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A general continuum theory for particle-size segregation and diffusive remixing in
polydisperse granular avalanches is formulated using mixture theory. Comparisons
are drawn to existing segregation theories for bi-disperse mixtures and the case of a
ternary mixture of large, medium and small particles is investigated. In this case, the
general theory reduces to a system of two coupled parabolic segregation–remixing
equations, which have a single diffusion coefficient and three parameters which control
the segregation rates between each pair of constituents. Considerable insight into
many problems where the effect of diffusive remixing is small is provided by the non-
diffusive case. Here the equations reduce to a system of two first-order conservation
laws, whose wave speeds are real for a very wide class of segregation parameters. In
this regime, the system is guaranteed to be non-strictly hyperbolic for all admissible
concentrations. If the segregation rates do not increase monotonically with the grain-
size ratio, it is possible to enter another region of parameter space, where the equations
may either be hyperbolic or elliptic, depending on the segregation rates and the local
particle concentrations. Even if the solution is initially hyperbolic everywhere, regions
of ellipticity may develop during the evolution of the problem. Such regions in a
time-dependent problem necessarily lead to short wavelength Hadamard instability
and ill-posedness. A linear stability analysis is used to show that the diffusive remixing
terms are sufficient to regularize the theory and prevent unbounded growth rates at
high wave numbers. Numerical solutions for the time-dependent segregation of an
initially almost homogeneously mixed state are performed using a standard Galerkin
finite element method. The diffuse solutions may be linearly stable or unstable,
depending on the initial concentrations. In the linearly unstable region, ‘sawtooth’
concentration stripes form that trap and focus the medium-sized grains. The large and
small particles still percolate through the avalanche and separate out at the surface
and base of the flow due to the no-flux boundary conditions. As these regions grow,
the unstable striped region is annihilated. The theory is used to investigate inverse
distribution grading and reverse coarse-tail grading in multi-component mixtures.
These terms are commonly used by geologists to describe particle-size distributions
in which either the whole grain-size population coarsens upwards, or just the coarsest
clasts are inversely graded and a fine-grained matrix is found everywhere. An exact
solution is constructed for the steady segregation of a ternary mixture as it flows
down an inclined slope from an initially homogeneously mixed inflow. It shows that
for distribution grading, the particles segregate out into three inversely graded sharply
segregated layers sufficiently far downstream, with the largest particles on top, the fines
at the bottom and the medium-sized grains sandwiched in between. The heights of the
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layers are strongly influenced by the downstream velocity profile, with layers becoming
thinner in the faster moving near-surface regions of the avalanche, and thicker in the
slowly moving basal layers, for the same mass flux. Conditions for the existence of
the solution are discussed and a simple and useful upper bound is derived for the
distance at which all the particles completely segregate. When the effects of diffusive
remixing are included, the sharp concentration discontinuities are smoothed out, but
the simple shock solutions capture many features of the evolving size distribution for
typical diffusive remixing rates. The theory is also used to construct a simple model
for reverse coarse-tail grading, in which the fine-grained material does not segregate.
The numerical method is used to calculate diffuse solutions for a ternary mixture and
a sharply segregated shock solution is derived that looks similar to the segregation of
a bi-disperse mixture of large and medium grains. The presence of the fine-grained
material, however, prevents high concentrations of large or medium particles being
achieved and there is a significant lengthening of the segregation distance.

Key words: granular media, multiphase flow, shock waves

1. Introduction
Polydisperse granular materials are extremely common in our kitchens, in our

natural environment, as well as in many industrial, pharmaceutical, chemical and
agricultural processes. Particles rarely have a regular shape or a uniform size
distribution, and it is technologically challenging to produce a very high tolerance
monodisperse mixture of spherical grains, which is the implicit assumption in many
granular theories. As multi-component mixtures are moved, stored, agitated or allowed
to flow, they have a tendency to segregate. This can sometimes be desirable, such
as in mining and stone crushing, and can be exploited to separate the grains into
approximately monodisperse size classes (Wills 1979), but it is often a source of great
frustration that can significantly degrade the quality and the safety of a product
(Johanson 1978). A considerable amount of early work was therefore performed by
engineers who sought to understand the fundamental size segregation mechanisms
and learn how to control their effects (Williams 1968; Bridgwater 1976; Drahun
& Bridgwater 1983). Geologists and sedimentologists were also early pioneers who
were quick to identify inversely (or reverse) graded deposits, in which the grain-
size population coarsens upwards, and use this as an indicator of ancient granular
avalanches on dunes, in dense pyroclastic flows and debris flows (e.g. Bagnold 1954;
Middleton 1970; Middleton & Hampton 1976). As many as 13 different segregation
mechanisms for dissimilar grains have now been identified (McCarthy 2009), with
the primary ones being percolation (e.g. Middleton 1970; Scott & Bridgwater 1975),
trajectory segregation (e.g. Schulze 2008), convection (e.g. Ehrichs et al. 1995) and
fluidization (e.g. Schröter et al. 2006).

In shallow granular avalanches it is widely accepted that void-filling percolation
is the dominant mechanism for size segregation (Savage & Lun 1988; Vallance &
Savage 2000). This is the process in which random fluctuations within the flowing
avalanche constantly open up gaps and the smaller particles are statistically more
likely to drop down into them, under the action of gravity, than the large ones,
because they are more likely to fit into the available space. This void-filling process
has also been termed kinetic sieving (Middleton 1970) and Savage & Lun (1988)
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identified the related process of squeeze expulsion, which describes the forces that the
small particles exert on the large grains, once they are underneath, that lever them
up towards the surface of the flow. This percolation mechanism is extremely efficient
in dry granular flows, with the large ones rising to the surface even when there are
only small size differences between the particles, and even when the large particles
are significantly denser than the small ones (Rosato et al. 1987).

Granular avalanches, and the segregation that they induce, are much more
widespread than one might think. They occur on geophysical scales in the form
of snow avalanches (Savage & Hutter 1989; Jomelli & Bertran 2001; Bartelt &
McArdell 2009), rockfalls (Dade & Huppert 1998; Bertran 2003), dense pyroclastic
flows (Branney & Kokelaar 1992; Calder, Sparks & Gardeweg 2000) and debris
flows (Costa & Williams 1984; Pierson 1986; Iverson 1997; Iverson & Vallance 2001),
as well as on much smaller scales in the form of chute flows (Gray, Wieland &
Hutter 1999; Khakhar, McCarthy & Ottino 1999), during the formation of heaps
(Williams 1968; Gray & Hutter 1997; Makse et al. 1997), in the filling of hoppers
(Baxter et al. 1998) and in rotating drums (Gray & Hutter 1997; Khakhar, McCarthy
& Ottino 1997; Hill et al. 1999; Hill, Gioia & Amaravadi 2004; Zuriguel et al. 2006).
As the particle-size distribution evolves within these flows, there can be interesting
feedbacks on the bulk flow itself (Phillips et al. 2006; Rognon et al. 2007; Gray &
Ancey 2009). For instance, Pouliquen, Delour & Savage (1997) and Pouliquen &
Vallance (1999) showed that if the large particles are rougher, or more resistive, than
the small grains, the flow can develop frontal instabilities, which leads to the formation
of fingers and coarse-grained lateral levees that channelize the flow and significantly
enhance runout distances (Gray & Kokelaar 2010a , b). This is particularly important
for hazardous geophysical flows, such as snow avalanches and debris flows (Jomelli
& Bertran 2001; Iverson & Vallance 2001), where extended runouts can impact on
populated areas.

Avalanches often occur as part of complex granular flows that also have regions
of slowly moving or static grains, such as in the rotating drum experiment shown
in figure 1. Here the vast majority of the grains are in slow solid-body rotation,
but there is a thin steadily flowing avalanche along the inclined free surface. The
avalanche has a maximum depth of 7 mm and continuously erodes material on the
upper half of the slope and deposits it along the lower half (e.g. Gray 2001). All
the segregation occurs within the avalanche. As the drum is rotated clockwise, the
initially homogeneous mixture of three particle-size classes is rotated towards the free
surface and is entrained into the avalanche. Within it, the large- and medium-sized
grains rise upwards due to size segregation until they reach a level where they are
surrounded by high concentrations of their own particle type and the segregation
stops. Small particles that are entrained along the upper reaches of the avalanche are
already in a high concentration basal region of small particles and do not rise upwards,
nor do they percolate back into the slowly rotating material beneath because there
is insufficient dilatation. Very rapidly, three inversely graded layers form, with high
concentrations of large green particles (500–750 µm) at the top, high concentrations
of small pink particles (75–150 µm) at the bottom and a layer of white medium-sized
grains (400–500 µm) sandwiched in between, as shown in the close-up photograph
in figure 2. This is an example of what geologists call inverse distribution grading,
where all the particle sizes segregate in the flow and coarsen upwards (Middleton &
Hampton 1976; Cas & Wright 1987; Hiscott 2003).

In the lower reaches of the drum, where the material is rotating away from the
steady avalanche, the small grains are stripped off the bottom of the flow first and are
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Figure 1. Segregation of a three-phase mixture in a 24.5 cm diameter drum with a 3 mm gap
rotating at 0.68 revolutions per minute. The green particles are 500–750 µm, the white particles
are 400–500 µm and the pink particles are 75–150 µm in size. Initially, they are approximately
homogeneously mixed, which can be seen in the undisturbed solid rotating material on the
upper left-hand side of the drum. As the drum rotates clockwise, this region is entrained
into a thin continuously flowing avalanche close to the free surface and is rapidly segregated
as it flows downslope. Even over this short distance, inversely graded layers form in the
avalanche, with the largest green particles on top, the smallest pink ones at the bottom and
the white middle-sized grains sandwiched in between, as shown in figure 2. As the particles are
continuously deposited into the solid rotating body of grains underneath, the largest particles,
at the top of the avalanche, are the last to get deposited and therefore end up adjacent to the
drum wall. While the smallest grains at the base of the avalanche are the first to get deposited
closest to the centre of the drum, the medium grains are deposited in a band in between the
two. This gives rise to a radial segregation pattern in the region of particles that have already
passed through the avalanche, which contrasts strongly with the homogeneous region that is
yet to be entrained.

progressively deposited until there are none left. The medium-sized grains are next
to deposit in a medial band and finally the large pink grains deposit last close to
the drum wall. This creates what is called a radial segregation pattern in the slowly
rotating deposit. Figure 1 shows the segregation after the drum has rotated through
an angle of 130◦. In the top left of the deposit, the initially homogeneous mixture
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Figure 2. Close-up photograph of the segregation within the surface avalanche in the thin
rotating drum experiment shown in figure 1. The segregation is strong enough that the
avalanche rapidly develops an inversely graded particle-size distribution, with the large green
particles (500–750 µm) on top, the small pink particles (75–150 µm) at the bottom and the
medium-sized white grains (400–500 µm) sandwiched in between. In the upper reaches of the
avalanche the initial mixture of grains is rotated towards the free surface and entrained,
while in the lower reaches the grains are deposited. Since the small particles are concentrated
at the bottom of the avalanche they are deposited first.

of grains that is being rotated towards the free surface is still visible, and in the
remaining region the partially formed radial segregation pattern can be seen. The
contrast between the radial size distribution and the initial distribution is striking
and indicates how strong the percolation process can be even over relatively short
distances.

Geologists and sedimentologists encounter very complicated mixtures of particles
of varying sizes and densities that are deposited from both granular and granular fluid
flows. They have become expert at interpreting such deposits, as well as the flows and
the depositional processes that gave rise to them. In terms of geological nomenclature,
the radial pattern formed in the deposit is a result of progressive aggradation of the
grains from the flowing avalanche (Branney & Kokelaar 1992). Rather interestingly,
the large-scale deposited pattern is not inversely graded, even though it is formed
from a flow that is strongly inversely graded. At lower rotation rates it is possible
to deposit the grains en masse by the upward propagation of a granular shock wave
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(Gray & Kokelaar 2010a , b), which leaves stripes of inversely graded material in the
deposit. At high and low drum fill levels, this can lead to Catherine wheel (Gray &
Hutter 1997) and palm leaf (Gray & Chugunov 2006) patterns. At 50 % fill, petals
can form (Hill et al. 2004; Zuriguel et al. 2006) by segregation-mobility feedback
effects within the avalanche. The final deposits are therefore far from representative
of the segregation within the flowing avalanche and strongly reflect the mode and
timing of the deposition.

Newey et al. (2004) have performed experiments in a long rotating drum and shown
that radial segregation developed with all the mixtures that they tried, which had
between three and six particle sizes. With a three-constituent mixture, axial bands also
developed after about 5 min, and the smallest particles formed bands inside the bands
of medium and large grains. The ternary mixture also had a much richer dynamics
than the equivalent bi-disperse case (Hill & Kakalios 1995). Curiously, they found that
axial bands did not form when five or more particle sizes were present, which suggests
that strongly polydisperse mixtures mitigate some of the effects of segregation. This
is potentially significant, especially if continuously distributed granular materials can
be engineered to significantly reduce or eliminate segregation in practical industrial
processes without having to include cohesive or other effects (e.g. Jha & Puri 2010;
McCarthy 2009).

As well as distribution grading, there is also another form of inverse grading
that geologists call reverse coarse-tail grading (see e.g. Cas & Wright 1987; Branney
& Kokelaar 1992; Palladino & Valentine 1995; Hiscott 2003). This describes the
situation in which a certain proportion of the coarse clasts, the coarse tail, are
inversely graded and the remaining fine-grained material is poorly sorted and found
throughout the deposit. This is a common feature of pyroclastic flow deposits (e.g
Branney & Kokelaar 1992; Calder et al. 2000), where the large low-density pumice
clasts are commonly found on the free surface of the deposit. There is still considerable
debate in the literature about the dominant mechanism for segregation in this case.
One hypothesis is that the motion of the finer-grained material is driven by fluidizing
air or water, which occupies the interstices, whereas the larger grains segregate by
percolation. Alternatively, laboratory experiments (Shinbrot & Muzzio 1998; Cagnoli
& Manga 2005) suggest that in a strongly agitated flow, the larger grains might
also be driven by buoyancy effects in a matrix of finer-grained material. This may
lead to either reverse or normal coarse-tail grading, depending on the density of
the large grains. However, it is important to add the caveat that deposits observed
in the field may be more a function of complex waxing and waning phases of the
avalanche and the associated depositional regimes (Branney & Kokelaar 1992) than
being representative of the size distribution within the parent flow.

Although there have been several recent studies of multi-component segregation
in both wet and dry granular materials, in the geological (Cagnoli & Manga 2005),
hydraulics (Zanuttigh & Di Paolo 2006; Zanuttigh & Ghilardi 2010) and engineering
(Jha & Puri 2010) communities, the field currently lacks a basic theoretical framework
to guide it further. This paper seeks to address this issue, by deriving a multi-
component size segregation theory for polydisperse granular mixtures. Despite the
apparent complexity of the problem, the theory is capable of describing the evolution
of the size distribution towards an ‘inversely graded’ steady state, in which the
whole grain-size population coarsens upwards, as well as the development of ‘reverse
coarse-tail grading’ where just the coarse tail of the population is inversely graded
and the fine-grained matrix is found everywhere. The resulting systems of parabolic
segregation–remixing equations can easily be solved by existing programme libraries,
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Figure 3. A schematic diagram of the particle-size segregation in an avalanche with three
particle sizes. At the origin O the particles enter in a homogeneously mixed state, but as
they avalanche down slope, the large grains gradually rise to the surface, the small ones
percolate down to the base and the medium-sized grains are sandwiched in between. This
creates three inversely graded layers sufficiently far downstream. The downstream coordinate
x is inclined at an angle ζ to the horizontal, the y coordinate is into the page and z is the
upward-pointing normal. The avalanche free surface lies at z = s, the base is at z = b and
the avalanche thickness h = s − b. The arrows on the left-hand side indicate the downstream
velocity profile u(z) through the avalanche.

which makes the theory readily accessible to the wide range of disparate communities
where size segregation is important.

