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A microstructural approach to bedload transport:

spatio-temporal fluctuations of the particle activity.

J. Heyman1, H.B. Ma2, F. Mettra1 and C. Ancey1

Abstract. This article examines the spatial and temporal behaviors of the dynamics
of bedload particles in water. We focus particularly on the fluctuations of particle ac-
tivity, defined as the number of moving particles per unit bed area. Based on a stochas-
tic model recently proposed by the authors [Ancey and Heyman, 2013], we derive the
second order moments of particle activity analytically; that is the spatial and spatio-temporal
correlation functions of particle activity. From these expressions, we show that fluctu-
ations of particle activity in space depend greatly on the scale of observation. To link
spatial fluctuations to temporal fluctuations, we consider the validity of Taylor’s frozen-
flow hypothesis. Three different experimental data sets are used to test the theoretical
results and the hypothesis. We provide a general method to find model parameters based
on experimental data. We show that the stochastic model described spatial patterns of
particle activity well at all scales. However, we demonstrate that the frozen-flow hypoth-
esis proves to be inaccurate for most of the experiments.

1. Introduction

Born in the late 1930s with the seminal work of Hans Al-
bert Einstein [Einstein, 1937, 1950], the stochastic approach
to bedload transport has had a surge of interest among the
scientific community in recent years [Papanicolaou et al.,
2002; Jerolmack and Mohrig , 2005; Ancey et al., 2008, 2006;
Valyrakis et al., 2010; Ancey , 2010; Furbish and Schmeeckle,
2013]. This revival has been combined with a substantial im-
provement in laboratory measurement techniques. In partic-
ular, the use of high-speed films of particle motion together
with powerful digital processing, has allowed for ground-
breaking precision in the description of sediment particle
dynamics [Roseberry et al., 2012; Martin et al., 2012; Laje-
unesse et al., 2010; Böhm et al., 2004].

The major advantage of a stochastic framework compared
to a classic description of sediment transport lies in the in-
formation it gathers about first and higher order moments
(for instance the variance). This advantage is particularly
suited to bedload transport rates, which are known to often
show fluctuations much larger than the mean [Singh et al.,
2009; Ancey et al., 2006; Hoey , 1992; Drake et al., 1988;
Kuhnle and Southard , 1988].

Among the recent studies on stochastic sediment trans-
port, Ancey et al. [2008] developed a model describing the
fluctuations in the number of moving particles in an observa-
tion window, based upon their observations of an simplified
particle flow experiment. They showed that the large fluctu-
ations in the number of moving particles could be explained
by a “collective” effect on the entrainment of particles. Fur-
bish et al. [2012a] provided insights into the random motion
of particles and the consequences of this on macroscopic
conservation equations. Based on a large set of experimen-
tal particle trajectories, they showed that particle activity
(defined as the number of moving particles per unit bed
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length) is associated with a diffusive flux due to particle
velocity fluctuations.

From an other perspective, stochastic concepts are also
applied to describe the interaction of turbulent fluid and
bed particles. It is now widely accepted that, not only the
mean fluid velocity, but also its fluctuating component is
involved in particle entrainment [Papanicolaou et al., 2002;
Valyrakis et al., 2010].

Most current stochastic theories for bedload transport
avoid a complete mechanistic description of fluid-particle
or particle-particle coupling, but assume basic random pro-
cesses meant to represent them (e.g. probable entrainment
of a particle by the turbulent fluid, change in its moving
velocity) [Ancey et al., 2008; Lajeunesse et al., 2010]. Most
of them also assume stationary and homogeneous transport
conditions so that spatial fluctuations are ignored.

Ancey and Heyman [2013] recently proposed a model that
allows the study of the spatial fluctuations of particle activ-
ity. By studying the erosion, deposition and motion of par-
ticles on a lattice made of regular cells, they ended up with
an exact Fokker-Planck equation describing the process in
both space and time. The model is valid for transport condi-
tions ranging from low to moderate solid discharges. These
conditions are often found in natural streams.

This paper aims to push forward Ancey and Heyman
[2013] model by drawing on some of the major clonclusions
introduced by spatio-temporal variability in bedload activ-
ity. While Ancey and Heyman [2013] paper concerned the
theoretical foundations of the model, this article focuses on
practical issues. In doing so, we will demonstrate how the
model reproduces the spatial and temporal fluctuations of
the bedload activity. The second purpose of this paper is
to test the model against various experimental data. These
data include the description of particles trajectories in a
time-space plane. At a given time, particle positions define
a cloud of points in space that can be associated with a spa-
tial point process [Cox and Isham, 1980]. Point processes
have been extensively studied in sociology, biology, geogra-
phy and many other fields of science [Baddeley , 2007; Jensen
and Nielsen, 2001; Ogata, 1999] and a whole mathemati-
cal framework has been specially constructed for these dis-
crete processes. The model proposed by Ancey and Heyman
[2013] starts from a slightly different mathematical frame-
work, known as Markov process [Gillespie, 1991]. However,
the Poisson representation [Gardiner and Chaturvedi , 1977]
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Figure 1. (a) Particle trajectories in a time-space plane.
(b) Discretization of the space in cells of equal length ∆x
and counting the number of particles in each cell i at a
given time t.

provides a nice link between the two approaches (i.e. point
process and Markov process) that will be illustrated in this
article.

