T. critical bottom shear stress (threshold for

incipient motion) in Pa.
f# mean bed slope.
¢ random number, see equation (44).
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