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We experimentally investigated how a binary granular mixture made up of spherical glass beads
�size ratio of 2� behaved when flowing down a chute. Initially, the mixture was normally graded,
with all the small particles on top of the coarse grains. Segregation led to a grading inversion, in
which the smallest particles percolated to the bottom of the flow, while the largest rose toward the
top. Because of diffusive remixing, there was no sharp separation between the small-particle and
large-particle layers, but a continuous transition. Processing images taken at the sidewall, we were
able to measure the evolution of the concentration and velocity profiles. These experimental profiles
were used to test a recent theory developed by Gray and Chugunov �J. Fluid Mech. 569, 365
�2006��, who derived a nonlinear advection diffusion equation that describes segregation and
remixing in dense granular flows of binary mixtures. We found that this theory was able to provide
a consistent description of the segregation/remixing process under steady uniform flow conditions.
To obtain the correct depth-averaged concentration far downstream, it was very important to use an
accurate approximation to the downstream velocity profile through the avalanche depth. The
S-shaped concentration profile in the far field provided a useful way of determining what we refer
to as the Péclet number for segregation, a dimensionless number that quantifies how large the
segregation is compared to diffusive remixing. While the theory was able to closely match the final
fully developed concentration profile far downstream, there were some discrepancies in the
inversion region �i.e., the region in which the mixing occurs�. The reasons for this are not clear. The
difficulty to set up the experiment with both well controlled initial conditions and a steady uniform
bulk flow field is one of the most plausible explanations. Another interesting lead is that the flux of
segregating particles, which was assumed to be a quadratic function of the concentration in small
beads, takes a more complicated form. © 2011 American Institute of Physics.
�doi:10.1063/1.3536658�

I. INTRODUCTION

Segregation processes are ubiquitous in granular flows
involving a wide range of particle sizes. Many flows in
nature and industry give the opportunity to observe the
effects of segregation, e.g., granular deposits of wet-snow
avalanches and rockfalls,1,2 dosing from vending machine
canisters.3 Among the numerous processes that cause segre-
gation, kinetic sieving and squeeze expulsion are likely to be
the most efficient in dense dry granular flows down chutes:4

velocity shear and dilatancy act together as a random fluctu-
ating sieve that allows the finer particles to percolate to the
bottom under the action of gravity, while squeezing larger
particles upward. Understanding size segregation is of para-
mount importance to understanding the dynamics of granular
flows since it can have a feedback on the bulk flow, e.g., by
reducing bottom friction during the course of motion.5,6

Segregation has been mostly studied in rotating drums
and cells7,8 �e.g., long horizontal or thin rotating drums� and
shakers,9 for which a large body of experimental work exists.
On rare occasions, segregation has been studied using
chutes. Savage and Lun4 measured the development of con-

centration profiles of granular flows down an inclined flume.
A series of splitter plates were located at the downstream end
of the flume, which made it possible to collect particles in
separate bins. By measuring the proportion of small particles
in each bin, the authors obtained a histogram of concentra-
tions, which gave an idea of the concentration profile. The
device had the advantage of measuring width-averaged val-
ues of the concentration, thus minimizing the influence of
sidewalls. However, it also had the disadvantage of disturb-
ing the flow �by modifying the flow depth� and yielding
poor-resolution data. Dolgunin and Ukolov10 used an experi-
mental setup similar to Savage and Lun4 except that they did
not use splitter plates. Instead, they let the particles flow into
bins located under the downstream end of the chute. The
particles fell into separate bins depending on their velocity
and position as they left the chute. While this technique did
not disturb the flow in the chute, it suffered from several
deficiencies. In particular, particle deposition into bins was
affected by air resistance and like Savage and Lun’s experi-
ments, binning provided poor-resolution data. More recently,
Golick and Daniels11 and May et al.12 used an annular shear
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cell to study how remixing and segregation were influenced
by the normal stress �confining pressure�. Velocity profiles
were measured at the sidewall using a high-speed camera
and segregation and mixing effects were estimated indirectly
by measuring the expansion and compaction of the aggregate
through the rise and fall of the top plate.

Segregation in dense granular flows has been investi-
gated theoretically using different approaches including
information-entropy theory,4 statistical mechanics,13 and
binary-mixture theory.14 For dense granular flows, the last
theoretical approach is interesting in that it provides a rela-
tively simple description of segregation-remixing in the form
of a nonlinear advection diffusion equation for each solid
component. This equation �outlined below� does not depend
on a particular form of governing equations for the bulk and
it is therefore compatible with most existing granular-flow
models. For dense granular flows, approximate governing
equations can be derived within the framework of flow-depth
averaged equations;15–17 various forms of these governing
equations have been proposed, the main difference lying in
the choice of constitutive equation.

The objective of this paper is to test Gray and
Chugunov’s theory14 for segregation and diffusive remixing
in granular avalanches against experimental data. The experi-
ment consists of a steady uniform flow of a binary granular
mixture, in which there is an inversion in the small-particle
concentration as the grains readjust into a stable configura-
tion. Initially, as the grains flow out of a hopper, the bulk
flow is normally graded, with all the small particles on top of
the coarse grains. As a result of segregation, the smallest
particles percolate to the bottom, while the largest rise to the
top, producing an inversely graded flow. Diffusive remixing
ensures that there is no sharp separation between the small-
particle and large-particle layers, but a continuous transition.

The paper is organized as follows. In Sec. II, we outline
the theoretical developments that lead to the nonlinear ad-
vection diffusion equation for segregation and diffusive re-
mixing. Section III deals with the experimental setup. In Sec.
IV, we present some of our experimental data and compare
them with theoretical predictions. Section V summarizes and
discusses our main findings.