This paper is structured as follows. The multi-component theory is formulated in
§ 2 and compared with existing bi-disperse theories in § 3. In §§ 4 and 5 the ternary
mixture equations are investigated. It is shown that in the absence of diffusion, the
system can be ill-posed if the segregation rate does not rise monotonically with
the grain-size ratio. The addition of diffusive remixing is sufficient to regularize the
model, but instabilities may still develop (§ 6) and can lead to ‘sawtooth’ segregation
stripes (§ 7). In §§ 8–10 exact and numerical solutions are constructed for both inverse
distribution grading and reverse coarse-tail grading, which will be of considerable
interest to geologists and sedimentologists. A short matlab code to solve the ternary
segregation–remixing equations using pdepe is included in the online supplementary
material available at journals.cambridge.org/flm.

2. Derivation from multi-component mixture theory
2.1. Mixture framework

Consider a multi-component mixture of particles of differing sizes that flows down
a chute inclined at an angle ζ to the horizontal, as shown in figure 3. A coordinate
system Oxyz is defined with the x-axis pointing down the chute, the y-axis pointing
across the chute and the z-axis being the upward-pointing normal. All the particles,
regardless of the size class that they lie in, are assumed to have the same intrinsic
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density

ρν∗ = ρ, ∀ν, (2.1)

where the superscript ν denotes a class of particles of a given size and the superscript
∗ is used to indicate an intrinsic variable, which is defined per unit volume of a pure
phase of that constituent.

Following Gray & Thornton (2005) the interstitial pore space is incorporated into
each phase, which implicitly assumes that the solids volume fraction is uniform and
constant, and that the density of any pore fluid is negligible (Thornton, Gray & Hogg
2006). In real granular materials, the solids volume fraction can be non-uniform and
may evolve in time. In particular, when there is a mixture of grains of varying sizes,
the smaller ones can fill the gaps between the larger ones and enhance the packing
density. Golick & Daniels (2009) were able to use this effect to infer the progress of
segregation in their bi-disperse annular shear cell experiments. They found that the
position of their top plate changed by about 2.5 % of the flow height, as the large and
small grains readjusted from an initially segregated unstably stratified configuration,
to a denser mixed state and then to a stably segregated state again. It is known that
static Apollonian packings can approach 100 % solids volume fraction (Herrmann,
Mantica & Bessis 1990), but almost nothing is known about changes in packing
density in polydisperse sheared systems. Assuming that the solids volume fraction is
constant and uniform is therefore a reasonable first approximation, which might be
improved upon in future.

Mixture theory defines overlapping partial densities, ρν , partial velocities, uν , and
partial pressures, pν , for each constituent ν (Truesdell 1984; Morland 1992). Equally
important are the volume fractions, which describe how the space is shared between
the constituents. The concentration φν is defined as the volume fraction of constituent
ν per unit volume of mixture and lies in the range

0 � φν � 1. (2.2)

The sum over all constituents is necessarily equal to unity∑
∀ν

φν = 1. (2.3)

In standard mixture theory, the partial and intrinsic velocity fields are identical, but
the other fields such as the density, Cauchy stresses and pressures are usually related
by a linear volume fraction scaling

ρν = φνρν∗, Tν = φνTν∗, pν = φνpν∗, uν = uν∗. (2.4)

The bulk density ρ and the bulk pressure p are defined as the sum of the partial
densities and partial pressures:

ρ =
∑

∀ν

ρν, p =
∑

∀ν

pν. (2.5)

Each constituent satisfies individual mass

∂ρν

∂t
+ ∇ · (ρνuν) = 0 (2.6)

and momentum

∂

∂t
(ρνuν) + ∇ · (ρνuν ⊗ uν) = ∇ · Tν + ρν g + βν (2.7)
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balance laws, where ⊗ is the dyadic product and g is the gravitational acceleration
vector. The interaction force, βν , is the force exerted on phase ν by all the other
constituents. These interaction forces sum to zero over all constituents∑

∀ν

βν = 0. (2.8)

Following Gray, Tai & Noelle (2003), the stress tensor Tν = −pν1+σ ν is broken down
into a spherical pressure −pν1 and a deviatoric stress σ ν , where 1 is the unit tensor.
It is assumed that in the normal direction the pressure dominates, and the deviatoric
stresses and the normal acceleration terms can be neglected. This implies that the
normal components of the momentum balances (2.7) sum to

∂p

∂z
= −ρg cos ζ, (2.9)

over all constituents, where g is the constant of gravitational acceleration. As the
bulk density is constant and the avalanche free surface, z = s, is traction-free, (2.9)
can be integrated through the avalanche depth, subject to the condition that p(s) = 0,
to show that the pressure is lithostatic,

p = ρg(s − z) cos ζ. (2.10)

This ensures compatibility with most existing avalanche models (e.g Grigorian, Eglit
& Iakimov 1967; Savage & Hutter 1989; Iverson 1997; Gray et al. 1999; Pouliquen
1999a; Iverson & Denlinger 2001; Gray et al. 2003; Pitman et al. 2003; Gruber &
Bartelt 2007; Mangeney et al. 2007).

2.2. Derivation of the percolation velocity

It is surprisingly easy to generalize Gray & Thornton’s (2005) derivation to multiple
constituents of different sized particles. In their two-constituent formulation, they
assumed that as small particles percolated downwards under gravity, they supported
less of the overburden pressure and consequently the large grains needed to support
more of the load. This led them to introduce a relation between the partial and
intrinsic pressures that differed from standard mixture theory (2.4). Their partial
pressure relation generalizes naturally to multiple constituents and is given by

pν = f νp, (2.11)

where the factor f ν determines the proportion of the lithostatic pressure carried by
each constituent ν. Summing the partial pressure (2.11) over all constituents and using
(2.5) implies that the f ν factors must sum to unity,∑

∀ν

f ν = 1. (2.12)

We shall adopt the same form for the interaction drag law βν that was proposed by
Gray & Chugunov (2006), which consists of three terms

βν = p∇f ν − ρνc(uν − u) − ρd∇φν, (2.13)

where c is the coefficient of interparticle drag, d is the coefficient of diffusive remixing
and u is the barycentric or bulk velocity defined by

ρu =
∑

∀ν

ρνuν. (2.14)
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The first term in (2.13) combines with the pressure gradient in (2.7) to ensure that
the percolation process is driven by the intrinsic rather than the partial pressure
gradient, the second provides a linear resistance to relative motions and the third is a
concentration gradient-dependent force that was used to model diffusive remixing of
the particles. The interaction drag βν has been constructed so that it automatically
satisfies the summation condition (2.8) and it assumes that the drag and diffusive
remixing coefficients are the same for all phases.

The bulk velocity u has components u, v and w in the downslope, cross-slope and
normal directions, respectively. The percolation velocities due to segregation, relative
to the bulk flow, in the down slope and cross-slope directions are typically much
smaller than the magnitude of the bulk velocity itself. The constituent velocities, uν

and vν , in these directions are therefore assumed to be equal to the bulk velocity
components,

uν = u, vν = v. (2.15)

The velocity components in the normal direction can be calculated by substituting
(2.4), (2.9), (2.11) and (2.13) into the normal component of the momentum balance
(2.7). Assuming that the normal accelerations are negligible implies that

φνwν = φνw + (f ν − φν)(g/c) cos ζ − (d/c)
∂φν

∂z
, (2.16)

which is precisely the same as the equation obtained by Gray & Chugunov (2006).
For the segregation process, the crucial part of this equation is the difference in the
factors f ν and φν . In the absence of diffusion (d = 0), if f ν >φν then the particles will
rise, if f ν <φν the particles will fall and if f ν = φν there will be no motion relative to
the bulk. Gray & Thornton (2005) motivated the form of f ν on the basis that when
small particles were percolating downwards, the large grains must support more of
the overburden pressure and consequently f ν > φν . There are two constraints on this.
Firstly, when any class of particles are in a pure phase they must carry all of the load

f ν = 1, when φν = 1, or equivalently, when φµ = 0, ∀µ �= ν, (2.17)

and secondly, when there are no particles of that phase, they cannot carry any of the
load

f ν = 0, when φν = 0. (2.18)

A significant generalization of the factors f ν is required for the multi-component
theory. Motivated by the fact that if any two constituents are found in isolation, the
form of f ν must reduce to that proposed by Gray & Thornton (2005), an additive
decomposition of the form

f ν = φν +
∑
∀µ

Bνµφνφµ (2.19)

is assumed, where the non-dimensional parameter Bνµ determines the magnitude
of the pressure perturbation for constituent ν due to the presence of constituent
µ. Although more general functional forms are possible, this is the simplest that
automatically satisfies the constraints (2.17) and (2.18). If, in addition, there are no
pressure perturbations exerted by any constituent on itself

B(νν) = 0, ∀ν, (2.20)
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and the pressure perturbation on constituent ν due to constituent µ is equal and
opposite to the pressure perturbation on constituent µ by constituent ν,

Bνµ = −Bµν, ∀ν �= µ, (2.21)

then the summation condition (2.12) is automatically satisfied as well. The matrix B
formed by the coefficients Bνµ has the interesting property that it is antisymmetric,
i.e. B= −BT, where the superscript T denotes the transpose.

An equation for the normal velocity of constituent ν can be obtained by substituting
(2.19) into (2.16) and dividing through by φν to give

wν = w +
∑
∀µ

qνµφµ − D
∂

∂z
(lnφν), (2.22)

where qνµ is the maximum segregation velocity of phase ν relative to phase µ, and D

is the diffusivity. These are defined as

qνµ = Bνµ(g/c) cos ζ, D = d/c, (2.23)

respectively. In the absence of diffusion, the segregation stops whenever the particles
are in a pure phase, since φν = 1 necessarily implies that φµ =0 for µ �= ν in (2.22).
The normal velocity, wν , is then equal to the bulk velocity, w.

While mixture theory sets up a framework within which to model particle-size
segregation, it does not yield any further information about the functional dependence
of the maximum segregation velocities qνµ, or the diffusivity D, on the particle-size
ratio, the shear rate, the dilatation or any other variables. These must be determined
by experiment or from particle dynamics simulations. There has, however, been some
recent progress in determining these parameters for bi-disperse mixtures. Golick &
Daniels (2009) and May et al. (2010) have measured the time scale for segregation
ts in an annular shear cell, with different particle-size ratio mixtures. Instead of a
linear dependence, as one might anticipate, they found that there was a minimum
ts when the large grains were twice the size of the small particles. This is a very
interesting and important finding, which suggests that the maximum segregation
velocity qls for a bi-disperse mixture should have a local maximum at a grain-size
ratio of two as illustrated schematically in figure 4(a). At present, it is unclear
whether the segregation velocity will begin to increase again at some point after the
local maximum (as illustrated) or whether it continues to decrease with increasing
particle-size ratio.

One of the key advantages of the linear decomposition (2.19) is that the bi-
disperse maximum segregation velocity curve, which is sketched in figure 4(a–d ) for
different grain-size ratios, can be used to determine the segregation rates in multi-
component mixtures. This is a potentially very significant and practical simplification.
For example, for a three-component mixture composed of large, medium and small
particles denoted by the constituent letters ν = l, m, s, respectively, a monotonically
increasing curve would imply that the segregation velocity of the large and small
particles, qls , was always larger than the segregation velocities, qlm and qms , of the
large and medium grains, and the medium and small grains, as shown in figure 4(c).
However, if qνµ has a local maximum at a grain-size ratio of two, the particle-size
ratios can be picked so that qms � qls � qlm as in figure 4(a), or so that qlm � qls � qms

as in figure 4(b), or even so that both qlm and qms are larger than qls as in figure 4(d ).
It shall be shown in this paper that this final condition can lead to the linear instability
of an initially homogeneously mixed three-component mixture.
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(a) Ω1

(c) Ω3 (d) Ω4

(b) Ω2
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rν /rµ rν /rµ

qls

qms

qlm

qls

qlm, qms

Figure 4. A sketch of the maximum segregation velocity qνµ as a function of the grain-size
ratio rν/rµ, where the grain size rν is assumed to be larger than rµ. The curve is assumed to
have a maximum at a grain-size ratio of two. The resulting maximum segregation velocities
are illustrated for a three-component mixture of large, medium and small particles denoted
by the constituent letters ν = l, m, s, and various grain-size ratio combinations. There are
four basic states (a–d ) if there is a local maximum in qνµ. In (a) rm/rs = 2 and rl/rs = 5/2,
which necessarily implies rl/rm =5/4 and qms � qls � qlm. In (b) rl/rm =2 and rl/rs = 5/2, so
rm/rs = 5/4 and qlm � qls � qms . In (c), rl/rs = 2 and rm/rs = 3/2, and hence rl/rm = 4/3, which
implies that qls is larger than the other segregation rates. However, in (d ) rm/rs = 2 and
rl/rm = 2, so rl/rs =4, and qls is less than the other segregation rates. The regimes are denoted
Ω1–Ω4.

At present, a curve similar to that shown in figure 4(a) has not been measured, but
there is progress towards this goal. Wiederseiner et al. (2011) have performed a series
of steady two-dimensional chute flow experiments in a narrow channel inclined at 29◦

with mixtures of 2 mm and 1 mm particles. The experiments used an unstably stratified
inflow condition (Gray & Chugunov 2006) that allowed the relative discharge rates to
be varied. The experiments were photographed 2000 times at the sidewall to create a
time-averaged picture, which could then be mapped to the particle concentration. By
performing this at a series of stations, they were able to build up a composite picture
of the evolving concentration distribution along the chute. Wiederseiner et al. (2011)
were able to determine values for the maximum segregation rate and the diffusivity,
by comparison with numerical solutions of the theory of Gray & Chugunov (2006).
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In order to get good agreement with the inversely graded steady uniform state far
downstream, they found that the maximum segregation velocity qls and diffusivity
D could be taken to be independent of depth, but it was very important to use the
exponential downstream velocity profile u(z) that they measured in their experiments.
For a range of inflow conditions, Wiederseiner et al. (2011) found that the maximum
segregation velocity, qls , was in the range of 1.23–1.99 mm s−1 and the diffusivity,
D, was between 2.08 and 2.79 mm2 s−1. This contrasts with previous studies (e.g.
Scott & Bridgwater 1975; Golick & Daniels 2009; May et al. 2010), which show
that the maximum segregation rate qls can be dependent on shear rate and have
pressure dependence. This apparent disagreement may simply be an indication that
once sufficient dilatation has occurred for the grains to percolate freely, the shear rate
and pressure dependence diminishes.