The paper is organized as follows. First, to make the
article self-contained, we briefly go over how the general
stochastic equations governing the granular phase are de-
rived and how the Poisson representation helps to simplify
the equations. A rigorous and detailed derivation is not
provided here since it has been extensively studied [Ancey
and Heyman, 2013]. Next, we calculate the second-order
moments (the spatial correlation function and the spatio-
temporal correlation function) and show how they affect the
variability of the bedload activity in both time and space.
We also give the analytical expressions of the K-function
[Ripley , 1976], a quantity used in point process analysis.
Finally, we use three different experimental studies to test
the model, two of which have already been published [Böhm
et al., 2004; Roseberry et al., 2012]. The third study was re-
cently carried out by the authors. A general method to cal-
ibrate model parameters on experimental data is proposed.

2. Theory

2.1. Physical space

The transport of bedload particles occurs in a thin layer
over the surface of an erodible bed. Particles generally move
in a preferential direction (down the slope, parallel to fluid
flow) so that it is possible to restrain the study to a one-
dimensional space in that principal direction. A generaliza-
tion to a two-dimensional space, while technically possible,
goes beyond the scope of this paper.

Let us consider a one-dimensional space that represents
a river reach, or an experimental flume. The space is di-
vided into cells of equal length ∆x. Each cell of this lattice
is labelled by an index i. We call Ni(t) the random variable
describing the number of moving particles ni in cell i at time
t. Thus, we introduce the multivariate probability:

P ([n1, n2, . . . ] , t) = P (n, t), (1)

where n is the vector of all ni. In other words, P (n, t) is the
probability of simultaneously observing N1(t) = n1, N2(t) =
n2 · · · . Also, xi denotes the position of the center of the cell
i. The density of moving particles per unit bed length in cell
i, also termed the particle activity, is γ(xi, t) = Ni(t)/∆x
[Furbish et al., 2012a].

2.2. Phenomenology

Bedload transport describes the motion of bed particles
- sliding, rolling or saltating- sheared by a fluid. Ancey and
Heyman [2013] distinguished three independent mechanisms
involved in particle motions: entrainment, deposition and
transport. These physical mechanisms are reviewed briefly
below.

The entrainment of a resting particle by a fluid has been
extensively studied and its random character is widely ac-
cepted [Dwivedi et al., 2011; Valyrakis et al., 2010; Celik
et al., 2010; Detert et al., 2010; Wu and Chou, 2003; Papan-
icolaou et al., 2002; Einstein, 1950]. Certain experiments
have suggested that other mechanisms of entrainment exist,
such as collective entrainment by impact and destabilization
[Ancey et al., 2008; Heyman et al., 2013], or by coherent tur-
bulent fluid structures [Drake et al., 1988].

After being entrained, a particle is dragged by the fluid for
a certain time before depositing onto the bed one more. The
deposition rate, defined as the inverse of the travelling time
[Lajeunesse et al., 2010], is highly sensitive to the properties
of the turbulent fluid, bed packing, particle shape, dynamics
of impact, etc. Thus, deposition is also considered to be a
random process.

There is evidence that particles undergo dispersion dur-
ing their motion, so that an initial cloud of moving particles
will spread through space over short time periods [Nikora
et al., 2002; Hill et al., 2010]. Diffusion in bedload trans-
port is mainly due to particle velocity fluctuations. Starting
from rest, an entrained particle accelerates to its maximum
longitudinal velocity, but this will be frequently altered due
to repeated impacts on the bed. Several cycles of accelera-
tion and deceleration are frequently observed before a parti-
cle stops. Furbish and Schmeeckle [2013] proposed a model
based on arguments from general statistical mechanics to
explain the exponential behavior of the experimental den-
sity function of particle velocities [Lajeunesse et al., 2010;
Roseberry et al., 2012]. Ancey and Heyman [2013] proposed
a model of Brownian motion in a potential for the parti-
cle displacement and showing that particle velocities follow
a truncated Gaussian distribution; this was consistent with
their experimental data. Regardless of the form of the ve-
locity distribution (providing that its second order moment
exists) the resulting macroscopic effect on the particle activ-
ity flux is the sum of two contributions: an advective term
and a diffusive term [Furbish et al., 2012a; Ancey and Hey-
man, 2013]. At the microscale, and under certain restrictive
conditions [Ancey and Heyman, 2013], advection can be con-
sidered as a deterministic process, and diffusion as a random
process.