II. THEORY

Consider an avalanche of large and small particles of the
same density that is flowing down a slope inclined at an
angle � to the horizontal �see Fig. 1�. Following Gray and
Chugunov,14 we define a Cartesian coordinate system in
which the x-axis points down the chute, the y-axis points
across the slope, and the z-axis is in the direction of the
upward pointing normal. The bulk velocity u has compo-
nents u, v, and w in each of these directions, respectively.
During the flow the avalanche is sheared and dilates suffi-
ciently for the small particles to percolate down into gaps
that open up beneath them, under gravity, and there is a
return flow of large particles toward the free surface as they
are levered up by squeeze expulsion.4 The solids volume
fraction is assumed to equilibrate itself so that it is constant
and uniform throughout the flow. This allows the free space

to be subsumed into the bulk density � without having to
explicitly consider the interstitial fluid.18 The volume frac-
tions of large and small particles, �l and �s, can therefore be
defined per unit mixture volume. The sum of the volume
fractions is necessarily equal to unity,

�l + �s = 1. �1�

The assumption of spatial uniformity of the solids volume
fraction is a reasonable first approximation. In real flows a
mixture of large and small grains has a lower voids fraction
than in either of the pure phases, since the smaller grains can
fit in the gaps between the large ones. This enhanced packing
gives rise to the top plate motion in Golick and Daniels’11

experiment. The expansion and contraction of the flow as it
segregates is similar in magnitude to the dilation that occurs
as the grains are mobilized from the rest state. In Golick and
Daniels’11 experiment this accounted for a 2.5% change in
the flow height. These changes may affect the segregation
rates, but very little is known about them, especially in
sheared systems,12 and they are neglected in the current
model.

In common with most avalanche models15,16 it is as-
sumed that the acceleration terms and the deviatoric stress
gradients are small compared to the pressure gradient in the
normal direction. This allows the normal component of the
momentum balance to be integrated through the avalanche
depth to show that the pressure is lithostatic,

p = �g�h − z�cos � , �2�

where g is the constant of gravitational acceleration and the
height h=h�x ,y , t� is a function of x, y, and time t. Mixture
theory19,20 defines overlapping partial and intrinsic pressures,
p� and p��, which are defined per unit mixture volume and
per unit volume of constituent �, respectively. These are usu-
ally related by a linear volume fraction scaling, i.e.,
p�=��p��. However, Gray and Thornton21 argued that as the
small particles percolate down through the matrix of large
grains, they support proportionately less of the overburden
pressure and the large grains must necessarily support more
of the load. This led them to introduce a nonlinear partial
intrinsic pressure scaling of the form

x

z

ζ

O

u(z, t)

z = h(x, t)
initial state

final (segregated) state

mixing region (inversion region)

FIG. 1. Sketch of a granular flow down a chute. At the flume entrance, the
binary mixture is normally graded �with all the fine particles on top the
coarse particles�, but as the particles flow down the chute, the large grains
gradually rise to the surface while the small ones percolate down to the base.
This creates an inversely graded layer far downstream. The free surface lies
at z=h�x , t�. The arrows indicate the downstream velocity profile u�z , t�
through the layer.
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p� = f�p , �3�

where the factor f� could deviate away from ��. Guided by
the fact that f l+ fs=1, in order that the partial pressures sum
to the lithostatic pressure, and that f� must be equal to unity
when constituent �= l ,s, is in a pure phase, Gray and
Thornton21 postulated a very simple quadratic form for the
perturbations away from ��,

f l = �l + b�s�l and fs = �s − b�s�l, �4�

where b is the magnitude of the perturbation. The forces
between the large and small particles are determined by the
interaction drag terms in the constituent momentum balance
equations.19 Gray and Chugunov14 assumed that they con-
sisted of a term to ensure the particles were driven by intrin-
sic rather than partial pressure gradients, a linear velocity
dependent drag and a concentration dependent remixing
force that drove particles to regions of lower concentration.
When these are substituted into the normal component of the
constituent momentum balances the normal velocities of the
large and small particles are

wl = w + q�s − D
�

�z
ln �l, �5�

ws = w − q�l − D
�

�z
ln �s, �6�

where q is the maximum percolation rate of the grains and D
is the diffusivity, which controls the strength of the remixing.
In the absence of diffusive remixing, D=0, we observe that
large particles rise until there are 100% coarse grains and
that the small particles percolate down until there are 100%
small grains to create inversely graded sharply segregated
layers. Diffusive remixing tries to smooth out sharp concen-
tration gradients in all directions and may either aid or op-
pose the segregation. We assume that the percolation and
diffusive remixing velocities are of the same order of mag-
nitude as typical normal velocities of the bulk flow. Since the
avalanche is very long and thin, these are much smaller than
typical downstream and cross slope velocities. We therefore
assume that the constituent velocities in the down and cross
slope directions are equal to the bulk flow components,

u� = u and v� = v , �7�

with �= l ,s. As a result, segregation and diffusive remixing
in the downstream or cross-stream directions is neglected.
When the velocity components �6� and �7� and the large-
particle concentration �l=1−�s are substituted into the
small-particle mass balance equation,19 they yield the
segregation-remixing equation

��

�t
+ div��u� −

�

�z
�q��1 − ��� =

�

�z
�D

��

�z
� , �8�

where we have dropped the superscript s on the small-
particle concentration for simplicity, i.e., here and throughout
the rest of the paper ���s.

The first term on the left-hand side of Eq. �8� is the time
rate of change of the small-particle concentration and the

second term is due to advection by the bulk velocity field
u= �u ,v ,w�. The third nonlinear term accounts for segrega-
tion, while the right-hand side introduces the diffusive effects
of remixing. Mathematically, this equation is a second-order
parabolic equation when D�0; for D=0, it reduces to a first
order scalar conservation law, which is consistent with the
equation derived by Savage and Lun4 using information-
entropy theory. Owing to its hyperbolic nature, Eq. �8� with
D=0 may form shocks, i.e., waves across which the small-
particle concentration experiences a jump. When D�0, dif-
fusive remixing smears out the shock wave, replacing it by a
smooth transition in the small-particle concentration.