2.3. Non-dimensionalization and the segregation–remixing equation

Following Gray & Thornton (2005) it is convenient to introduce non-dimensional
variables using scalings that reflect the shallowness of the avalanche

x = Lx̂, z = Hẑ, (u, v) = U (û, v̂), (w, wν) =
HU

L
(ŵ, ŵν), t =

L

U
t̂, (2.24)

where L is a typical downstream length scale, H � L is a typical thickness and U is a
typical downstream velocity magnitude. The horizontal length scale L and the velocity
magnitude U have been left as general as possible to encompass the scalings used
on both smooth and rough beds (Savage & Hutter 1989; Pouliquen 1999a , b; Gray
& Ancey 2009). Substituting the scalings into (2.22) implies that the non-dimensional
normal velocity of constituent ν is

wν = w +
∑
∀µ

Sνµφµ − Dr

∂

∂z
(lnφν), (2.25)

where the hats have been dropped for simplicity. The non-dimensional segregation
rates Sνµ and the non-dimensional diffusion coefficient are

Sνµ =
L

HU
qνµ, Dr =

DL

H 2U
. (2.26)

The matrix S formed by the segregation coefficients Sνµ is also antisymmetric, since
it is proportional to B through (2.23) and (2.26). This antisymmetry property means
that it is necessary to specify a total number of

Nj = 1
2
j (j − 1) (2.27)

segregation coefficients for a mixture of j components. An evolution equation for
the concentration of each phase ν is obtained by substituting the normal velocity
(2.25) into the non-dimensionalized mass balance equation (2.6) with the downstream
and cross-stream velocity given by (2.15). The non-dimensional segregation–remixing
equation for phase ν is therefore

∂φν

∂t
+ ∇ · (φνu) +

∂

∂z

(∑
∀µ

Sνµφνφµ

)
=

∂

∂z

(
Dr

∂φν

∂z

)
, (2.28)

where the first term on the left-hand side is the rate of change of the concentration
φν with time, the second describes the transport due to the bulk flow field, the third
is due to segregation and the term on the right-hand side accounts for diffusive
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remixing of the particles. The equation has been carefully constructed to ensure that
the summation conditions (2.3) and (2.12) are automatically satisfied. It follows that
when it is summed over all constituents, it yields the incompressibility condition

∇ · u = 0, (2.29)

which, together with the lithostatic pressure distribution through the avalanche depth
given by (2.10), is the key assumption underlying most granular avalanche and
geophysical mass flow models (e.g Grigorian et al. 1967; Savage & Hutter 1989;
Iverson 1997; Gray et al. 1999; Pouliquen 1999a , b; Iverson & Denlinger 2001; Gray
et al. 2003; Pitman et al. 2003; Gruber & Bartelt 2007; Mangeney et al. 2007). The
multi-component segregation theory, derived in this paper, is therefore compatible
with these depth-averaged theories. The bulk velocity field u, required by the multi-
component theory, can be reconstructed from the depth-averaged velocity field u,
by using the incompressibility condition (2.29) and assumed downstream and cross-
stream velocity profiles with depth, as in Gray & Ancey (2009). Segregation-mobility
feedback effects on u can be included by coupling the basal friction to the evolving
concentration distribution (Pouliquen & Vallance 1999; Gray & Kokelaar 2010a , b).
Alternatively, recent advances in our understanding of the constitutive law in dense
granular flows (Jop, Forterre & Pouliquen 2006) also opens up the possibility of
coupling the rheology to the evolving concentration distribution directly (Rognon
et al. 2007). These are vital steps towards the full understanding of segregation-
mobility feedback effects, which play a crucial role in fingering instabilities on inclined
planes (Pouliquen et al. 1997), levee formation in geophysical flows (Jomelli & Bertran
2001; Iverson & Vallance 2001; Iverson 2003; Iverson et al. 2010) and stratification
patterns in heaps (Williams 1968; Gray & Hutter 1997; Makse et al. 1997; Gray &
Ancey 2009), as well as banding instabilities (Newey et al. 2004) and petal formation
(Hill et al. 2004; Zuriguel et al. 2006) in rotating drums.

The inclusion of segregation-mobility feedback is beyond the scope of this paper,
which assumes that the bulk velocity field u is prescribed. In the latter case, when
there is no feedback, (2.28) forms a system of j -coupled parabolic equations for the
evolving concentration of each of the species ν. When the diffusion coefficient Dr

is equal to zero, the equations form a first-order system of conservation laws, and
discontinuous solutions, or shocks, may develop. It is therefore important to make a
clear distinction between the two systems. In this paper, the diffusive case is referred
to as the segregation–remixing equations and the non-diffusive case as the segregation
equations.

2.4. Boundary and jump conditions

If there is any form of discontinuity, either in the field variables or the material
constants, jump conditions must be applied. These can be derived from an integral
form of (2.28) using a limiting argument across a surface of discontinuity, propagating
with speed vn in the direction of the unit normal n to the surface (see e.g. Chadwick
1976). The most general form of the jump condition for constituent ν is

�φν(u · n − vn)� +

�∑
∀µ

Sνµφνφµk · n

�
=

�
Dr

∂φν

∂z
k · n

�
, (2.30)

where k is the unit vector normal to the chute and the jump bracket �f �= f+ − f− is
the difference of f evaluated on the forward and rearward sides of the shock, which
are denoted by the subscripts ‘+’ and ‘−’ respectively. In the absence of diffusion, the
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right-hand side vanishes and the jump conditions reduce to a set of shock conditions
that can be used to calculate the motion and jumps across evolving concentration
discontinuities which may develop in the first-order system of conservation laws.
Equation (2.30) is also useful in formulating the boundary conditions for the diffusive
problem at physical boundaries. As an example, consider the free surface of the
avalanche z = s(x, y, t), which satisfies the kinematic boundary condition

∂s

∂t
+ u

∂s

∂x
+ v

∂s

∂y
− w = 0, on z = s(x, y, t), (2.31)

when there is no erosion or deposition (see e.g. Savage & Hutter 1989; Gray 2001;
Gray et al. 2003). This equation is usually derived by defining a function F = z −
s(x, y, t) that is identically zero on the surface. The kinematic boundary condition
simply advects the surface with the bulk flow field, i.e. ∂F/∂t + u · ∇F =0, which on
substitution of F yields (2.31). In order to apply the jump condition (2.30) at the
free surface, the unit normal n and the normal velocity vn must be defined. The unit
normal is simply n = ∇F/|∇F |. The normal velocity vn can also be used to track the
free surface, by advecting it in the direction of the normal, i.e. ∂F/∂t +(vnn) · ∇F = 0.
It is then easy to show that vn = u · n and hence that the first jump-bracketed term
in (2.30) is identically zero. Since there are no small particles outside the avalanche,
both φν

+ and ∂φν
+/∂z are equal to zero, and the jump condition (2.30) implies that

there is no flux Fν of phase ν across the boundary

Fν = −
∑
∀µ

Sνµφνφµ + Dr

∂φν

∂z
= 0, on z = s(x, y, t), (2.32)

where φν
− = φν . Exactly analogous boundary conditions for each of the phases hold

at the base of the avalanche z = b(x, y).
When there is no diffusion the boundary conditions (2.32) are considerably

simplified. In most instances they are satisfied by setting either

φν = 0 or φν = 1, on z = s, b. (2.33)

The second condition works because it implies that φµ = 0 for all µ �= ν and hence
that the sum

∑
∀µ Sνµφµ in (2.32) is zero. Note that the sum is equal to minus the

velocity of phase ν relative to the bulk, −(wν − w), by (2.25), so it is possible for it to
be zero for concentrations in the range 0 <φµ < 1. This usually implies that there is
a net flux of both larger and smaller particles through the boundary, which violates
the conditions placed on the other phases. It follows that in most instances the only
realizable boundary condition is (2.33). The only time in which this is not the case is
when there is a constituent that does not segregate with any of the other particles.
An example in which this occurs is investigated in greater detail in § 10.

3. Segregation and remixing in two-component mixtures
It is useful to relate the multi-component theory to the familiar case of a two-

component mixture of large and small particles. The two phases are referred to by the
constituent letters ν = l for large particles and ν = s for small particles. The formula
(2.27) implies that for two constituents (j = 2) just one segregation coefficient must
be specified, i.e. either Sls or Ssl = −Sls . In the absence of diffusion, (2.25) implies that
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the normal components of the large and small velocities are given by

wl = w + Slsφ
s, (3.1)

ws = w − Slsφ
l, (3.2)

respectively. It follows that if Sls is chosen to be positive, the large particles will rise
relative to the bulk material until there are no more small particles, while the small
particles will percolate downwards until there are no more large particles. This paper
will adopt the convention of prescribing the positive segregation rates, which in this
case is Sls . The multi-component theory yields two segregation–remixing equations
(2.28) for the large and small particles

∂φl

∂t
+ ∇ · (φlu) +

∂

∂z
(Slsφ

lφs) =
∂

∂z

(
Dr

∂φl

∂z

)
, (3.3)

∂φs

∂t
+ ∇ · (φsu) − ∂

∂z
(Slsφ

sφl) =
∂

∂z

(
Dr

∂φs

∂z

)
. (3.4)

The summation condition (2.3) implies that the particle concentrations are related by

φl + φs = 1, (3.5)

and one of the variables in either (3.3) or (3.4) can be eliminated. Gray & Thornton
(2005) and Gray & Chugunov (2006) both decided to substitute for the large
particle concentration, which implies that the segregation–remixing equation for the
concentration of the small particles becomes

∂φs

∂t
+ ∇ · (φsu) − ∂

∂z
(Slsφ

s(1 − φs)) =
∂

∂z

(
Dr

∂φs

∂z

)
. (3.6)

Dolgunin & Ukolov (1995) were the first to write down this equation, based on the
simple insight that the segregation flux −Slsφ

s(1 − φs) must shut off when there are
either all small particles or all large ones. The equation is closely related to Burgers’
equation, which Gray & Chugunov (2006) exploited to construct exact solutions
for time-dependent segregation, by using the Cole–Hopf transformation (Hopf 1950;
Cole 1951) to linearize both the segregation–remixing equation (3.6) and the boundary
conditions (2.32). Khakhar et al. (1997) used the same equation to investigate particle
density-driven segregation and found good agreement with experiments in rotating
drums and with particle dynamics simulations.

Although the diffusive theory is able to model experiments and particle dynamics
simulations more accurately, considerable insights have been gained from the non-
diffusive version of the theory, which is much more amenable to analysis. This situation
is reminiscent of shock waves in hydraulic and supersonic flows, in which sharp
gradients in flow depth or density are replaced by shock waves (i.e. discontinuous
solutions), which greatly simplifies the mathematical treatment. In the absence of
diffusion, (3.6) can be written as

∂φs

∂t
+

∂

∂x
(φsu) +

∂

∂y
(φsv) +

∂

∂z
(φsw) − ∂

∂z
(Slsφ

s(1 − φs)) = 0, (3.7)

which is a hyperbolic scalar conservation law. A steady-state two-dimensional version
of this equation was first derived by Savage & Lun (1988) using information entropy
theory, and Savage & Lun (1988) and Vallance & Savage (2000) showed that the
solutions were consistent with their experiments on an inclined chute. The segregation
equation (3.7) is closely related to the inviscid Burgers’ equation, as well as models
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of traffic flow (Whitham 1974) and the theory of sedimentation (Kynch 1952; Rhee,
Aris & Amundson 1986). Using the incompressibility condition (2.29), (3.7) can be
written in the quasi-linear form

∂φs

∂t
+ u

∂φs

∂x
+ v

∂φs

∂y
+ w

∂φs

∂z
+ Sls(2φs − 1)

∂φs

∂z
= 0, (3.8)

which can be solved by the method of characteristics. A range of two-dimensional
steady-state (Gray & Thornton 2005; Thornton et al. 2006) and time-dependent (Gray,
Shearer & Thornton 2006; Shearer, Gray & Thornton 2008; Shearer & Dafermos
2010) exact solutions and proofs have been constructed. A highlight of the theory is
its ability to predict the formation of breaking size segregation waves, which form
whenever small particles are sheared over large ones (Thornton & Gray 2008; Gray
& Ancey 2009; Shearer & Giffen 2010). The waves allow large and small particles to
be recirculated in the flow, and are particularly important in the geophysical context,
where they are fundamental to the formation of bouldery flow fronts (Gray & Ancey
2009; Gray & Kokelaar 2010a , b), lateral levees and digitate lobate terminations
(Pierson 1986; Pouliquen et al. 1997; Pouliquen & Vallance 1999; Iverson & Vallance
2001; Félix & Thomas 2004; Goujon, Dalloz-Dubrujeaud & Thomas 2007; Cagnoli
& Romano 2010; Iverson et al. 2010). A brief review of some of the recent results for
both the bi-disperse diffusive and hyperbolic models can be found in Gray (2010).

4. Segregation and remixing in three-component mixtures
Consider a three-constituent mixture of large, medium and small particles, which

will be denoted by the constituent letters ν = l, m, s. The formula (2.27) implies that
for j = 3 three segregation coefficients need to be specified. The convention that Sνµ

are positive can be satisfied by ensuring that constituent ν is larger than constituent
µ. In this mixture the three independent segregation coefficients are Slm, Sls and Sms .
The negative segregation coefficients Sml = −Slm, Ssl = −Sls and Ssm = −Sms by the
antisymmetric property of S. It follows from (2.25) that in the absence of diffusion,
the normal velocity of each constituent is

wl = w + Slmφm + Slsφ
s, (4.1)

wm = w − Slmφl + Smsφ
s, (4.2)

ws = w − Slsφ
l − Smsφ

m. (4.3)

These equations imply that, relative to the bulk flow, the large particles rise until
there are no more small- or medium-sized particles, the small particles percolate
downwards until there are no more large- or medium-sized particles, and the medium-
sized particles may rise or fall depending on the local particle concentrations, and the
segregation rates, until there are no more large or small particles surrounding them.

The multi-component segregation theory derived in § 2 now yields three segregation–
remixing equations (2.28) for the concentrations of large, medium and small particles

∂φl

∂t
+ ∇ · (φlu) +

∂

∂z
(Slmφlφm + Slsφ

lφs) =
∂

∂z

(
Dr

∂φl

∂z

)
, (4.4)

∂φm

∂t
+ ∇ · (φmu) +

∂

∂z
(−Slmφmφl + Smsφ

mφs) =
∂

∂z

(
Dr

∂φm

∂z

)
, (4.5)

∂φs

∂t
+ ∇ · (φsu) +

∂

∂z
(−Slsφ

sφl − Smsφ
sφm) =

∂

∂z

(
Dr

∂φs

∂z

)
, (4.6)
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respectively. The summation condition (2.3) implies that

φl + φm + φs = 1, (4.7)

which allows one of the three equations (4.4)–(4.6) to be eliminated. For instance,
substituting for φm in (4.4) and (4.6) yields two coupled equations for the large and
small particle concentrations,

∂φl

∂t
+ ∇ · (φlu) +

∂

∂z
(Slmφl(1 − φl − φs) + Slsφ

lφs) =
∂

∂z

(
Dr

∂φl

∂z

)
, (4.8)

∂φs

∂t
+ ∇ · (φsu) +

∂

∂z
(−Slsφ

sφl − Smsφ
s(1 − φl − φs)) =

∂

∂z

(
Dr

∂φs

∂z

)
. (4.9)

These are both very similar in form to the two-component segregation–remixing
equation (3.6). In fact, if Sls = Sms the small particle concentration equation (4.9)
degenerates to the two-component case. Standard numerical methods will be used to
solve the coupled system of parabolic segregation–remixing equations in §§ 7, 9 and
10, but first some of the properties of the non-diffusive system will be examined.