2.3. Birth-death process and Poisson representation

To summarize the preceding phenomenological overview
of the transport process, the probable random events (or re-
actions in the language of chemical engineering) modifying
the value of Ni(t) are the following:

B +Ni
µi−→ 2Ni

Ni

σi−−−⇀↽−−−
λi∆x

B (2)

Ni
di−→ Ni+1

Ni−1
di←− Ni,
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where µi [s
−1] is the collective entrainment rate in cell i,

λi [particles·m−1s−1] is the entrainment rate, σi [s
−1] is the

deposition rate and di [s−1] is the local diffusivity. Here-
after, homogeneity in space is assumed so that we can drop
all rates indices i. Note that we did not consider the effect
of the mean advection velocity in the cell boundary flux, be-
cause it is considered deterministic and will be reintroduced
later in the equations.

From this birth-death Markov process, Ancey and Hey-
man [2013] derived the multivariate master equation for
P (n, t). An exact solution of this master equation in terms
of generating functions is unfortunately not tractable, ex-
cept for the case of a single cell [Ancey et al., 2008; Heyman
et al., 2013; Ancey and Heyman, 2013]. One usual proce-
dure to simplify and solve a master equation relies on Van
Kampen’s expansion [Van Kampen, 2007]. However, the ap-
proximation involves a system size expansion that depends
on the inverse of the cell size ∆x (the smaller the system
size, the worse the approximation).

Gardiner and Chaturvedi [1977] showed that a simpler
stochastic equation can be obtained via the Poisson repre-
sentation for discrete random variables. Similarly to Laplace
or Fourier transforms in the spectral theory of time series,
the Poisson representation is a linear operator that trans-
forms a discrete probability space into a continuous one:

P (n, t) =
∏

i

∫

C

e−aian
i

n!
f(a, t)dai, (3)

where ai stands for the parameter of the Poisson distribu-
tion (its mean) while the function f(ai, t) can be interpreted
in some particular cases [Gardiner , 2002] as a density func-
tion representing the probability of observing an ai-Poisson
distribution in cell i. The transform allows one to solve the
master equation by finding f(ai, t), which is a continuous
random variable. The Fokker-Planck equation obtained for
f(ai, t) within this new space is strictly equivalent to the
master equation and thus valid for all cell sizes [Chaturvedi
and Gardiner , 1978; Gardiner and Chaturvedi , 1977].

Using the Poisson representation, Ancey and Heyman
[2013] ended up with an explicit Langevin stochastic equa-
tion describing the transport of bedload particles:

dai(t) = (d(ai+1 + ai−1 − 2ai)− λ∆x− ai(σ − µ)) dt

+
√

2µaidWi(t), (4)

where dWi(t) is the derivative of a Wiener random process.
This equation lays the foundation for the following analysis.

Just like the definition of the particle activity γ(x, t), let
us call η(x, t) the Poisson density variable, or Poisson activ-
ity. We have

η(xi, t) = ai(t)/∆x. (5)

Using Eq. (1) and letting ∆x → 0, we obtain the
Langevin stochastic partial differential equation in the Pois-
son density variable:

dη(x, t) =
[

D∇2η(x, t) + (µ− σ)η(x, t) + λ
]

dt (6)

+
√

2µη(x, t)dW (x, t),

where W (x, t) is now a spatial Wiener process with the cor-
relation function:

dW (x, t)dW (x′, t) = δ(x− x′)dt.

Note that the multiplicative noise term arising in Eq. (6)
is perfectly uncorrelated in space, although it is not im-
possible that some spatial correlations arise from Eq. (6)
as we will show later on. We also introduced the notation
D = d∆x2. We now see the connection between the local de-
scription of the random particle diffusion process with rate
d [s−1] and the macroscopic diffusion coefficient D [m2s−1].

Thanks to the system’s linearity, it is possible to add back
the deterministic advection flux:

dη(x, t) =
[

−ūs∇η(x, t) +D∇2η(x, t)
]

dt

+ [λ− (σ − µ)η(x, t)] dt (7)

+
√

2µη(x, t)dW (x, t)

Here, it is possible here to make a parallel with point
processes. Indeed, point processes are often defined by their
rate function η(x, t) [Cox and Isham, 1980]. The simplest
case is when the rate function is constant in time and space,
resulting in a Poisson point process. When the rate function
is a function of space and/or time, the process is called an
inhomogeneous Poisson point process. Eventually, when the
rate function is also a random variable, the process is called
a doubly stochastic process, or Cox process [Cox and Isham,
1980]. This is the case with Eq. (7). To summarize, start-
ing from a multivariate Markov process defined on lattice
cells and described by a master equation, we end up with a
model belonging to a general class of point processes, called
doubly stochastic processes.