At that level, we have no specific knowledge of how q
and D vary with particle size, shear rate, etc. Mixture theory
is of little help to elucidate this point. Using their
information-entropy approach, Savage and Lun4 gave more
information on q by showing that it is related to the prob-
ability that a small particle falls into the void space between
large particles. In the �→0 limit, they found that the perco-
lation q is proportional to the shear rate �̇=�u /�z and the
particle-diameter ratio. This behavior is consistent with the
measurements taken by Bridgwater et al.22 In other settings23

�for density-driven segregation�, the segregation flux is
found to be dependent on many parameters, including the
particle diameter. For the sake of simplicity �and making
allowance for our narrow range of experimental conditions�,
we assume that q and D are constant constitutive parameters.
This assumption does not cause much trouble in Gray and
Chugunov’s theory since these authors considered linear ve-
locity profiles �i.e., �̇ is constant across the flow depth�, but it
may lead to difficulties here since we do not consider linear
profiles.

Assuming q and D constant makes it possible to work
out exact analytical solutions to Eq. �8� for certain initial
boundary-value problems. For instance, when the bulk trans-
port term is zero, Eq. �8� is closely related to the Burgers
equation and therefore can be solved using the Cole–Hopf
transformation.14 When diffusive remixing has negligible ef-
fect, exact solutions can be derived using the method of
characteristics.18,21,24–26

If the avalanche has constant uniform thickness and the
particle size distribution is also steady and laterally uniform
in the down and cross slope directions, Eq. �8� reduces to

−
d

dz
�q��1 − ��� =

d

dz
�D

d�

dz
� , �9�

and is subject to no-flux boundary conditions,

q��1 − �� + D
d�

dz
= 0 at z = 0 and h . �10�

Integrating Eq. �9� with respect to z and using Eq. �10� at
either of the boundaries yields a first order ordinary differ-
ential equation, which can be integrated14 to show that steady
laterally uniform concentration of small grains is
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�uniform�z� =
1

1 + A exp�qz/D�
, �11�

where A is an integration constant. The boundary conditions
�10� are not sufficient to determine A and a further criterion
must be imposed. Assuming that the mean concentration of
small particles,

�̄ =
1

h
	

0

h

��z�dz , �12�

is fixed, we can integrate Eq. �11� to determine

A =
exp�− qh�̄/D� − exp�− qh/D�

1 − exp�− qh�̄/D�
. �13�

Note that the solution in Eq. �11� is independent of the actual
velocity profile and depends on the percolation rate and dif-
fusivity through the ratio q /D. In this equation, we can also
introduce a dimensionless ratio Pe=qh /D, which can be re-
ferred to as the Péclet number for segregation and quantifies
how large the segregation effects are compared to the diffu-
sive effects �remixing�; in this ratio, the advection velocity is
the percolating velocity q and the characteristic length is the
flow-depth h. As will be shown later, the steady laterally
uniform solution has an S-shaped form for finite values of
the Péclet number. For large Péclet numbers, there is a rapid
transition from small- to large-particle concentration with in-
creasing height with states approaching the pure phases at
the top and the bottom of the flow. For small Péclet numbers,
the grading appears linear with depth while the surface and
basal values may be far from the pure states. For Pe→�
�pure segregation�, the particles separate out to form two
distinct inversely graded layers with all the large particles on
top of all the fines and a sharp concentration jump at z= �̄h.
At the opposite extreme, for Pe→0 �no segregation�, the
small particles are uniformly distributed with concentration
��z�= �̄ throughout the depth of the flow. Later, Eq. �11� will
be used to estimate the values of q /D.

In this paper we assume that the cross stream and normal
velocities, v and w, are equal to zero and we solve Eq. �8� for
the steady-state solution in a steady uniform thickness flow
using a Galerkin method described by Skeel and Berzins27

and implemented in MATLAB through the built-in function
pdepe. The no-flux condition, Eq. �10�, is applied at the sur-
face and base of the flow and at the inflow the initial con-
centration is unstably stratified,

��0,z� = 
1, h1 	 z 	 h = h1 + h2

0, 0 	 z 	 h1,
� �14�

with a layer of small particles of depth h2 on top of a layer of
large particles of depth h1. Kinetic sieving and squeeze ex-
pulsion drive a readjustment of the particles into a stable
configuration, in which, sufficiently far downstream, the
solution approaches the steady laterally uniform solution in
Eq. �11�.

The laterally uniform solution �11� depends on the mean
concentration �̄. In general, �̄�x� is not uniform, but evolves
from its inflow value to the steady uniform value far down-

stream. To show this, we use Leibniz’ integral theorem to
integrate Eq. �8� through the flow depth28 assuming v=0;
applying both the kinematic16 and no-flux �Eq. �10��
boundary conditions yields the depth-averaged segregation
equation

�

�t
�h�̄� +

�

�x
�h�u� = 0, �15�

where the depth-averaged small-particle flux

�u =
1

h
	

0

h

��x,z�u�x,z�dz . �16�

For steady-state concentration distributions, Eq. �15� implies
that the total downstream flux of small particles is conserved,
i.e.,

h�u = const. �17�

The conservation property implies that the depth-averaged
concentration �̄, in the exact solution, given by Eqs. �11� and
�13�, can be directly related to the inflow condition, Eq. �14�.
The depth-averaged conservation of total mass, when v=0,
satisfies the continuity equation15

�h

�t
+

�

�x
�hū� = 0, �18�

which implies that for a steady flow,

hū = const. �19�

In a steady uniform thickness flow, the depth-averaged
downstream velocity is therefore also independent of x. If
either � or u is independent of z, then �u= �̄ū and the con-
served quantities �17� and �19� imply that �̄ is uniform in a
steady uniform thickness flow. In general, �u� �̄ū and the
depth-averaged concentration of small particles �̄ will
evolve with the downstream coordinate x as they percolate
down into slower moving regions of the flow. Note that the
depth-averaged downstream flux of small particles in Eq.
�17� can be related to the total flow rate of small particles
Qsmall �used later� by Qsmall=�Wh�u, where W is the flume
width and � is the constant bulk density.