5. Loss of hyperbolicity of the segregation equations
It is important to understand whether the system (4.4)–(4.6) is hyperbolic in the

absence of diffusive terms. Using the incompressibility condition (2.29) the transport
terms can be simplified just as in the case of the two-component mixture in § 3.
Defining the material derivative

D

Dt
=

∂

∂t
+ u · ∇, (5.1)

the reduced system can be written in vector form as

Dφ

Dt
+ A

∂φ

∂z
= 0, (5.2)

where the vector φ =(φl, φm, φs)T, the vector 0 = (0, 0, 0)T and the matrix of
coefficients

A =

⎛
⎜⎝

Slmφm + Slsφ
s Slmφl Slsφ

l

−Slmφm −Slmφl + Smsφ
s Smsφ

m

−Slsφ
s −Smsφ

s −Slsφ
l − Smsφ

m

⎞
⎟⎠. (5.3)

This is equivalent to switching from an Eulerian to a Lagrangian frame. The
characteristic wave speeds of the system (5.2) are calculated by finding the eigenvalues
of the matrix A (e.g. Lax 1957; Courant & Hilbert 1962; Joseph & Saut 1990). The
characteristic determinant of the system is

det(A − λI) = 0, (5.4)

where I is the unit matrix. The trivial eigenvalue λ=0 is easily spotted and results
from the fact that the segregation fluxes sum to zero over all constituents. The rows
of the matrix A are therefore linearly dependent. The trivial root is not important and
in fact disappears in the system (4.8)–(4.9) in which φm is eliminated. After dividing
the trivial root out and substituting for φm from (4.7), the characteristic determinant
yields a quadratic equation for the wave speed λ,

λ2 + γ1λ + γ2 = 0, (5.5)
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where the coefficients

γ1 = (2Slm − Sms + Sls)φ
l + (Slm − 2Sms − Sls)φ

s + Sms − Slm, (5.6)

γ2 = (2SlmSls − 2SlmSms)(φ
l)2 − 4SlmSmsφ

lφs + (2SlsSms − 2SlmSms)(φ
s)2

+ (3SlmSms − SlmSls)φ
l + (3SlmSms − SlsSms)φ

s − SlmSms. (5.7)

The two characteristic wave speeds in the Lagrangian frame are therefore

λ1,2 =
−γ1 ±

√
γ 2

1 − 4γ2

2
. (5.8)

The type of the system is determined by the discriminant ∆ = γ 2
1 − 4γ2. If the

discriminant is strictly positive, ∆ > 0, there are always two distinct real wave speeds
λ1 and λ2 and the system is hyperbolic (e.g. Lax 1957; Courant & Hilbert 1962). If the
discriminant is greater than or equal to zero, ∆ � 0, there can be a repeated root λ,
and the equations are non-strictly hyperbolic. If, however, ∆ < 0, all the eigenvalues
are complex and the system is elliptic (Joseph & Saut 1990). Such changes of type are
not uncommon, occurring for instance in steady transonic flows. Joseph & Saut (1990)
defined such problems to be of mixed type. However, elliptic initial-value problems
are ill-posed, since the amplitude of small oscillations grows at an unbounded rate
as their wavelength tends to zero. Such unbounded short-wavelength instabilities are
known as Hadamard instabilities (e.g. Joseph & Saut 1990; Gray 1999; Goddard
2003) and are usually a sign that some important regularizing physics is missing in
the model.

With some algebra it is possible to substitute the coefficients (5.6) and (5.7) into
the discriminant ∆ and rearrange it into the reasonably compact form:

∆ =
[
(Sls − 2Slm − Sms)φ

l + (Sls − Slm − 2Sms)φ
s + Slm + Sms

]2

− 4(Sls − Sms)(Sls − Slm)φlφs. (5.9)

The discriminant is positive provided the segregation parameters lie in the domain

Ω1: Sms � Sls � Slm, (5.10)

or in the domain
Ω2: Slm � Sls � Sms, (5.11)

which were illustrated schematically in figure 4, using maximum segregation velocities
qνµ instead of Sνµ. It follows that the system of equations is non-strictly hyperbolic,
for all mixture concentrations, provided the segregation parameters lie in Ω1 ∪ Ω2.
Note, that in the degenerate case, Sls = Sms , it is easy to use (5.9) to substitute back
into (5.8) for the wave speed λ2 = Sls(2φs − 1), which is the same as that of the
two-component model.

There are other regions of parameter space that are also non-strictly hyperbolic.
Figure 5 shows a contour plot of the discriminant for an example in which both Slm

and Sms are less than Sls . In the unshaded region the discriminant is positive, but in
the shaded region it can be negative. Fortunately, the shaded region also corresponds
to combinations of concentrations that are not admissible. This is because for a given
value of the small particle concentration φs ∈ [0, 1], the large particle concentration
must lie in the range 0 � φl � 1−φs , so all the valid concentrations must lie below the
line φl = 1 − φs . For the particular choice of segregation parameters used in figure 5,
the discriminant ∆ is greater than or equal to zero and the equations are therefore
non-strictly hyperbolic. In order to extend this idea, it is useful to be able to move
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Figure 5. A contour plot of the discriminant ∆ as a function of the large and small particle
concentrations, φl and φs , for segregation parameters Sls = 1, Slm = 3/10 and Sms = 1/10. For a
given value of φs, the large particle concentration must lie in the range of φl ∈ [0, 1 − φs]. The
grey-shaded region indicates the concentration combinations that are not admissible. Moving
in parameter space along lines parallel to φl = 1 − φs , the discriminant has a local minimum
along the dot-dashed line. The global minimum equals zero and is attained at the black dot,
where the zero contour touches the φl = 1 − φs line.

through the concentration space without entering the grey-shaded region. This can
be done by defining a new variable δ ∈ [0, 1] that parameterizes a series of lines that
lie parallel to φl =1 − φs , by letting

φl = δ − φs. (5.12)

Substituting (5.12) into (5.9) yields an alternative quadratic representation of the
discriminant

∆ = γ3(φ
s)2 + γ4φ

s + γ5, (5.13)

where some of the coefficients are now dependent on δ:

γ3 = (Slm + Sms − 2Sls)
2, (5.14)

γ4 = 2(SlsSms + 3SlmSls − SlmSms − 2S2
ls − 2S2

lm + S2
ms)δ + 2S2

lm − 2S2
ms, (5.15)

γ5 = ((Sms + 2Slm − Sls)δ − Slm − Sms)
2. (5.16)

Restricting ourselves to regions of parameter space outside Ω1 ∪ Ω2, the coefficient
γ3 is strictly positive and the quadratic (5.13) has a local minimum for each value of
the parameter δ. The small particle concentration and the discriminant, at the local
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minimum, can therefore be defined as functions of δ by

φs
min(δ) = − γ4

2γ3

and ∆min(δ) = γ5 − γ 2
4

4γ3

, (5.17)

respectively. In concentration space the local minima lie on the curve (φs
min(δ), δ −

φs
min(δ)), which corresponds to the dot-dashed line in figure 5. Substituting for the

coefficients γ3, γ4 and γ5 the discriminant at the local minimum becomes

∆min(δ) = γ6(Sls − Sms)(Sls − Slm) [(Slm + Sms)(1 − δ) + (2Sls − Slm − Sms)δ] , (5.18)

where the constant

γ6 =
4(1 − δ)(Slm + Sms)

(Slm + Sms − 2Sls)2
(5.19)

is positive. Rather interestingly, (5.18) and (5.19) imply that the discriminant equals
zero when δ is equal to unity. There will therefore always be a point on the line
φl = 1 − φs where the discriminant is zero. This point is indicated by the black dot in
figure 5. In the domain

Ω3: Sls > Slm and Sls > Sms, (5.20)

(5.18) shows that ∆min is positive for all admissible concentrations. The discriminant
∆ � ∆min is therefore positive and the system is non-strictly hyperbolic in Ω3 for all
admissible concentrations.

This leaves the region

Ω4: Sls < Slm and Sls < Sms, (5.21)

where ∆min can be positive or negative. It follows that the discriminant ∆ � ∆min

can be positive or negative and hence that the system is either hyperbolic or elliptic,
depending on the local concentrations and the segregation parameters. An example of
this, for segregation parameters Sls = 1/8, Slm = 1 and Sms =3/8, is shown in figure 6.
The region of negative discriminant, and hence where the system is elliptic, lies
within the zero contour, which is elliptical in shape and tangent to the φl and φs

axes as well as the line φl = 1 − φs . Outside the region the equations are non-strictly
hyperbolic. Even if the problem is initially hyperbolic everywhere, the system may
change its type as the concentrations evolve, to create regions of ellipticity. Since
the regions of ellipticity occur in a time-dependent problem, this necessarily leads
to short-wavelength Hadamard instabilities and ill-posedness (e.g. Joseph & Saut
1990; Gray 1999; Goddard 2003). In order to guarantee non-strict hyperbolicity,
for all admissible concentrations, it is necessary to restrict the segregation model to
parameter ranges that lie in the union of Ω1, Ω2 and Ω3. Solutions for particular
cases may also exist in region Ω4, but they cannot be guaranteed.

6. Regularization by diffusive remixing
Golick & Daniels (2009) used their annular shear cell to measure the time scale ts

for complete segregation to occur, as a function of grain-size ratio, and found that
there was a minimum at a grain-size ratio of 2. This suggests that the graph of the
maximum segregation velocity, qνµ, as a function of grain-size ratio rν/rµ, should
have a maximum at rν/rµ = 2, as illustrated in figure 4(a). If this is the case then, in
a ternary mixture, it is possible to choose the grain-size ratios so that the largest and
smallest grains segregate more slowly from each other, than each of them do with
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Figure 6. A contour plot of the discriminant ∆ as a function of the large and small particle
concentrations, φl and φs , for segregation parameters Sls = 1/8, Slm = 1 and Sms = 3/8. The
discriminant is negative in the elliptical region inside the zero contour. The grey-shaded region
indicates the concentration combinations that are not admissible and the markers indicate the
initial conditions for which simulations have been performed.

the medium-sized grains. The segregation parameters can therefore lie in domain Ω4,
defined in (5.21) and illustrated in figure 4(d ), where the non-diffusive segregation
theory can break down. In this section, it is shown that the effects of diffusive remixing
are sufficient to completely suppress the short-wavelength Hadamard instability in Ω4

and hence regularize the model, making it applicable over all domains of parameter
space. Consider the simplified problem in which the grains are initially homogeneously
distributed throughout the avalanche,

φν(x, z, 0) = φν
0 . (6.1)

For this initial condition no downstream or cross-stream gradients in concentration
develop. It follows that the large and small particle segregation–remixing
equations (4.8)–(4.9) reduce to

∂φl

∂t
=

∂

∂z

(
−Slmφl(1 − φl − φs) − Slsφ

lφs + Dr

∂φl

∂z

)
, (6.2)

∂φs

∂t
=

∂

∂z

(
Slsφ

sφl + Smsφ
s(1 − φl − φs) + Dr

∂φs

∂z

)
. (6.3)
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Away from the boundaries, the constant initial concentration (6.1) is a solution of
the system. Linearizing (6.2)–(6.3) about the initial state by substituting

φν = φν
0 + φν

∗ , (6.4)

where φν
∗ is a small perturbation, implies that

∂φl
∗

∂t
= a11

∂φl
∗

∂z
+ a12

∂φs
∗

∂z
+ Dr

∂2φl
∗

∂z2
, (6.5)

∂φs
∗

∂t
= a21

∂φl
∗

∂z
+ a22

∂φs
∗

∂z
+ Dr

∂2φs
∗

∂z2
, (6.6)

where the matrix of coefficients

a =

(
−Slm + 2Slmφl

0 + Slmφs
0 − Slsφ

s
0 (Slm − Sls)φ

l
0

(Sls − Sms)φ
s
0 Slsφ

l
0 + Sms − Smsφ

l
0 − 2Smsφ

s
0

)
. (6.7)

The system of equations (6.5)–(6.6) admits normal-mode solutions of the form

φl
∗ = C1 exp(ikz + ωt), φs

∗ = C2 exp(ikz + ωt), (6.8)

where k is the wavenumber, ω is the growth rate and C1 and C2 are constant
coefficients. Substituting the normal modes into (6.5)–(6.6) yields a matrix eigenvalue
problem (

−w + ika11 − Drk
2 ika12

ika21 −w + ika22 − Drk
2

) (
C1

C2

)
=

(
0

0

)
, (6.9)

which has non-trivial solutions when the determinant of the matrix is zero. Solving
the resulting quadratic equation implies that the growth rates are

ω1,2 =

(
−Drk +

i

2
a11 +

i

2
a22 ± i

2

√
(a22 − a11)2 + 4a21a12

)
k. (6.10)

The term inside the square root is independent of diffusion. Moreover, by comparing
the coefficients of the matrix a and the definition of the characteristic discriminant
in (5.9) it is easy to see that the term inside the square root is the discriminant ∆

evaluated at the initial concentration, i.e. ∆0 = (a22 − a11)
2 + 4a21a12. It follows that

(6.10) can also be written as

ω1,2 =

(
−Drk +

i

2
a11 +

i

2
a22 ± i

2

√
∆0

)
k. (6.11)

The initial condition is stable if the real part of the growth rate is negative, it is
neutrally stable when the real part is zero, and when the real part is positive the
initial state is linearly unstable. The largest real root of (6.11) is simply

Re(ω1) =

⎧⎨
⎩

−Drk
2, ∆0 � 0,

−Drk
2 +

k

2

√
−∆0, ∆0 < 0.

(6.12)

It follows immediately from our analysis of the segregation model that, provided the
diffusion Dr is non-zero, the initial condition is stable for segregation parameters in
the domains Ω1, Ω2 and Ω3, since the discriminant is positive and the growth rate is
negative. When Dr is equal to zero the system is neutrally stable. In domain Ω4 the
situation is more complex as the discriminant can either be positive, negative or zero,
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Figure 7. Two plots of the real part of the growth rate ω1 as a function of the wavenumber
k for four different diffusion rates Dr = 0, 10−3, 3 × 10−3 and 10−2. Both sets of plots are for
Sls = 1/8, Slm = 1 and Sms =3/8. Plot (a) is for concentration φl

0 = 0.2 and φs
0 = 0.4 and plot

(b) is for φl
0 = 0.32 and φs

0 = 0.45, which correspond to the states represented by the two
markers in figure 6.

so the initial state can be linearly unstable, stable or neutrally stable, depending on
whether it lies inside, outside or on the elliptical zero contour line illustrated in figure 6.
The largest growth rate is plotted for two states in figure 7. The first state, shown in
figure 7(a), lies just outside the elliptical region and is linearly stable for all non-zero
diffusion coefficients, while the second state lies close to the centre of the elliptical
region, and has a region of unstable wavenumbers for all values of the diffusion
coefficient, as shown in figure 7(b). This region of instability becomes progressively
smaller, as does the magnitude of the growth, as the diffusion coefficient Dr increases.
Most importantly, Re(ω1) −→ −Drk

2 as k −→ ∞ provided Dr > 0, which implies
that large wavenumber perturbations are damped out. When Dr = 0, the growth rate
Re(ω1) −→ k

√
−∆0/2, which is unbounded as k −→ ∞, and proves that the non-

diffusive model is Hadamard unstable and ill-posed in this region (Joseph & Saut
1990; Goddard 2003). In conclusion, diffusive remixing regularizes the segregation
equations in domain Ω4 and ensures that the segregation–remixing equations can be
applied in all regions of parameter space.

7. Linearly stable and unstable time-dependent solutions
For certain initial concentrations within Ω4, the regularized system of segregation–

remixing equations (6.2)–(6.3) is linearly unstable over a finite range of wavenumbers,
and it is of interest to see how this linear instability manifests itself in practical
situations. The parabolic time-dependent equations (6.2)–(6.3) are therefore solved
numerically using a standard Galerkin finite element method (e.g Skeel & Berzins
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1990), which is implemented in the pdepe routine contained in Matlab. An example
Matlab script for the slightly more general two-dimensional steady-state problem,
discussed in § 9, can be found in the supplementary material. The time-dependent
simulations in this paper were performed with a 400 point grid in z, using a relative
error tolerance of 10−6.

The avalanche is assumed to be of unit depth and the boundary conditions at
the surface and base of the flow are given by the no-flux condition (2.32). A small
sinusoidal perturbation of amplitude 0.01 is given to the initially homogeneous
concentration distribution

φl(z, 0) = φl
0 + 0.01 sin(2πnz), 0 � z � 1, (7.1)

φs(z, 0) = φs
0 − 0.01 sin(2πnz), 0 � z � 1, (7.2)

where n=10. The system is then integrated forward in time to compute the
concentrations of large and small particles φl(x, z) and φs(x, z), and the concentration
of medium-sized particles is then calculated from the summation condition (4.7).

Figure 8 shows the results for the linearly stable initial condition shown in
figure 7(a), where the homogeneous concentrations are φl

0 = 0.2 and φs
0 = 0.4. The

diffusive remixing coefficient Dr = 10−3 is very small, so the solution, which is
represented by a grey scale, has very sharp concentration gradients between regions
of almost constant concentration. The initial sinusoidal disturbance is damped out,
as predicted by the linear-stability analysis. As time increases, the grains sort
themselves out into inversely graded layers with the large particles on top, the
small particles at the bottom and the medium-sized grains in between, as shown in
figure 8(a–c) as well as the concentration profiles at t = 6 along the bottom. This one-
dimensional time-dependent problem is closely related to two-dimensional steady-
state segregation problems in the absence of velocity shear, with time t replacing
the downslope coordinate x. Such segregation problems, both with and without
shear, will be solved exactly in § 8 and are easily adapted to the spatially uniform
time-dependent case here. They show that the solution consists of six regions of
constant concentration that are separated by eight linear concentration shocks. The
discontinuities are illustrated by the straight solid lines in figure 8, which coincide with
high concentration gradients in the diffuse case. The low diffusion limit is therefore
well approximated by the hyperbolic segregation equations provided that the solution
is linearly stable throughout its evolution.

In the linearly unstable region of parameter space, corresponding to the
homogeneous initial condition φl

0 = 0.32 and φs
0 = 0.45, shown in figure 7(b), the

situation is rather different. This time the initial perturbations rapidly grow to form a
series of stripes as shown in figure 9. The stripes strongly reflect the wavelength of the
initial disturbance. This wavelength was chosen to be close to the maximum growth
rate for a diffusion coefficient Dr = 10−3. This was done in order to see evidence of
the instability before it is annihilated by the regions of large and small grains, that
collect at the surface and base of avalanche, due to the no-flux boundary conditions.
The concentration profiles through the depth of the avalanche at t = 1.5 show that
the stripes have an interlocking comb-like, or sawtooth-like, structure. The strongest
striping is in the concentration of the medium-sized grains. For these initial conditions,
the phase speed −(a11 +a22)/2 of the linear instability in § 6 is almost identically zero.
The stripes are therefore nearly parallel to the downslope direction. For other initial
conditions, within the linearly unstable elliptic region shown in figure 6, the phase
speed is considerably larger and the stripes can drift either upwards or downwards
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Figure 8. In (a–c) are shaded contour plots in (t, z) of the time-dependent evolution of the
concentration of large, medium and small particles. The segregation parameters Sls = 1/8,
Slm = 1 and Sms = 3/8, the diffusive remixing coefficient Dr = 10−3, and there is a small
sinusoidal perturbation to inflow concentrations φl

0 = 0.2, φm
0 = 0.4 and φs

0 = 0.4. The plots
use 64 grey levels and a scale with 11 levels is shown in (a). The solid lines show the position
of concentration shocks, which have been adapted to the time-dependent case from the exact
solution derived in § 8. In (d ), the final concentration profile at t = 6 is plotted for the large,
medium and small particles.

as time progresses. Within the stripes, an individual large particle will still move
upwards, but it will not rise at a constant rate, as in the linearly stable homogeneous
case, but will speed up and slow down as it goes. Similarly, small particles do not
percolate downwards at a constant rate. In this example, medium-sized particles
have a tendency to percolate downwards, but as the stripes become stronger they



Multi-component particle-size segregation in granular avalanches 561

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 60

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

t

Large

Medium

Small

t = 1.5 t = 1.5 t = 1.5

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

φl φm φ s

0% 20% 40% 60% 80% 100 %

Large Medium Small

z

z

z

z

(a)

(b)

(c)

(d)

Figure 9. In (a–c) are shaded contour plots in (t, z) of the time-dependent evolution of the
concentration of large, medium and small particles. The segregation parameters Sls = 1/8,
Slm = 1 and Sms = 3/8, the diffusive remixing coefficient Dr = 10−3, and there is a small
sinusoidal perturbation to inflow concentrations φl

0 = 0.32, φm
0 = 0.23 and φs

0 = 0.45. The plots
use 64 grey levels and a scale with 11 levels is shown in (a). In (d ), the concentration profile
at t = 1.5 is plotted for the large, medium and small particles.

get locked in and are concentrated still further. The triangular space–time region
where the stripes occur has only a finite duration, and eventually the medium and
small particles separate out into an almost bi-disperse phase, which is linearly stable,
and the strong perturbations are then dissipated by segregation and diffusion. For
sufficiently long time, the final state also approaches an inversely graded state with
high concentrations of large at the top, high concentrations of fines at the bottom
and the medium-sized grains in between.
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8. Shock solutions for distribution grading in a ternary mixture
The time-dependent numerical solution in figure 8 shows that when the diffusive

remixing coefficient Dr is relatively small, the segregation from a homogeneous initial
state may reasonably be described by regions of constant concentration that are
separated by jumps or shocks. In this section, the exact solution in the absence of
diffusion is derived for a closely related steady two-dimensional problem.

8.1. Problem formulation

Savage & Lun (1988) and Gray & Thornton (2005) investigated the steady spatially
evolving segregation of a bi-disperse mixture as it flowed down an inclined chute
from a homogenously mixed inflow condition. The avalanche was assumed to be of
constant depth and the downslope velocity profile with depth u(z) was prescribed. The
solutions have a relatively simple structure with regions of constant concentration
separated by discontinuities. It is of considerable interest to investigate an analogous
problem for a ternary mixture of large, medium and small particles. By virtue of the
scalings (2.24), the avalanche is assumed, without loss of generality, to be of unit
depth, h = 1, and has unit depth-averaged velocity, ū = 1. Assuming that the inflow
lies at x =0, the bulk velocity components are of the form

u(z) � 0, v = 0, w = 0 in 0 � z � 1, x � 0, (8.1)

where the downslope velocity component has a monotonic profile with increasing z.
The summation condition (2.3) implies that

φl + φm + φs = 1, (8.2)

which can be used to eliminate the concentration of medium particles in the large and
small particle segregation equations (2.28). In the flow field (8.1) and in the absence
of diffusion, these reduce to

u
∂φl

∂x
+

∂

∂z
(Slmφl(1 − φl − φs) + Slsφ

lφs) = 0, (8.3)

u
∂φs

∂x
+

∂

∂z
(−Slsφ

sφl − Smsφ
s(1 − φl − φs)) = 0, (8.4)

and the normal velocity (2.25) of each of the constituents becomes

wl = Slmφm + Slsφ
s, (8.5)

wm = −Slmφl + Smsφ
s, (8.6)

ws = −Slsφ
l − Smsφ

m. (8.7)

Note that the steady two-dimensional homogeneous inflow problem considered here
is closely related to the time-dependent spatially uniform problem discussed in § 7.
Indeed, in the absence of diffusion they are the same if (x, z) is mapped to (t, z) and
the downstream velocity is assumed to be plug-like, i.e. u =1.

At the inflow, the concentration of large and small particles is homogeneous through
the depth of the avalanche

φl(0, z) = φl
0, φs(0, z) = φs

0, 0 � z � 1, (8.8)

where φl
0 and φs

0 are constants. This necessarily implies that the concentration of
medium-sized particles at the inflow is

φm(0, z) = 1 − φl
0 − φs

0 = φm
0 , 0 � z � 1, (8.9)
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Figure 10. A sketch of the structure of the shock solution in (x,ψ)-mapped coordinates for
distribution grading. The inflow is on the left where the large, medium and small particles
enter in a homogeneously mixed state. Sufficiently far downstream the particles separate
into inversely graded layers with the largest at the top, the smallest at the bottom and the
medium-sized grains sandwiched in between. The solution consists of a series of shocks that
separate regions R0–R5 of constant concentration. The subscripts i =0–5 are used to identify
the concentration φν

i of particles ν in each region. The points A, B and C mark key points
where the shocks intersect.

by (8.2). Sufficiently far downstream, the particles segregate out into inversely graded
layers, with the largest grains at the top, the smallest particles at the bottom and the
medium-sized ones in a layer between the two. This suggests that a solution exists
with the shock structure shown in figure 10. The shocks are shown with straight line
segments and in the regions R0–R5 that they enclose, the concentrations of large,
medium and small particles are constant. The subscripts i = 0–5 are used to identify
the constant concentration φν

i of particles of phase ν in each of the regions R0–R5

and the letters A, B and C identify key shock intersections.
The position of the shocks and the magnitude of the discontinuities are controlled

by the jump conditions (2.30). In the case where there is no diffusion, Dr = 0, and
the shock, which lies at height z = zshock(x), does not propagate (vn =0), the jump
conditions for the large and small particles reduce to

�φl�u d

dx
(zshock) = �Slmφlφm + Slsφ

lφs�, (8.10)

�φs�u d

dx
(zshock) = �−Slsφ

sφl − Smsφ
sφm�, (8.11)

respectively. The jump condition for the medium-sized particles is a linear combination
of (8.10) and (8.11) and does not provide any additional information. The problem
is considerably simplified by working in depth-averaged velocity, or streamfunction,
coordinates (Gray & Thornton 2005; Gray & Ancey 2009) defined by the integral

ψ =

∫ zshock

0

u(z′) dz′. (8.12)

The base of the avalanche therefore lies at ψ = 0 and, since ū= 1, the free surface lies
at ψ = 1 in the mapped coordinate system. Taking the derivative of ψ with respect to
x implies dψ/dx = u dzshock/dx by Leibniz’s integral theorem (see § 3.3.7, Abramowitz
& Stegun 1970). It follows that in (x, ψ) coordinates, the jump conditions (8.10)–(8.11)
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become

�φl�dψ

dx
= �Slmφlφm + Slsφ

lφs�, (8.13)

�φs�dψ

dx
= �−Slsφ

sφl − Smsφ
sφm�, (8.14)

which are independent of the velocity profile u(z). Solutions can therefore be
constructed in (x, ψ) coordinates for arbitrary downstream velocity fields and then
mapped back to physical (x, z) space for specific cases.

8.2. Surface and basal double-shock structure

As the homogeneous mixture is swept downstream, the particles segregate relative to
one another, with the large ones moving up, the small ones moving down and the
medium-sized ones moving up or down depending on the local concentration. Within
the bulk of the avalanche, the mixture stays at its initial inflow concentrations φl

0, φm
0

and φs
0. However, at the base, the boundary conditions (2.33) imply that there is no

further supply of large- or medium-sized particles. Assuming that the large particles
rise fastest in the homogeneous mixture, the medium and small particles will separate
out across a concentration shock. This is shown by the line segment 0A in figure 10.
Since there are no large particles on the forward side of the shock (φl

1 = 0), the large
particle jump condition (8.13) reduces to the ordinary differential equation

dψ

dx
= Slmφm

0 + Slsφ
s
0 = wl

0, (8.15)

where (8.5) implies that the right-hand side is equal to the normal velocity of the
large particles wl

0 in the homogeneous mixture. This identification is important and
will be used later. The concentrations φm

0 and φs
0 are known constants, and, provided

that the segregation rates are constant, this can be integrated subject to the boundary
condition that the shock starts at the base of the inflow, ψ(0) = 0, to give the line

ψ0A = (Slmφm
0 + Slsφ

s
0)x. (8.16)

The subscript 0A is used to identify it. The small particle jump condition (8.14)
reduces to the ordinary differential equation

(φs
1 − φs

0)
dψ

dx
= −Sls(φ

s
1φ

l
1 − φs

0φ
l
0) − Sms(φ

s
1φ

m
1 − φs

0φ
m
0 ), (8.17)

where φm
1 = 1 − φs

1 since φl
1 = 0 as shown in figure 10. In this equation, the gradient

dψ/dx is known and can be substituted from (8.15) to obtain a quadratic equation
for the small particle concentration φs

1 in the region R1,

Sms(φ
s
1)

2 − (Slmφm
0 + Slsφ

s
0 + Sms)φ

s
1 + (Slmφm

0 + Sls(1 − φm
0 ) + Smsφ

m
0 )φs

0 = 0. (8.18)

The shock conditions therefore determine both the position of the shock 0A and the
concentrations of the small- and medium-sized particles, φs

1 and φm
1 .

Within R1 the medium-sized particles rise up and the small particles percolate
downwards, except near the basal boundary 0B where there is no further supply
of medium-sized particles, and the small ones separate out across a concentration
shock. Since there are no large particles on either side of 0B, the large particle shock
condition (8.13) is trivially satisfied. While the small particle jump condition (8.14)
implies

dψ

dx
= Smsφ

s
1 = wm

1 , (8.19)
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where the right-hand side is equal to the normal velocity of the medium-sized particles
wm

1 in the bi-disperse region R1. This can be integrated subject to the condition that
ψ(0) = 0, to show that the shock 0B is also a straight line

ψ0B = Smsφ
s
1x. (8.20)

The two shocks 0A and 0B , shown in figure 10, that emanate from the base of the
inflow have therefore been determined. This structure will be termed a double shock.