III. EXPERIMENTAL FACILITY AND PROCEDURES

A. Experimental setup and material

Experiments were conducted in a rough-bottomed flume
with glass sidewalls. The flume was 3 m long and 2 cm wide;
the small width was desirable to avoid three-dimensional ef-
fects in the segregation patterns, but it produced sidewall
friction that affected flow features.29 The flume laid on a 4 m
long aluminum plate, which was supported by a frame made
of profiled aluminum beams to ensure rigidity. It could be
inclined from 0° to 45°, but here all the experimental data
reported were obtained with a slope �=29°. Its position was
accurately controlled using a digital inclinometer with a pre-
cision of 0.1°. The flume base was roughened by inserting a
double-sided adhesive tape, over which beads were glued.
Filming the bed particles from the sidewall, we did not ob-
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serve any particle dislodged from the tape, but we could not
ensure that this never happened. Tests with different rough-
ness sizes were conducted and we finally selected 1 mm
particles for the roughness because they allowed us to obtain
uniform depth flows over a wider range of flow rates.

We used binary mixtures of small beads �ranging from
0.75 to 1 mm in diameter� and large beads �2 mm in diam-
eter, with a narrow distribution around this value�. For both
sizes, the density was 2500 kg /m3. Small beads were trans-
parent, while the larger ones were colored in black; this
choice produced the best contrast for our images. To avoid
electrostatic effects resulting from particle-particle and
particle-sidewall friction, we grounded all metallic pieces
�sieve, hopper, and frame�. After each run, the particles were
collected in a bin placed below the flume outlet; then they
were poured in a cylindrical copper duct to remove electric
charges as much as possible. Particles were also sieved and
reused for the next experiment. Experiments were run under
well controlled conditions �50% humidity, 25 °C tempera-
ture�. The flow rates of small particles ranged from 20 to
100 g s−1, while the flow rates of large particles were in the
35–60 g s−1 range �see Table I�.

Initially, each bead class was placed in a separate reser-
voir attached to the flume inlet. As sketched in Fig. 2, the
reservoirs were separated by a splitter plate, whose inclina-
tion partially controlled flow rates of both the large and small
beads; they were supplied with beads by two cylindrical hop-
pers. There were numerous constraints that made the design
of the splitter and reservoirs difficult. First, the velocity pro-
file had to be as continuous as possible, which implied that
the splitter plate had to be inclined at a shallow slope �i.e.,

parallel to the flume base� in order to avoid disturbances.
Second, the velocity mismatch between small and large
beads at their interface needed to be as low as possible.
Third, the position and inclination of the splitter plate had to
vary in order to adjust the respective inflow rate of large and
small particles. After much trial and error, a deflecting plate
was added in the lower reservoir to help the large particles to
follow streamlines parallel to the base; the walls of the upper
reservoir containing small particles were made rougher to
reduce their velocity.

B. Image processing

In order to investigate how small and large particles seg-
regate when flowing down the flume under steady flow con-
ditions, small beads were injected from above while large
particles crept along the flume base. The small particles rap-
idly percolated to the bottom, while the large ones drifted to
the top of the flow. In this setting, the temporal vertical seg-

TABLE I. Inflow flow-depth h1 and h2 in millimeters �see Fig. 2�; duration of the experiment in seconds; mass flow rates in large and small particles, Qlarge

and Qsmall, respectively, in g/s; flow-depth h �in millimeters� at different positions �in centimeters�. All experiments were conducted at �=29°.