An exactly analogous procedure can be used to determine the double-shock
structure at the top of the avalanche. The boundary conditions (2.33) imply that
at the surface there is no further supply of medium and small particles. Assuming
that the small particles percolate downwards fastest in the homogeneous mixture,
the large and the medium particles will separate out across the shock 1A. The small
particle jump (8.14) gives an equation for the shock position

dψ

dx
= −Slsφ

l
0 − Smsφ

m
0 = ws

0, (8.21)

where the right-hand side is just the normal velocity ws
0 of the small particles in the

homogeneous region. This can be integrated subject to the boundary condition that
ψ(0) = 1, to show that the shock 1A is the straight line

ψ1A = 1 − (Slsφ
l
0 + Smsφ

m
0 )x. (8.22)

Substituting the gradient (8.21) into the shock condition for the large particles

(φl
2 − φl

0)
dψ

dx
= Slm(φl

2φ
m
2 − φl

0φ
m
0 ) − Slsφ

l
0φ

s
0, (8.23)

and, using the fact that φm
2 = 1 − φl

2, yields a quadratic equation

Slm(φl
2)

2 − (Slsφ
l
0 + Smsφ

m
0 + Slm)φl

2 + (Slmφm
0 + Sls(1 − φm

0 ) + Smsφ
m
0 )φl

0 = 0 (8.24)

for the concentration of large particles, φl
2. The concentration of medium-sized

particles φm
2 = 1 − φl

2 since φs
2 = 0. In the bi-disperse region R2, the large particles

rise upwards and the medium particles percolate downwards, except near the upper
boundary, where there are no more medium particles and the large grains separate
out across the concentration shock 1C. This time the small particle jump condition
(8.14) is trivially satisfied, while the large particle jump condition (8.13) implies that

dψ

dx
= −Slmφl

2 = wm
2 , (8.25)

where the right-hand side is just the normal velocity of the medium-sized particles
wm

2 in the bi-disperse region R2. This can be integrated subject to the condition that
ψ(0) = 1, to show that the shock 1C is also a straight line,

ψ1C = 1 − Slmφl
2x, (8.26)

completing the double-shock structure near the surface.

8.3. Distance for the large and the small particles to separate

The shocks OA and 1A merge at point A at a downstream distance

xA =
1

Slmφm
0 + Sls(1 − φm

0 ) + Smsφ
m
0

, (8.27)

which is independent of φl
0 and φs

0. The denominator in (8.27) is the difference between
the large and small particle velocities, wl

0 = Slmφm
0 + Slsφ

s
0 and ws

0 = −Slsφ
l
0 − Smsφ

m
0 ,



566 J. M. N. T. Gray and C. Ancey

0.2 0.4 0.6 0.8 1.0

Θ = (Slm + Sms)/Sls

1.2 1.4 1.6 1.8 2.00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8
0.8

0.9
0.9

1.0
1.0

1.
1

1.1
1.

4

4.
0

2.
0

10
.0

φm
0

Figure 11. A contour plot of the ratio xA/xls , between the distance for the large and small
particles to segregate in a three-component mixture xA and that in a two-component mixture
xls = 1/Sls , as a function of the inflow concentration of medium-sized particles φm

0 and the
parameter Θ = (Slm + Sms)/Sls . Note that xA is not the distance for complete segregation in a
three-component mixture, but does provide a lower bound.

in the homogeneous region. Point A therefore represents the distance over which a
large particle rising up from the bottom meets a small particle percolating down
from the top. The equivalent distance in a bi-disperse mixture is the point, xls = 1/Sls ,
which is also the point of complete separation. In the three-component mixture, the
segregation has not finished. However, it is still interesting to consider the ratio of
these length scales as it provides a lower bound on the total segregation distance in
the three-component case. By defining the parameter

Θ =
Slm + Sms

Sls

, (8.28)

which typically lies in the range [0, 2] for the solution presented here, the ratio of the
length scales can be written in the particularly simple form

xA

xls

=
1

1 + φm
0 (Θ − 1)

. (8.29)

This is plotted in figure 11 as a function of the inflow concentration of medium-
sized particles φm

0 and the parameter Θ . To understand the contour plot, it is useful
to consider some special cases. If the inflow concentration φm

0 is equal to zero,
the three-component problem has no medium-sized particles and it degenerates to
the two-component case. The ratio is therefore equal to unity along the Θ-axis. In
the case where all the segregation rates are the same Sls = Slm = Sms , the parameter
Θ = 2, and the large and small percolation velocities reduce to wl

0 = Sls(1 − φl
0) and

ws
0 = −Sls(1 − φs

0), respectively. It follows that as the volume fraction of medium-
sized particles increases, the large and small particles can move at velocities closer
to their maximum rates, since φl

0 and φs
0 are lower on average. The net velocity

wl
0 − ws

0 = Sls(1+φm
0 ) is therefore enhanced and the large and small particles separate
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out from one another faster than the bi-disperse case. Note that this does not
imply that the time for complete segregation is reduced. When Θ = 0, which occurs
when Slm = Sms =0, the velocity of the large and small particles is wl

0 = Slsφ
s
0 and

ws
0 = −Slsφ

l
0. These look very similar to those for Θ = 2, but this time, as the volume

fraction of φm
0 increases, the large and the small particles move slower on average.

Indeed the net velocity wl
0 − ws

0 = Sls(1 − φm
0 ) tends to zero as φm

0 −→ 1 and the
segregation distance in the three-component mixture xA −→ ∞. In summary, if Θ < 1
the medium-sized particles hinder the separation of large and small grains. While if
Θ > 1, the medium particles allow the large and small grains to percolate faster than
in the bi-disperse case, during this initial phase of segregation.

8.4. Separation of the medium-sized particles

The height of point A can either be expressed using (8.16) as

ψA = (Slmφm
0 + Slsφ

s
0)xA, (8.30)

or using (8.22) as

ψA = 1 − (Slsφ
l
0 + Smsφ

m
0 )xA. (8.31)

The equations for the position of point A, (8.27), (8.30) and (8.31), can be used to
significantly simplify the quadratic equations (8.18) and (8.24) for the concentrations
φl

2 and φs
1, which become

SlmxA(φl
2)

2 − (1 − ψA + SlmxA)φl
2 + φl

0 = 0, (8.32)

SmsxA(φs
1)

2 − (ψA + SmsxA)φs
1 + φs

0 = 0. (8.33)

Point A is also the position at which two reflected shocks are generated, which are
denoted by AB and AC in figure 10. The section AB separates the mixture of medium
and small particles from a pure region of medium-sized particles. The large particle
jump condition is therefore trivially satisfied. While the small particle jump condition
implies that

dψ

dx
= −Smsφ

m
1 = ws

1, (8.34)

where the right-hand side is simply the normal velocity ws
1 of the small particles in

the bi-disperse region R1. Integrating subject to the condition that ψ(xA) = ψA gives
the straight line

ψAB = ψA − Smsφ
m
1 (x − xA). (8.35)

The lines 0B and AB intersect at a downstream distance

xB =
ψA

Sms

+ φm
1 xA. (8.36)

The height at which this occurs can be determined by substituting (8.36) into the
equation for the shock 0B , given by (8.20), to obtain

ψB = (ψA + SmsxA)φs
1 − SmsxA(φs

1)
2. (8.37)

Using the quadratic equation (8.33), gives the simple result

ψB = φs
0. (8.38)

The small particle jump condition for the shock ‘B∞’, separating the layer of medium-
sized particles from the layer of fines below, implies that the gradient dψ/dx is
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zero. Integrating subject to the condition that ψ(xB) = ψB implies that the shock is
horizontal and is given by

ψB∞ = ψB, x > xB. (8.39)

An analogous argument holds for the shock AC between the mixture of large and
medium-sized particles in R2 and the pure state of large particles at the surface. The
large particle jump condition implies that

dψ

dx
= Slmφm

2 = wl
2, (8.40)

where the right-hand side is just the normal velocity of the large particles in the bi-
disperse region R2. This can be integrated subject to the condition that ψ(xA) = ψA,
to give the straight line

ψAC = ψA + Slmφm
2 (x − xA). (8.41)

It intersects with 1C at

xC =
1 − ψA

Slm

+ φm
2 xA. (8.42)

The height of the intersection can be found by substituting (8.42) into (8.26) and
using the quadratic equation (8.32) to show that

ψC = 1 − φl
0. (8.43)

At the inversely graded interface between the pure phases of large- and medium-sized
particles, the large particle jump condition implies that dψ/dx = 0. Integrating subject
to the condition that ψ(xC) = ψC implies that the final shock

ψC∞ = ψC, x > xC, (8.44)

which completes the solution. The complete structure consists of six constant
concentration regions that are separated by eight shocks given by (8.16), (8.20),
(8.22), (8.26), (8.35), (8.39), (8.41) and (8.44).

8.5. Inverse mappings to physical coordinates

The advantage of using depth-integrated velocity coordinates (8.12) is that the solution
is valid for all monotonically increasing velocity profiles with z. To view the solution
for specific cases, the downstream velocity profile u(z) must be prescribed. Figure 12
shows four examples, one for an exponential velocity profile and three linear profiles.
The linear profiles are all special cases of the linear downstream velocity of Gray &
Thornton (2005), which was defined by the function

u = α + 2(1 − α)z, 0 � α � 1. (8.45)

The parameter α allows different amounts of shear and basal slip, while still
ensuring that the depth-averaged velocity is unity. There are two special cases, α = 0
corresponds to simple shear and α =1 implies plug flow. The mapped coordinates are
calculated by performing the integral (8.12) to give

ψ = αz + (1 − α)z2. (8.46)

For plug flow, when α =1, the mapped and the physical coordinates are the same
and the shocks are all straight lines as shown in figure 12(d ). This situation can also
be mapped from (x, z) to (t, z) to obtain time-dependent shock solutions, such as
those indicated by the solid lines in figure 8. When there is shear, (8.46) is a quadratic
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Figure 12. The left-hand panels show the shock heights as a function of (x, z) for segregation
parameters Sls = 1, Slm = 0.8 and Sms = 0.5, inflow concentrations φl

0 = 1/2, φs
0 = 1/6 and

φm
0 = 1/3, and for the prescribed downstream velocity profiles u(z) shown in the corresponding

right-hand panels. The graphs in (a) show an exponential velocity profile with β = 3.3,
(b) corresponds to simple shear, α =0, (c) corresponds to shear with basal slip, α = 0.5,
and (d ) corresponds to plug flow, α = 1.

equation in z and the inverse mapping is

z =
−α +

√
α2 + 4(1 − α)ψ

2(1 − α)
, α �= 1. (8.47)

This is equivalent to a nonlinear stretch of the ψ coordinate, so the shocks which were
straight lines in the mapped coordinates now become curved in physical coordinates,
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as shown in figure 12(b, c). The only lines that do not get stretched into curves are
those that are parallel to the base, such as the final inversely graded shocks ψB∞ and
ψC∞, which get translated to new heights zB∞ and zC∞ in the physical domain. The
reason for this is that there is a higher mass flux near the surface than at the base.
At the inflow the particles enter at a homogenous concentration at all levels in the
flow, and, because this is a steady problem, the depth-averaged flux of those particles
is constant all along the chute. It follows that if the particles rise on average, the
mass flux will be concentrated in a higher faster moving part of the flow, and hence
the layer will be thinner than if they moved to lower slower moving regions. The
large particle layer near the surface therefore becomes much thinner in the mapped
domain, while the small particle layer near the base becomes much thicker.

Wiederseiner et al. (2011) found that the effect of the nonlinear velocity profile was
quite strong in their chute flow experiments, and they needed to use an exponential
fit to the velocity data that they measured in their experiments to get good agreement
with the layer heights in their final steady uniform state. In order to compare their
experiments with the theory of Gray & Chugunov (2006), they used a downstream
velocity profile of the form

u =
β exp(βz)

exp(β) − 1
, β > 0. (8.48)

The depth-integrated velocity coordinates for this function are

ψ =
exp(βz) − 1

exp(β) − 1
, (8.49)

and the corresponding inverse mapping is

z =
1

β
ln(1 − ψ + ψ exp(β)). (8.50)

Figure 12(a) plots the shock solution for the exponential profile with Wiederseiner
et al.’s (2011) measured coefficient of β = 3.3. The compression of the surface layer
of large particles is very strong, taking a layer that occupied half the height in the
mapped coordinates and squeezing it into the top fifth of the flow. Conversely, the
small particle layer, which occupied a sixth of the height in the unmapped coordinates,
is stretched out over half the flow height.

It should be noted that downstream positions of the shock intersection points are
unchanged by the mapping, and so they lie at the same downstream distances in each
of the three sets of plots in figure 12. Since Θ = (Slm + Sms)/Sls is equal to 1.3, the
graph in figure 11 shows that the point at which the large and the small particles
separate out lies before the point xls = 1/Sls = 1, where they would separate out in a
bi-disperse mixture. However, the final distances for the complete segregation of the
large- and medium-sized particles, xC , and the medium and small grains xB , occur
significantly further down the chute than in the bi-disperse case. This is indicative of
the general tendency of multi-component mixtures to extend the maximum distance
for segregation.

8.6. Parameter range of validity

The solution that has been constructed is not valid over the whole range of segregation
parameters and inflow concentrations. The crucial condition for existence of the
solution is that the topology of the shocks is preserved. This is true provided point
A is higher than point B , but lower than point C, the gradient of the shock AB is
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negative and the gradient of the shock AC is positive. Using (8.34) and (8.40) implies
that these statements are equivalent to

ψB � ψA � ψC, φm
1 � 0, φm

2 � 0. (8.51)

These conditions automatically ensure that the order of the discontinuities that have
been assumed in the double-shock structures is preserved. Substituting the heights of
points A and B from (8.30) and (8.38) into the condition ψB < ψA implies that

Slm � φs
0(Slm − Sls + Sms). (8.52)

By collecting the coefficients of Slm together, substituting 1 − φs
0 = φm

0 + φl
0 and using

the definitions of the constituent velocities (8.5) and (8.6), it follows that this is
equivalent to the normal velocity of the larger particles being greater than the normal
velocity of medium-sized particles in the homogeneous mixture

wl
0 � wm

0 , (8.53)

which was assumed in our derivation. If the factor Slm −Sls +Sms in (8.52) is negative,
then the right-hand side is at most equal to zero, and the condition is trivially satisfied
as Slm is positive. If Slm − Sls +Sms is positive, then the right-hand side is largest when
φs

0 equals unity, and (8.52) is satisfied, for all concentrations, provided

Sls � Sms. (8.54)

Similarly, substituting (8.30) and (8.43) into the condition ψA <ψC implies that

Sms � φl
0(Slm − Sls + Sms), (8.55)

which, using (8.6) and (8.7), is equivalent to the condition that the small particles in the
homogeneous mixture percolate downwards faster than the medium-sized particles,

ws
0 � wm

0 . (8.56)

If the factor Slm − Sls + Sms is negative, then condition (8.55) is trivially satisfied since
Sms is positive. If the factor Slm −Sls +Sms is positive, then the right-hand side is largest
when φl

0 is equal to unity, and the condition is satisfied, for all inflow concentrations,
provided

Sls � Slm. (8.57)

The condition that φm
1 � 0 in the bi-disperse region R1 is equivalent to the

requirement that φs
1 � 1. The negative root of the quadratic equation (8.33) can be

written in the form

φs
1 =

ψA + SmsxA −
√

(ψA − SmsxA)2 + 4(ψA − φs
0)SmsxA

2SmsxA

, (8.58)

where the discriminant has been re-factored. Equation (8.38) implies that φs
0 = ψB ,

which is less than or equal to ψA by the first condition in (8.51). The smallest value
reached by the square-root term in (8.58) is ψA − SmsxA, and hence the largest that
φs

1 can be is unity. It is also clear from this equation that when φs
0 equals zero, φs

1

is also equal to zero, and hence that φs
1 ∈ [0, 1]. It follows that φm

1 ∈ [0, 1] and the
third condition in (8.51) is satisfied. Similarly, the condition φm

2 � 0 in the bi-disperse
region R2 is equivalent to the condition φl

2 � 1. The negative root of the quadratic
equation (8.32) implies that the concentration of large particles is

φl
2 =

1 − ψA + SlmxA −
√

(1 − ψA − SlmxA)2 + 4(1 − φl
0 − ψA)SlmxA

2SlmxA

, (8.59)
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where the discriminant has again been re-factored. Equation (8.43) implies that
1 − φl

0 = ψC , which is greater than or equal to ψA by the second condition in (8.51).
The smallest value reached by the square-root term in (8.59) is, 1 − ψA − SlmxA, and
hence the largest concentration can be unity. It is also clear that when φl

0 is equal to
zero, the large particle concentration is equal to zero, and hence φl

2 ∈ [0, 1]. It follows
that φm

2 ∈ [0, 1] and hence the final condition in (8.51) is satisfied.
All conditions for existence are therefore satisfied provided the normal velocities of

the constituents in the homogeneous region are such that wl
0 � wm

0 � ws
0, and this can

be guaranteed, for all concentrations, provided the segregation parameters lie in the
domain

Ω+
3 : Sls � Slm and Sls � Sms. (8.60)

Note that this is slightly larger than the region Ω3, defined in (5.20). The time-
dependent shock solution illustrated by solid lines in figure 8 is obtained by setting
α = 1 and replacing x by t , and ψ by z, in the two-dimensional steady-state solution
derived here. It closely approximates the perturbed numerical solution when Dr is
small and provides an example of this solution in a region outside of Ω+

3 that holds
for certain values of the initial conditions. It cannot, of course, capture the linear
sawtooth instability in figure 9, which develops for the same parameters, but slightly
different initial conditions.

8.7. Upper and lower bounds for the total segregation distance

It would be useful to have a simple estimate for the total segregation length that
could easily be computed from the initial conditions. Let us therefore return to the
quadratic equation (8.18), substitute for the concentration of medium-sized particles
and write it in the form

Sms

((
φs

1

)2 −
(
φs

0

)2)−
(
Slm

(
1 − φs

0

)
+ Slsφ

s
0 + Sms

)(
φs

1 − φs
0

)
+ φl

0

(
Slm

(
φs

1 − φs
0

)
+ φs

0

(
Sls − Sms

))
= 0, (8.61)

where all the terms involving φl
0 are gathered together. If the large particle inflow

concentration φl
0 is equal to zero, it is then easy to see that the concentration of small

particles φs
1 in region R1 is equal to the inflow concentration

φs
1 = φs

0. (8.62)

Figure 13 shows a contour plot of the negative root of the quadratic equation (8.58)
as a function of the inflow concentrations φl

0 and φs
0 for a specific case of segregation

parameters that lie in Ω+
3 . Along the φl

1-axis the solution is zero, along the φs
0-axis

the concentration is equal to the inflow concentration, and above the line φl
0 = 1 − φs

0

the concentration states are not admissible. The plot shows that for a fixed value of
φs

0, the bi-disperse concentration is greater than or equal to the inflow concentration

φs
1 � φs

0. (8.63)

This suggests that it is possible to be more specific about the range of values of φs
1 in

R1 than in § 8.6 and hence provide a useful estimate of the total segregation distance
of the small particles.

We have already shown in (8.62) that, when there are no large particles, the bi-
disperse concentration φs

1 is equal to the inflow concentration φs
0 for all values of the

segregation parameters. Let us now consider what happens as the concentration of
large particles is increased. Taking the partial derivative of the quadratic equation
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0 = 1 − φs

0 corresponds to
concentration states that are not possible.

(8.61) with respect to the large particle inflow concentration φl
0 implies that

∂φs
1

∂φl
0

=
Slm(φs

1 − φs
0) + φs

0(Sls − Sms)

Sms(1 − φs
1) + [Slmφm

0 + Slsφ
s
0 − Smsφ

s
1]

. (8.64)

Whether φs
1 increases or decreases from the inflow value φs

0 at φl
0 = 0 is dependent

on whether this derivative is positive or negative. The square-bracketed term in the
denominator is the difference in the gradients of the shocks 0A and 0B by (8.15)
and (8.19). Provided the solution exists, i.e. the conditions (8.51) are satisfied and the
order of the double shock structure is preserved, the square-bracketed term is positive.
It follows that the denominator is strictly positive, since φs

1 ∈ [0, 1], except in the
completely degenerate case of pure fines. The behaviour is therefore controlled by
the sign of the numerator in (8.64). If Sls > Sms , then on the line φl

0 = 0, where φs
1 =φs

0,
the numerator is strictly positive and hence φs

1 will increase in the direction of
increasing φl

0, again provided that the system is not in the completely degenerate case
of pure fines. The solution may therefore be continued to an adjacent strip where
φs

1 >φs
0. Since the numerator is still positive here, and on every other adjacent strip,

the small particle concentration φs
1 ∈ [φs

0, 1]. A similar argument for the case Sls = Sms

shows that φs
1 is equal to φs

0, for all values of φl
0, since the numerator is always zero,

while for Sls < Sms the numerator is always negative and therefore φs
1 ∈ [0, φs

0].
Let us restrict ourselves to the case where Sls � Sms and φs

1 ∈ [φs
0, 1]. Consider what

happens to the shock 0B when φs
1 is replaced with its lower bound φs

0 in (8.20), to
give the line

ψ = Smsφ
s
0x. (8.65)

This represents the minimum height of the shock and is shown by the lower dot-
dashed line in figure 14. It intersects with the shock B∞, which lies at a height ψB = φs

0



574 J. M. N. T. Gray and C. Ancey

1

ψ

0 xxls xlm xms

A

B

C

Figure 14. A sketch of the shocks (solid lines) in (x,ψ)-mapped coordinates with the key
shock intersection points A, B and C. The dot-dashed lines represent lower bounds for the
modulus of the shock gradients that emanate from (0, 0) and (0, 1), and they therefore intersect
with horizontal inversely graded shocks, ‘B∞’ and ‘C∞’, furthest downstream at xms and xlm,
respectively. The distance xls is the segregation distance of the large and small particles, which
may be before or after the downstream position of point A.

at a downstream distance

xms =
1

Sms

. (8.66)

This is just the distance over which a bi-disperse mixture of medium and small
particles would segregate out, and it forms an upper bound for the segregation of the
medium and the small particles in a ternary mixture when Sls � Sms . Note that when
Sls < Sms , then (8.66) represents a lower bound instead.

A very similar argument gives an upper bound at the surface. Rewriting the
quadratic equation (8.24) in the form

Slm

((
φl

2

)2 −
(
φl

0

)2) −
(
Sms

(
1 − φl

0

)
+ Slsφ

l
0 + Slm

)(
φl

2 − φl
0

)
+ φs

0

(
Sms

(
φl

s − φl
0

)
+ φl

0(Sls − Slm)
)

= 0, (8.67)

it is easy to see that it has the solution

φl
2 = φl

0, (8.68)

when the inflow concentration φs
0 is zero. Taking the partial derivative of the quadratic

equation (8.67) with respect to φs
0 implies that

∂φl
2

∂φs
0

=
Sms

(
φl

2 − φl
0

)
+ φl

0(Sls − Slm)

Slm

(
1 − φl

2

)
+

[
Slsφ

l
0 + Smsφ

m
0 − Slmφl

2

] . (8.69)

The square-bracketed term is the difference between the gradients of 1A and 1C and
is positive provided that existence conditions (8.51) are satisfied. Since φl

2 ∈ [0, 1], it
follows that the denominator is strictly positive, except in the completely degenerate
case of all large particles. If Sls > Slm then the numerator is strictly positive on the
line φs

0 = 0, since φl
2 = φl

0. The solution may therefore be continued to an adjacent
strip where φl

2 > φl
0. Since the numerator is still positive here, and on every other

adjacent strip, φl
2 ∈ [φl

0, 1]. Similar arguments show that if Sls = Slm then φl
2 = φl

0, and
if Sls < Slm then the large particle concentration φl

2 ∈ [0, φl
0]. Restricting ourselves to

the case Sls � Slm, and using the lower bound φl
0 to replace φl

2 in (8.26) for the shock
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0C, gives the line

ψ = 1 − Slmφl
0x. (8.70)

This represents the maximum height that the shock can reach and is shown by the
upper dot-dashed line in figure 14. It intersects with the shock ‘C∞’, which lies at a
height ψC =1 − φl

0 at a downstream distance

xlm =
1

Slm

, (8.71)

which is just the distance that a bi-disperse mixture of large- and medium-sized
particles would separate out. It forms an upper bound for the segregation of the
large and the medium grains in a ternary mixture when Sls � Slm. When Sls < Slm then
(8.71) represents a lower bound. It may therefore be concluded that an upper bound
for the total segregation distance from a homogeneous inflow in a ternary mixture,
with segregation parameters that lie in Ω+

3 , is

xtotal � max(xlm, xms) = max

(
1

Slm

,
1

Sms

)
. (8.72)

Physically, this is simply the idea that, in a ternary mixture where the large and the
small grains segregate fastest, an upper bound for the maximum segregation distance
is given by the segregation length scale of the bi-disperse sub-mixture that segregates
least well. Note that in the case where Sls = Slm = Sms , the upper bound is equal
to the total segregation length scale, xls =1/Sls , which is precisely the same as the
bi-disperse case. The situation for mixtures with segregation parameters outside Ω+

3

is more complex. This is firstly because it cannot be guaranteed that a solution with
the proposed shock structure exists, or that the problem is even well-posed, as shown
in § 5. Moreover, the estimates, (8.66) and (8.71), may be lower bounds.

9. Steady solutions of the segregation–remixing equations
Segregation theory yields considerable insight into the physical system, but to get

good agreement with experiments it is important to include the diffusive terms. These
account for the fluctuations in the avalanche that induce individual particles to take
random walks, which smooth out the sharp concentration discontinuities that would
otherwise form. It is therefore of interest to solve the same steady homogeneous inflow
problem, but with the inclusion of the diffusive terms. Using the steady uniform bulk
flow field (8.1), the segregation–remixing equations for the large and small particles
(3.3)–(3.4) can be written in the flux conservative form

u
∂φl

∂x
=

∂

∂z

(
−Slmφl(1 − φl − φs) − Slsφ

lφs + Dr

∂φl

∂z

)
, (9.1)

u
∂φs

∂x
=

∂

∂z

(
Slsφ

sφl + Smsφ
s(1 − φl − φs) + Dr

∂φs

∂z

)
. (9.2)

These are precisely of the form required by standard Galerkin finite element solvers
for initial boundary-value problems for systems of parabolic equations (e.g. Skeel &
Berzins 1990). It is therefore very easy to solve practical multi-component segregation
problems using standard programme libraries. In this paper, the pdepe routine
contained in Matlab has been used. The initial conditions are given by (8.8) and
the boundary conditions at the surface and the base of the avalanche need to be
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formulated in terms of the fluxes of large and small particles, which are

Fl = −Slmφl(1 − φl − φs) − Slsφ
lφs + Dr

∂φl

∂z
, (9.3)

Fs = Slsφ
sφl + Smsφ

s(1 − φl − φs) + Dr

∂φs

∂z
, (9.4)

respectively. It is easy to see from this that the boundary conditions (2.32) reduce to

Fν = 0, z = 0, 1, ν = l, s. (9.5)

This system can be integrated forward in x from the inflow at x = 0 to any distance
downstream, to compute the steady-state concentrations of large and small particles
φl(x, z) and φs(x, z). The concentration of medium-sized particles can then be
calculated from the summation condition (8.2). An example Matlab m-file using
the exponential velocity profile (8.48) can be found in the supplementary material.
The steady-state simulations in this paper were performed on a 200 node grid in
z, using a relative error tolerance of 10−6. Although these Galerkin solvers are very
robust, they cannot cope with very small non-dimensional diffusion coefficients or the
zero diffusion limit.

In the scalings (2.24), the horizontal length scale L was left as general as possible
to allow the theory to be easily incorporated into existing models for the bulk flow
of granular materials on rough and smooth beds. In the simulations presented here,
the bulk velocity field is prescribed. Without loss of generality, L is therefore chosen
so that one of the segregation parameters Sνµ is equal to unity. Figure 15 shows the
results of a simulation of reverse distribution grading using segregation parameters
Sls =1, Slm = 0.8 and Sms = 0.5, and a relatively small diffusive remixing coefficient
Dr = 0.01. This is an example of a ternary mixture that lies in region Ω+

3 , defined
in (8.60), and the diffusive solution is expected to be close to the non-diffusive
shock solution constructed in § 8. The grey-shaded contour plots in figure 15(a–c)
show the concentration of large, medium and small particles respectively. This
way of representing the concentration is motivated by the time-averaged images
that Wiederseiner et al. (2011) used to visualize the concentration in bi-disperse
experiments. To obtain similar images for a ternary mixture, the experiments would
have to be repeated three times, using dark particles for the constituent of interest,
and light particles for the other two. For comparison with the non-diffuse case the
shocks, which are not degenerate in that particle type, have been superposed on top of
each concentration plot using solid lines. With a diffusion coefficient Dr = 0.01, they
very closely delineate the regions of high and low concentrations in the diffuse theory.

Figure 15(d ) shows the concentration profile with depth of the large, medium and
small particles at x =2.1, where the solution is close to its steady uniform state.
Even though the large particle inflow concentration φl

0 = 1/2, the large particles
are compressed into a very thin near surface layer, due to the highly nonlinear
exponential velocity field when β = 3.3, as discussed in § 8.5. In contrast, the small
particles, which have an inflow concentration φs

0 = 1/6, occupy nearly half the flow
depth. The medium-sized particles, which are sandwiched in between, have an inflow
concentration φm

0 = 1/3. The layer is slightly thinner than an avalanche without any
shear, but it lies considerably higher in the flow. The inverse length scale of the smooth
transition between the inversely graded layers in the steady uniform state is set by the
Péclet number, Pe. This is a measure of the ratio of the segregation transport rate to
the rate of diffusion (Gray & Chugunov 2006). In a bi-disperse mixture, there is just
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Figure 15. In (a–c) are shaded contour plots in (x, z) of the steady-state concentration of large,
medium and small particles, for segregation parameters Sls = 1, Slm = 0.8 and Sms = 0.5, inflow
concentrations φl

0 = 1/2, φm
0 = 1/3 and φs

0 = 1/6, and an exponential velocity profile u(z) with
β = 3.3. The diffusive remixing coefficient Dr =0.01. For comparison with the non-diffusive
case, the non-degenerate shocks are shown by solid lines. The plots use 64 grey levels and a
scale with 11 levels is shown in (a). In (d ), the final concentration profile at x = 2.1 is plotted
for the large, medium and small particles.

a single Péclet number, but in a ternary mixture there are three

Pels = Sls/Dr, Pelm = Slm/Dr, Pems = Sms/Dr. (9.6)

For the example in figure 15, these Péclet numbers are 100, 80 and 50, respectively.
The length scale of the diffuse transition between medium and small particles is
therefore slightly longer than that between medium and large particles in the steady
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Figure 16. In (a–c) are shaded contour plots in (x, z) of the steady-state concentration of large,
medium and small particles, for segregation parameters Sls = 1, Slm = 0.8 and Sms = 0.5, inflow
concentrations φl

0 = 1/2, φm
0 = 1/3 and φs

0 = 1/6, and an exponential velocity profile u(z) with
β =3.3. The diffusive remixing coefficient Dr = 0.05. For comparison with the non-diffusive
case, the non-degenerate shocks are shown by solid lines. The plots use 64 grey levels and a
scale with 11 levels is shown in (a). In (d ), the final concentration profile at x = 2.1 is plotted
for the large, medium and small particles.

uniform state, although they are both sharp. Wiederseiner et al. (2011) inferred Péclet
numbers between 10 and 20 from their bi-disperse experiments, and figure 16 shows
another simulation with the same segregation parameters, inflow concentrations and
exponential velocity field, but a diffusion coefficient Dr = 0.05. This gives Péclet
numbers Pels = 20, Pelm = 16 and Pems = 10, which make these results potentially
representative of real experiments. Indeed, the regions of high concentration of the
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large, medium and small particles are very similar to the inversely graded avalanche
at the surface of the rotating drum experiment shown in figure 2. The shock solutions,
shown by lines in figure 16(a–c), still give an approximate position for regions of high
concentrations of large medium and small particles, but the transitions are now much
smoother. Indeed for a mixture with segregation parameters in Ω+

3 , the transitions
between the large and medium, and medium and small particles, are more smeared
out than they would be for a bi-disperse mixture of large and small particles, because
the Péclet numbers are lower. In general, as more constituents with lower relative
segregation rates are added to the mixture, the steady uniform state will become
increasingly diffuse and harder to measure and interpret. Nevertheless, even such
diffuse segregation can have important consequences for the properties of the mixture
and may have a feedback on the bulk motion of the grains.