Run h1 h2 texpt Qlarge Qsmall

h

x=0 x=3.5 x=50 x=100 x=180 x=260

1 25.4 6.3 71.5 55.6 22.3 31.7 24.0 24.0 21.5 20.5 17.0

2 25.4 8.3 94.5 47.5 49.0 33.7 23.0 26.5 25.0 21.5 17.0

3 25.4 10.3 85.6 47.0 60.9 35.7 23.5 26.0 25.0 22.5 17.5

4 25.4 12.3 86.9 41.8 75.8 37.7 24.5 25.0 25.0 23.5 18.0

5 25.4 14.3 90.2 40.8 92.9 39.7 20.5 24.0 26.0 26.5 21.0

6 31.7 6.0 66.9 58.8 15.1 37.7 26.5 23.0 20.0 19.5 17.0

7 31.7 8.0 63.5 54.5 26.3 39.7 27.5 25.0 22.0 20.0 17.0

8 31.7 10.0 66.5 49.9 38.5 41.7 28.0 26.0 25.0 21.5 17.5

9 31.7 12.0 64.3 47.2 57.5 43.7 29.0 27.0 28.0 25.0 19.0

10 31.7 14.0 62.1 40.4 72.6 45.7 30.0 31.0 31.5 29.0 21.0

11 35.1 6.0 69.6 53.3 21.6 41.1 28.0 27.5 22.0 20.5 16.5

12 35.1 8.0 63.6 47.6 34.4 43.1 28.0 27.5 28.0 27.5 17.0

13 35.1 10.0 67.3 43.8 50.3 45.1 28.5 28.0 28.5 28.5 19.0

14 35.1 12.0 66.7 40.8 67.2 47.1 30.5 31.0 30.5 26.5 19.5

15 35.1 14.0 64.3 34.2 84.7 49.1 34.0 32.0 31.0 27.0 20.0

16 39.9 6.0 63.1 55.1 18.7 45.9 37.0 30.5 23.5 18.5 16.0

17 39.9 8.0 65.9 50.3 29.2 47.9 38.0 34.0 31.0 23.0 17.0

18 39.9 10.0 62.6 47.1 41.2 49.9 39.0 35.0 34.5 28.0 18.0

20 39.9 12.0 64.7 42.9 52.0 51.9 39.0 35.5 35.0 29.5 20.5

21 39.9 14.0 66.5 37.2 65.2 53.9 39.0 35.5 33.5 28.0 20.0

�

�

large particles small particles

h2

h1deflector

lockgate

FIG. 2. �Color online� Sketch of the feeding system. The arrowed arcs
indicate that the plates can be tilted.
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regation process was visible through the downstream varia-
tion in the small-particle concentration ��x ,z�. This segrega-
tion process was filmed by a high-speed camera �Basler
piA640, 648
488 pixels� running at 160 fps, which was
mounted on a mobile frame. The camera equipped with a
12.5 mm lens �Fujinon HF12.5SA-1� was able to film a 7 cm
wide field, which was free of vignetting effects. To increase
the length of the observing window up to 70 cm, we repro-
duced the same experiment ten times and for each run, we
shifted the camera by 7 cm along a glider and took a series of
2000 images. Then, we averaged these 2000 images to obtain
a mean-value image. Finally, we stitched ten mean-value im-
ages to obtain a panoramic view of the flume, as shown in
Fig. 3.

Two halogen lamps were linked to the camera. They lit
the same pane as the one filmed by the camera, which made
it possible to measure the velocity and concentration profiles
at the sidewall with the same light conditions even when the
camera was displaced. Note that there are some horizontal
streaks in Fig. 3, in particular in the bottom left corner,
which may lead to the erroneous conclusion that there were
local sharp gradients in the particle concentration near the
flume bottom. These light streaks originated from the glares
produced on spherical particles by the halogen lamps; the
local brightness increase due to these glares induced an ap-
parent increase in the small-particle concentration. More-
over, they also neatly delineated slowly moving regions of
almost purely large and purely small particles, which devel-
oped near the base of the flow.

To measure the concentration profiles at the sidewall, we
needed to map the gray levels �8 bit encoding, i.e., 256 gray
levels� of our images to the concentration of small particles.
To that end, we prepared different samples by varying the
proportions of small and large beads. Each sample was gen-
tly poured in a cylindrical transparent box �made up of the
same glass as that of the chute panes�. We mixed it carefully
to avoid segregation. Each sample was stirred and filmed
several times under the same lighting conditions as the chute;
we repeated the procedure until we obtained 20 different
images of the same sample. We averaged the gray value over
the 20 images. We then derived a nonlinear curve that
mapped the gray level � to the concentration in the small
beads �s :�s=�3 /9346−�2 /266+0.614 743�+14.81.

Stitching several images taken with a wide-angle lens
�implying substantial image distortion, in particular on the

image borders� is not easy. The overlapping field between
two neighboring images was thin and distorted, which im-
plied that images must be processed to correct distortion.
After testing different solutions, we finally decided to correct
the image perspective by imposing that the bed and free sur-
face �which appeared as curved lines on raw images� must be
straight lines. Images were also aligned so that there was no
mismatch between the position of the bed and free surface
from one image to another.

The velocity profiles were measured using classic
particle imaging velocimetry techniques.30 Consistency
was checked by visual inspection of different couples of
images �brightness and flare might have biased velocity
measurements�.

IV. EXPERIMENTAL RESULTS

A. Preliminary tests

Preliminary tests were carried out to delineate the flow
rates �by varying the inflow flow-depth h1 and h2� and chute
inclination � for which a steady uniform depth flow occurred
�i.e., a flow for which the flow depth was uniform and con-
stant over a significant length and for sufficiently long
times�. It turned out that our results were greatly influenced
by minute changes in the chute inclination and the inflow
rates, a situation that is encountered with monosized
particles31 and is exacerbated with binary mixtures. To illus-
trate this dependence, we report the results for a chute incli-
nation of �=29°. Table I shows the flow depths at different
positions along the flume as a function of the inflow condi-
tions fixed by h1 and h2. The inflow depth h1 �controlling the
large-bead supply� could range from 0 to 60 mm, but in
practice, we had to narrow the h1 range to 25–40 mm for the
following reasons. For h1�25 mm, the free surface was
blurred by saltating particles; flows were then in a dilute
kinetic regime, for which the theory outlined in Sec. II does
not hold. For h1�40 mm, a stationary layer made up of
large beads and similar to the superstable heap reported by
Taberlet et al.32 formed along the base of the flume. For each
h1 value, h2 values �controlling the small-bead supply� were
increased from 6 to 14 mm in 2 mm steps. For h2�6 mm,
no steady inflow took place over the flume length monitored
by the cameras �presumingly because the flume bottom was
not rough enough for a mixture rich in large particles�, while
for h2�14 mm, the large-bead flow rate was too low com-
pared to the small-bead flow rate.

Table I shows that the large-bead flow rate depended on
that of the smaller beads: for a given aperture of h1, Qlarge

decreased nearly linearly with increasing h2. In contrast,
when h2 was fixed and h1 varied, there was no clear trend for
the total mass flow rate, which could decrease or increase
with h1.