10. Reverse coarse-tail grading
Geologists often encounter reverse coarse-tail grading in pyroclastic flow deposits

(see e.g. Cas & Wright 1987; Branney & Kokelaar 1992; Palladino & Valentine 1995;
Hiscott 2003). Although there is still some debate about exactly why it develops
(Cagnoli & Manga 2005) and whether it is representative of the size distribution in
the parent flow (Branney & Kokelaar 1992), it is possible to use the multi-component
theory to produce a highly simplified model of it. Within the three-component mixture
framework the coarse tail will comprise the large and the medium-sized particles and
all the fine-grained material, which does not segregate from each other, will be lumped
into a single class of small grains. Consider what happens when the small particles do
not segregate from the large or the medium-sized particles either and the segregation
rates are

Sls = 0 and Sms = 0. (10.1)

This is a rather extreme example of a mixture that lies in the region of parameter space
Ω2, defined in (5.11). With these assumptions, the steady-state segregation–remixing
equations (9.1) and (9.2) reduce to

u
∂φl

∂x
=

∂

∂z

(
−Slmφl(1 − φl − φs) + Dr

∂φl

∂z

)
, (10.2)

u
∂φs

∂x
=

∂

∂z

(
Dr

∂φs

∂z

)
, (10.3)

where the last equation uncouples from the system. This is a simple diffusion equation
and the initial concentration of small particles φs(0, z) will therefore be diffused until
it reaches a constant value throughout the avalanche depth. In the case of the
homogeneous inflow problem, the initial condition (8.8) implies that it is already at a
constant state φs(0, z) = φs

0. This will remain unchanged with increasing downstream
distance. The same Galerkin finite element method, as described in § 9, can be used
to solve the system. The results are shown in figure 17 for the case Slm =1 and
Dr =0.01. Figure 17(c) shows that the small particles are at the inflow concentration
φs

0 throughout the avalanche as expected, while plots in figure 17(a,b) look very
similar to the segregation structure in a bi-disperse mixture. There are, however,
some subtle differences here. Firstly, the maximum concentrations of the large- and
medium-sized particles is lower, because the small particles already take up one third
of the available space, and secondly the distance for segregation is enhanced by the
presence of the non-segregating small material.
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Figure 17. In (a–c) are shaded contour plots in (x, z) of the steady-state concentration of
large, medium and small particles, for segregation parameters Sls = 0, Slm = 1 and Sms = 0, inflow
concentrations φl

0 = 1/2, φm
0 = 1/6 and φs

0 = 1/3, and an exponential velocity profile u(z) with
β =3.3. The diffusive remixing coefficient Dr = 0.01. For comparison with the non-diffusive
case, the non-degenerate shocks are shown by solid lines. The plots use 64 grey levels and a
scale with 11 levels is shown in (a). In (d ), the final concentration profile at x = 2.1 is plotted
for the large, medium and small particles.

To understand this in greater detail, it is useful to consider the non-diffusive shock
solution, which is shown using lines superposed on top of the contour plot in figure 17.
In the absence of diffusion, (10.3) implies that the concentration of small particles is
simply a function of height

φs(x, z) = φs(z), (10.4)
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which is set by the inflow conditions. In general, this is not equal to the diffusive
solution, where the variations in the inflow concentration are smeared out and
equilibrated with increasing downstream distance. However, for the special case of a
homogeneous inflow, the condition (8.8) ensures that the small particle concentration
is equal to the inflow concentration everywhere,

φs(x, z) = φs
0, (10.5)

and the diffusive and non-diffusive cases are the same. The depth-averaged velocity
coordinates (x, ψ) introduced in § 8 are again helpful in calculating the shock solution.
The shocks are governed by the jump conditions (8.13)–(8.14). Since the small particle
concentration does not jump across any of the shocks, (8.14) is trivially satisfied.
However, the jump condition for the large particles (8.13) reduces to

�φl�dψ

dx
= �Slmφl(1 − φl − φs

0)�, (10.6)

which implies that

dψ

dx
= Slm(1 − φs

0 − φl
+ − φl

−). (10.7)

A shock develops at the base of the inflow between a region above where the large
particle concentration is equal to the inflow concentration φl

+ =φl
0 and a region below

where there are no large particles φl
− =0. The shock condition (10.7) can therefore be

integrated subject to the condition that ψ(0) = 0, to show that the shock is

ψ = Slmφm
0 x. (10.8)

This is the same shock that would be expected for a bi-disperse mixture of large-
and medium-sized particles (Gray & Thornton 2005). The shock that develops at
the surface of the inflow is more subtle. In particular, it is important to reconsider
the boundary condition (2.32) in the case of a non-segregating component and zero
diffusion. For the small particles, the boundary condition (2.32) is trivially satisfied,
for arbitrary concentrations of small particles, since the small particle segregation
rates Sνs are zero for all ν by (10.1). There is therefore no flux of small particles
across the boundary. The boundary condition for the large particles then becomes

Slmφlφm = 0, (10.9)

which can be satisfied if either φl or φm equals zero. The first of these conditions was
used at the base. However, the latter now implies that the large particle concentration
on the forward side of the shock is

φl
+ = 1 − φs

0, (10.10)

as the small particle concentration is non-zero at the surface. The jump condition
(10.7) with φl

− = φl
0 can then be integrated subject to the condition that ψ(0) = 1, to

show that the top shock is

ψ = 1 − Slmφl
0x, (10.11)

which is not the same as the equivalent shock in a bi-disperse mixture of large- and
medium-sized particles (Gray & Thornton 2005). The two shocks (10.8) and (10.11)
intersect at a downstream distance

xintersect =
1

Slm(1 − φs
0)

, (10.12)
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and at height

ψintersect =
φm

0

1 − φs
0

, (10.13)

which are only the same as those for a bi-disperse mixture of large- and medium-sized
particles (Gray & Thornton 2005) when there are no small particles, φs

0 = 0. The shock
condition (10.7) implies that the final discontinuity, between states φl

+ = 1 − φs
0 above

and φl
− =0 below, is the slope parallel straight line

ψ = ψintersect , x > xintersect . (10.14)

Using the inverse mapping (8.50) for the exponential downstream velocity field (8.48),
the shocks can be mapped back to physical coordinates to give the lines shown in
figure 17. Equation (10.12) shows that the introduction of the non-segregating small
particle constituent significantly delays the segregation of the large and the medium
particles. It raises it from its usual value of unity, when Slm = 1, to 1.5 non-dimensional
units for a concentration φs

0 = 1/3. This is also evident from the relative percolation
velocity of the large- and medium-sized particles, which is given by the difference of
(8.5) and (8.6),

wl − wm = Slm(1 − φs
0). (10.15)

When φs
0 = 0 the relative percolation velocity is the same as in the bi-disperse case,

but as φs
0 is increased the relative percolation velocity in (10.15) decreases, and the

distance for complete segregation (10.12) is increased. Physically, this is an expression
of the fact that large particles will find it increasingly difficult to percolate downwards,
if there are fewer gaps opening up between the medium-sized grains, because of the
presence of the non-segregating fine-grained material. The presence of the small
particles also necessarily reduces the maximum concentrations of the large and the
medium particles, which can be seen in both the contour plots in figure 17(a, b) and
the concentration profiles of the large and medium particles in figure 17(d ).

If Sls � Slm and Sms � Slm, instead of being equal to zero, the segregation–remixing
equations still yield solutions that look very similar to those in figure 17. The only
difference is that the slow percolation of the fine grains is balanced by the diffusive
remixing, which generates a shallow gradient of fines from top to bottom. This
necessarily sets up corresponding gradients of medium and large grains that are
only perceptible in the regions that would otherwise be at a constant concentration.
However, when there is no diffusion, there is nothing to prevent the fines from
segregating out and they eventually collect at the base of the flow. The segregation–
remixing equations are therefore able to capture reverse coarse-tail grading for a
poorly segregating phase, but the non-diffusive theory can only capture it for the
rather extreme case considered here.

11. Discussion and conclusions
This paper significantly generalizes existing bi-disperse size-segregation/remixing

theories for granular avalanches (Savage & Lun 1988; Dolgunin & Ukolov 1995;
Gray & Thornton 2005; Gray & Chugunov 2006; Thornton et al. 2006) to the case of
size segregation of an arbitrary number of discrete grain-size classes. For a mixture of
j constituents, the theory yields a system of j − 1 independent segregation–remixing
equations, which together with the summation condition can be used to determine the
concentrations of each particle size. For a prescribed bulk velocity field, the resulting
systems of parabolic equations can easily be solved using standard Galerkin finite
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element methods that are available in programme libraries. This makes the theory
extremely accessible to non-specialist users. An example Matlab m-file that uses the
pdepe routine to solve for the steady-state segregation of a three-component mixture
as it flows down a chute can be found in the online supplementary material.

Although the theory sets up a very useful framework in which to study size
segregation, it does not give any further information about j (j − 1)/2 independent
segregation rates, or the diffusive remixing coefficient, which are, in general, functions
of the grain-size ratio, the absolute size of the particles, the shear rate, the normal
pressure, the particle density and the local solids volume fraction. These dependencies
must be determined by experiments or molecular dynamics simulations. A significant
advantage of the current theory is that bi-disperse experiments and simulations can
be used to determine the coefficients for the multi-component theory.

Multi-component segregation theory, where the diffusive remixing is neglected,
is the natural generalization of the hyperbolic bi-disperse segregation theories of
Gray & Thornton (2005) and Thornton et al. (2006). When there are three or more
constituents, the system is not necessarily hyperbolic. For instance, a ternary mixture
is guaranteed to be non-strictly hyperbolic only when the segregation rates lie in
regions Ω1, Ω2 and Ω3 of parameter space, defined by (5.10), (5.11) and (5.20). There
is a fourth region Ω4, defined in (5.21), where the characteristic determinant can be
positive or negative, indicating that the system may change from hyperbolic to elliptic,
depending on the evolving concentrations. While such a change is not uncommon
in steady-state problems, it leads to short-wavelength Hadamard instabilities and
ill-posedness in time-dependent problems (Joseph & Saut 1990; Gray 1999; Goddard
2003).

Golick & Daniels (2009) experimentally observed that the segregation rate has
a local maximum at a grain-size ratio of two, which suggests that region Ω4 is
a physically realistic region of parameter space. Fortunately, the diffusive effects
of particle remixing are sufficient to regularize the theory. Numerical simulations
show that the parabolic segregation–remixing equations are still linearly unstable
for certain initial concentrations in region Ω4. These segregation-induced instabilities
allow ‘sawtooth’ stripes to develop for short periods before being annihilated by
growing regions of large and small particles at the surface and base of the flow. The
instability may therefore be difficult to realize in physical experiments.

There are two fundamental types of segregation: inverse distribution grading, in
which the entire grain-size population coarsens upwards (e.g. Cas & Wright 1987;
Hiscott 2003), and reverse coarse-tail grading, where just the coarsest clasts inverse
grade and a fine-grained matrix is found throughout the flow. Distribution grading
occurs when the segregation rates Sνµ are all comparable in magnitude. If the diffusive
remixing is not too large, the avalanche sorts the grains into inversely graded layers,
with high concentrations of large particles at the surface of the avalanche, high
concentrations of fines at the bottom and the high concentrations of medium-sized
particles sandwiched between the two. A physical example of this is shown in the
rotating drum experiment in figures 1 and 2. The strength of the smooth transition
between a layer of particles ν that is adjacent to a layer of particles µ is controlled
by the Péclet number

Peνµ = Sνµ/Dr, (11.1)

which determines the inverse length scale of the transition. For a mixture with a range
of non-dimensional segregation rates Sνµ, some of these transitions will be stronger
than others, since the particles all experience the same amount of diffusive remixing
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Dr . In particular, if size class ν is very close to size class µ, then Sνµ will be small, the
Péclet number will be small, the length scale for the transition between the inversely
graded layers will be large, and the segregation between these constituents will be
very diffuse. This is why the segregation is weak in mixtures where there are many
different size classes, which differ only by small increments in grain size. Mixtures
with continuous size distributions can therefore suppress segregation (e.g. Newey et al.
2004; Jha & Puri 2010).

The non-diffuse theory yields simple insights into the process of size segregation
in these systems. In this paper, an exact solution for the segregation of a ternary
mixture from a homogeneously mixed inflow condition has been constructed, which
is valid for all inflow concentrations provided that the segregation parameters lie
in Ω+

3 , which is defined in (8.60). The solution consists of six regions of constant
concentration that are separated by eight shocks that accurately delineate the regions
of high and low concentration at high Péclet numbers. It is also able to explain
the nonlinear stretching effects that the prescribed velocity profiles have on the final
heights of the inversely graded layers. This detailed understanding of the solution
also leads to a very simple upper bound for the total segregation distance. This is
equal to the segregation distance of the bi-disperse sub-mixture of medium and small
grains, or large and medium grains, that segregates least well. The upper bound for
the total segregation distance from a homogeneous inflow for cases that do not satisfy
the existence conditions (8.51) has not been investigated. However, it is tempting to
suppose that it is determined by the segregation distance of the pair of sub-mixtures,
over the whole mixture, that segregate least well, i.e.

xtotal � max(xls, xlm, xms) = max

(
1

Sls

,
1

Slm

,
1

Sms

)
, (11.2)

which is the natural extension of the result (8.72) to cases where xls can be greater
than xlm or xms . Indeed this concept is easily generalizable to a mixture with any
number of constituents. This seems physically reasonable, but it is a conjecture, not
a proved result.

The framework of multi-component size segregation theory also allows a simple
exact solution for reverse coarse-tail grading to be constructed. Here the large- and
medium-sized particles reverse grade, but the fine particle matrix is found everywhere.
This shows that the introduction of a component that does not segregate well
from any of the other constituents can significantly extend the distance for total
segregation. Such mixtures exist, as geologists regularly see such grading in deposits
from pyroclastic flows, but there is still considerable debate about the dominant
segregation mechanisms in this case (Cagnoli & Manga 2005), as well as how the
stationary deposits are related to the flowing avalanche (Branney & Kokelaar 1992).
There may be considerable technological benefit in studying their properties, however,
as they may suppress segregation sufficiently to keep granular materials reasonably
well mixed when they flow over shorter distances.
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