No genuinely steady uniform depth region was observed
in our flume, that is, the flow depth never reached a constant
value, but slowly decreased along the chute. However, for
some runs, this decrease was sufficiently slow for a nearly
steady uniform flow to take place. For instance, for runs 4, 9,
10, 12, and 13, the difference in the flow depths between
x=50 and x=160 cm was lower than 7%. For other runs, the
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FIG. 3. Raw image of the segregation process obtained by averaging 2000
images at ten downstream locations and stitching them together. Darker
regions correspond to higher concentrations of large grains and lighter re-
gions to higher concentration of fines �the sidebar on the right is the gray
level index, which ranges from 0 to 255 since the image was 8 bit encoded�.
The flow is from left to right with the inflow at x=0. Note that the height to
length ratio is 0.0343, so that horizontal gradients are much less than they
might appear.
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difference was close to 15%, but on some occasions �e.g.,
run 16�, it could be as high as 40%. Flow-depth decrease
implies that the flow was slightly accelerating, which may be
the consequence of the roughness conditions imposed. In-
deed, since the chute roughness was made up of small par-
ticles, the largest particles, which slid along this roughness
when entering the chute, encountered weak resistance and
accelerated vigorously. Note that for low h1 values �i.e., for
low flow rates in large beads�, the flow-depth profile exhib-
ited a complex pattern �e.g., see runs 2–5�: the flow depth
first decreased, then increased slowly toward a nearly con-
stant value, and finally decreased again near the flume outlet.
The flow-depth increase can be explained by the segregation
process: the basal layer getting richer in small particles, the
increase in the flow resistance caused the flow to decelerate.
The decrease at the flume exit is common for slow, subcriti-
cal flows: when particles fall off the flume, the downstream
normal stress decreases abruptly, which causes the flow to
accelerate upstream �in subcritical flows, the disturbances
can move upstream�.

B. Comparison with theory

Gray and Chugunov’s theory applies to a wide range of
flow regimes, but since the segregation parameters q and D
are neither known nor easy to measure independently, we
focused our attention on steady uniform depth flows, which
allowed us to use well-defined constraints when fitting these
parameters to our data. After delineating the flow regimes,
we then conducted additional tests to investigate the remix-
ing and segregation in steady uniform depth flows. Table II
reports the flow conditions for these specific runs. To show
here how theory compares with experimental data, we have
selected one typical run from these experiments, which will
be analyzed in detail: run 22. For other runs, we will just
provide the values of the fitted parameters �see Table III�, the
flow pattern being similar to that of run 22.

To compare our data with theory, we first needed to de-
termine the percolation rate q and diffusivity D. To that end,
we considered that very far downstream from the chute inlet,
the particles size distribution was in the steady laterally uni-
form state, so that we could use the exact solution �11� to fit
q /D to a concentration profile. Figure 4 shows the steady
laterally uniform concentration profile �uniform�z� measured
at x=70 cm from the inlet and the best fit obtained by ad-
justing Eq. �11� using a least-squares technique. The theoret-
ical profile has an S-shape that closely describes the varia-

tions in �uniform with depth, for parameters �̄=0.74 and
Pe=19, i.e., qh /D=19. To show how sensitive the results are
to changes in the Pe value, we have also plotted the theoret-
ical curves corresponding to Pe=15 and Pe=23 �i.e., a varia-
tion of 20% with respect to the adjusted value Pe=19,
which corresponds to the magnitude of the uncertainty on q
and D� on the same plot.

The inflow condition �14� and the steady-state solution
�11� are related by the conservation property �17�. The down-
stream velocity u plays a very important role in ensuring that
the depth-averaged concentration �̄ is correct far down-
stream. We assumed that u was independent of x, but was
dependent on z. Assuming a linear velocity profile with
depth18,21,24 significantly underpredicts the depth-averaged
concentration �̄ far downstream. Instead, we found a good
approximation by fitting an exponential profile to experimen-
tal data. The data used for this were extracted from a 35 cm
long window, where a nearly steady uniform flow occurred.
We used the following parametrization:

u�z�
ū

=
�

e� − 1
exp��

z

h
� , �20�

where � is an adjustable parameter and ū is the depth-
averaged downstream velocity. There is no specific physical
justification for this parametrization; it is just a convenient
mathematical representation of concave velocity profiles.

TABLE II. Inflow flow-depth h1 and h2 in millimeters �see Fig. 2�; flow-
depth h �in millimeters� of the steady uniform flow; mass flow rates in large
and small particles, Qlarge and Qsmall, respectively, in g/s; flow-depth aver-
aged velocity ū in mm/s. h, Qlarge, Qsmall, and ū were measured in the steady
uniform regions. Chute inclination �=29°.

Run h1 h2 h Qlarge Qsmall ū

22 24 9.5 24 35.7 47.2 34.5

23 35 9.3 28 45.4 42.1 26.6

24 20 6.3 19 34.7 23.6 35.2

25 18.3 10.7 20 31 46 36.4

TABLE III. Values of the parameters for runs 22–25: parameter � of the
velocity profile �20�; diffusivity D in mm2 s−1; percolation rate q in mm s−1;
mean small-particle concentration �̄; Péclet number Pe=qh /D; depth-
averaged shear rate �̄̇= ū /h in s−1. Chute inclination �=29°.

Run � D q �̄ Pe �̄̇

22 3.24 2.52 1.99 0.74 19 1.44

23 3.1 2.08 1.23 0.50 16.5 0.95

24 2.3 2.79 1.61 0.52 11 1.85

25 2.9 2.66 1.74 0.67 13 1.81
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FIG. 4. Concentration profile measured at x=70 cm from inlet �gray solid
line� for run 22; the black solid line represents the theoretical concentration
profile given by Eq. �11� with Pe=qh /D=19 and �̄=0.74. Data scaled with
H=h=24 mm. To show how sensitive the curves are when altering the
value of the Péclet number, we also plot the concentration profiles for
Pe=15 �dotted curve� and Pe=23 �dashed curve�.
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Figure 5 shows both the empirical profile u�x ,z� and the
data. A reasonably good fit was obtained by taking �=3.24.
The data scattering around this fitted curve shows that the
velocity profile was not completely independent of x, but the
deviations from the mean trend were not significant, which
justifies that we considered u as a function of z solely. In
contrast, if we consider the mixing �i.e., the region in which
the inverse grading process occurs� by taking the 35 cm win-
dow just upstream of this one, the resulting velocity was
markedly different �see Fig. 5�b��: clearly, there was a depen-
dence on x, reflected here by a larger scattering of measure-
ment points, and the top layer close to the free surface �ap-
proximately 20% of the total flow depth� experienced
substantial acceleration. Figure 6 shows the normal velocity
profiles w�x ,z� with the same conditions as for Fig. 5. In the
steady uniform region �see Fig. 6�a��, the normal velocity is
close to zero, but a recirculation cell is conspicuous in the
upper half of the flow, where some velocity profiles were
negative close to the free surface �which means that particles
went down� while in the middle and above �for z /h in the
0.4–0.8 range�, all velocities were positive �particles went
up�. This recirculation cell in the uniform flow regions may
be an indication that convection rolls disturbed the main flow
�simple shear� or that the remixing caused recirculation. In
the mixing region �see Fig. 6�b��, the velocity profiles exhib-
ited much more variability, which was expected since the

finest particles at top went down while the largest particles in
the middle of the flow went up.

Having determined an approximation for the nonlinear
velocity field u and the Péclet number Pe, we numerically
solved Eq. �8� under steady uniform depth flow conditions,
subject to the boundary conditions �10� and the inflow con-
dition �14�, using the pdepe routine of MATLAB. For this case,
the governing Eq. �8� reduces to a nonlinear parabolic equa-
tion of the form

�

�x
��u� −

�

�z
�q��1 − ��� =

�

�z
�D

��

�z
� . �21�

In this equation, D was crudely estimated so that agreement
between theory and experiment looked correct; in practice,
we tuned D so that the computed �=0.1 contour line, which
was obtained by solving Eq. �21� numerically, approached
the experimental values. Although this procedure may seem
somewhat cursory, it was not more arbitrary or inaccurate
than other strategies we tested in parallel. Uncertainties on D
and q could be as large as 20%.

Figure 7 reports the variation in the concentration � as a
function of x and z. Panel �a� reports the concentration map
deduced from the raw image shown in Fig. 3; only the con-
tour lines corresponding to a given level of concentration are
represented. Plot �b� shows the concentration map obtained
by solving Eq. �21� numerically. The lower plot gives a few
concentration profiles measured at different places along the
chute; we have also reported the theoretical predictions. Al-
though the theoretical concentration map is consistent with
the experimental map, there are a few differences in the mix-
ing region. As shown in Fig. 7�c�, the concentration profiles
at the entrance and exit of the observing window had an
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FIG. 5. Experimental �gray dots� and empirical �solid line� streamwise ve-
locity profiles u�x ,z� for run 22. �a� Profiles taken in the steady uniform
region �over a 35 cm long window from x=35 to x=70 cm�; profiles were
taken every 5.8 mm. �b� Profiles in the upstream part of the flow �mixing
region�, where the velocity profile exhibits an x-dependence �over a 35 cm
long window from x=0 to x=35 cm�; profiles were taken every 5.8 mm.
The empirical profile �solid line� is obtained by fitting Eq. �20� on the data
pertaining to the steady uniform region; we obtained �=3.24. To give an
idea of how sensitive the results are to changes in the � value, we report the
curve corresponding to �=2.5 �dotted line� and �=4.0 �dashed line�.
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FIG. 6. Experimental normal velocity profiles w�x ,z� for run 22. �a� Profiles
taken in the steady uniform region. �b� Profiles in the upstream part of the
flow �mixing region�. Same caption as for Fig. 5.

0

0.2

0.4

0.6

0.8

1

z

H

x/L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00

0.5

1

(a)

0

0.2

0.4

0.6

0.8

1

z

H

x/L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00

0.5

1

(b)

z

H

0 0.5 1.00

0.2

0.4

0.6

0.8

1.0
x/L = 0.01

0 0.5 1.00

0.2

0.4

0.6

0.8

1.0
x/L = 0.25

0 0.5 1.00

0.2

0.4

0.6

0.8

1.0

φs

x/L = 0.5

0 0.5 1.00

0.2

0.4

0.6

0.8

1.0
x/L = 0.75

0 0.5 1.00

0.2

0.4

0.6

0.8

1.0
x/L = 1.0

(c)

FIG. 7. Comparison between theory and experiment for run 22. �a� Concen-
tration map for run 22. �b� Theoretical prediction with D=2.52 mm2 /s,
�=3.24, and q=1.99 mm /s. �c� Comparison between theoretical concentra-
tion profiles �solid lines� and data �dots� at a series of downstream locations.
Data scaled with H=h=24 mm �flow depth� and L=0.7 m �length of the
observing window�. Note that the height to length ratio is 0.0343, so that
horizontal gradients are much less than they might appear.
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S-shape, which is correctly accounted for by theory, but in
the mixing region, the measured profiles were blunt whereas
theory predicts a more contrasted profile between the top and
the bottom layers. Note also that for the leftmost subplot in
Fig. 7�c� �for x /L=0.01�, the scatter in the measured concen-
tration �s reflects the layering effect discussed above.

Several explanations can be put forward to explain the
discrepancies in the mixing region, where the percolation
took place. Some authors including Schröter et al.33 and Ul-
rich et al.34 pointed out that friction at the sidewall may
induce convection rolls and promote remixing rather than
segregation. Although this phenomenon was mainly ob-
served in vertically shaken mixtures, we can think that a
similar process occurs in gravity-driven shear flows in nar-
row chutes: indeed, sidewall friction induces a strong veloc-
ity gradient in the cross-stream direction, which drives the
smaller particles laterally to the sidewall and initiates a sec-
ondary flow;35,36 note that the packing effect on the wall �for
binary mixtures, the finest particles are more easily found
next to a flat surface than the coarsest one� can also explain
this phenomenon. Taking a closer look at the free surface
revealed that small particles came out in regularly spaced
groups of a few particles all along the centerline, which sug-
gested the existence of convection rolls with a well-defined
length. Another explanation for the discrepancies lies in the
difference between the actual velocity field in the mixing
region and that used in the computation. Recall that the ve-
locity profile �20� used in the computation was fitted to data
obtained from a 35 cm long window downstream of the mix-
ing region �where a steady uniform flow region took place�.
As shown in Fig. 5�b�, the velocity profile in the mixing
region differed from the assumed profile near the free sur-
face. At the same time, the normal velocity component w
was nonzero �see Fig. 6�, which confirms that the velocity
field in the mixing region was not the fully developed field
considered in the numerical computations.

We repeated the procedure for other flow conditions.
Table III reports the best-fit values of the velocity-profile
parameter �, the diffusivity D, the percolation rate q, the
mean small-particle concentration �̄, and the Péclet number
Pe. As shown by Table III, while there is little dependence of
the segregation parameters q and D on the velocity param-
eter �, the segregation parameters are found to slightly de-

pend on the depth-averaged shear rate �̄̇= ū /h: the diffusivity
seems to linearly increase with �̄̇, while the percolation rate
curve is bell-shaped with a maximum reached at �̄̇=1.4 s−1.
This contrasts with early observations by Bridgwater et al.,22

who found that the percolation rate q is proportional to the
shear rate. The variation range of � is however too narrow to
be conclusive on this point. Furthermore, given the uncer-
tainty on the q and D and the narrow range of variation in �̄̇,
it is difficult to be conclusive on the dependence of q and D
on �̄̇ �Fig. 8�.

V. SUMMARY AND CONCLUDING REMARKS

We used a narrow flume to study the evolution of a
binary granular mixture made up of spherical glass beads
�1 and 2 mm in diameter�. Initially, the mixture was normally
graded, with all the small particles on top of the coarse
grains. When flowing, particles segregated, that is, the small-
est particles percolated to the bottom, while the largest were
squeezed up toward the free surface. As usual for this bead-
size ratio, a competing process, here referred to as diffusive
mixing, smeared out the jump from the small-particle to the
large-particle layers. Using a high-speed camera, we mea-
sured the evolution of the small-particle concentration as a
function of time and position �together with the velocity pro-
file� at the sidewall.

The experimental data were then used to test a theoreti-
cal model that describes segregation-remixing in dry granu-
lar avalanches as a nonlinear advection diffusion process.14

This equation involves two parameters: the maximum perco-
lation rate q �which controls the segregation strength� and
diffusivity D �which quantifies the diffusive effects�. Using a
steady laterally uniform solution, which specifies the small-
particle distribution under steady uniform depth conditions,
we fitted the ratio q /D, while the parameter D was tuned
qualitatively until a visually good agreement was obtained
between theory and experiment in the mixing regime �the
region in which the grading inversion occurred�. Excellent
agreement between theory and experiment was obtained in
the downstream region, in which the concentration profile
reached an equilibrium state and exhibited an S-shape. How-
ever, to get the right depth-averaged concentration �̄ far
downstream, it was very important to use the measured ve-
locity profiles. Upstream, in the mixing region, theoretical
profiles did not closely match the experimental data. One
reason for this discrepancy lies in the velocity distribution: in
the theoretical applications, we assumed that the velocity
profile depended on depth solely �i.e., it showed no depen-
dence on the downstream position�. Experimentally, we ob-
served that this assumption held true sufficiently far down-
stream of the flume inlet, but in the mixing region, which
was located near the chute entrance, the velocity field was
quite complicated. Another possible explanation lies in the
packing effects near the wall: small particles are more likely
to concentrate near the sidewall in the mixing region than in
regions dominated by pure �graded or inversely graded�
states. This is consistent with what Golick and Daniels11 re-
ported �note that their measurements may have been influ-
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FIG. 8. �Color online� Variation in q and D with �̄̇. Error bars with magni-
tude 20% are also reported.
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enced by centrifugal effects� and can be explained by a
cross-stream �in the y-direction� particle segregation. This
also explains why this effect dies down when the particles
separate out. A third way of explaining the discrepancy could
be that the flux function in Eq. �8� proposed by Gray and
Chugunov14 is not the quadratic form −q��1−��, but may
be better described by a different convex curve. For instance,
expressions such as fs=�s−q��s�l�n and f l=�l+q��s�l�n

�with n�1� satisfy the constraints fs+ f l=1 and f�=1 when
��=1 ��= l ,s�, and lead to a nonquadratic convex flux func-
tion −q���1−���n in Eq. �8�. More work is needed to eluci-
date the influence of the flux function on the segregation-
remixing process.

Several experiments were conducted at constant slope,
but with varying inflow rates. These experiments showed
that the model parameters q and D did not depend on the
shear-rate strength �, but may slightly depend on the depth-
averaged shear rate �̄̇, a finding that contrasts with earlier
observations made by Bridgwater et al.,22 Golick and
Daniels,11 and May et al.,12 who reported significant varia-
tions in q with shear rate. This suggests that the segregation
and diffusive remixing are only weakly dependent on the
depth-averaged shear rate �̄̇ once sufficient dilation has oc-
curred. The variation in �̄̇ is too narrow to be conclusive at
this point.
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