We now show how it is possible to simulate a probable re-
alization of particle positions from Eq. (7). As noted earlier,
by means of the Poisson representation, η(x, t) can be inter-
preted as the random rate of a Poisson distribution. First,
we need to compute Eq. (7), to get a realization of η(x) at a
given time t. This can be achieved using standard methods
for stochastic differential equations (for instance an Euler-
Maruyama scheme [Kloeden and Platen, 2011]). Once we
get a realization of η(x), we proceed as follows. We choose
a constant C > η(x) and compute a realization of point po-
sitions according to a Poisson process with rate C. This can
be achieved by taking the distance between points to be an
exponentially distributed random variable with parameter
1/C. Wa then randomly select or discard randomly point k
according to the criteria:

if r < η(xk)/C, keep point;

if r > η(xk)/C, delete point;

where r is drawn from a uniform distribution in [0, 1]. The
remaining points form a possible observation of particle po-
sitions according to the model (Fig. 2).

In Fig. 2, it is possible to observe the clustering of par-
ticles around the region of high η(x) values, while for the
Poisson process, particles positions are purely random so no
clustering appears. The clustering of particles is a special
feature of our model (when µ > 0) and can be quantified by
the study of the second-order moments.

2.4. Moments

There exists a simple connection between moments of a in
the Poisson representation and moments of the real variable
N . Indeed, we can easily verify that the p-factorial moment
of N is equal to the p-moment of a

〈n(n− 1) . . . (n− p+ 1)〉 =
∞
∑

n=0

n(n− 1) . . . (n− p+ 1)P (n, t) =

∫

apf(a)da (8)

= 〈ap〉 ,

which implies that 〈n〉 = 〈a〉 and
〈

n2
〉

=
〈

a2
〉

+ 〈a〉 [Ancey
and Heyman, 2013]. We study the first and second-order
moments of Eq. (7) below. As first-order moments have
already been studied [Ancey and Heyman, 2013], we focus
specially on second-order moments.
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Figure 2. Example simulation of the rate process (Eq. (7)) and corresponding possible realization of
particle positions. We also plot the Poissonian case (with the same mean rate) for comparison. Model
parameters are λ = 0.05 particles/m, µ = 9.99 s−1, σ = 10 s−1, ūs = 0.1 m s−1 and D = 0.008 m2s−1

2.4.1. First-order moments

The average behavior of η(x, t) is easily obtained by drop-
ping the noise term in Eq. (7). It is a linear advection-
diffusion-reaction equation. In Appendix A, we show that
it shares some similarities with the “BCRE” model of
Bouchaud et al. [1995] which describes avalanches of dry
granular matter. A stationary and homogeneous solution
can be found provided that σ > µ:

〈η〉s =
λ

σ − µ
. (9)

Given the relationships between the Poisson representation
moments and the real variable moments (Eq. (8)), we have
〈η(x, t)〉 = 〈γ(x, t)〉 and thus 〈γ〉s = λ/(σ − µ).
2.4.2. Second-order moments

2.4.2.1. Spatial correlations

Let g(x, x′, t) denote the spatial correlation function of
the Poisson density variable η(x, t). By definition we have:

g(x, x′, t) =
〈

η(x, t), η(x′, t)
〉

=
〈

η(x, t)η(x′, t)
〉

− 〈η(x, t)〉
〈

η(x′, t)
〉

. (10)

Taking the derivative of g:

dg(x, x′, t) = d
〈

η(x, t)η(x′, t)
〉

=
〈

dη(x, t)η(x′, t)
〉

+
〈

η(x, t)dη(x′, t)
〉

(11)

+
〈

dη(x, t)dη(x′, t)
〉

.

Note that d (〈η(x, t)〉 〈η(x′, t)〉) is zero by definition of the
average. Using Itô’s approach to stochastic differential equa-
tions and Eq. (7), we get:

dg(x, x′, t) = D
(

∂2/∂x2 + ∂2/∂x′2) 〈η(x, t)η(x′, t)
〉

dt

−ūs

(

∂/∂x+ ∂/∂x′
) 〈

η(x, t)η(x′, t)
〉

dt (12)

+2(σ − µ)
〈

η(x, t)η(x′, t)
〉

dt+ 〈η〉s
(

2λ + µδ(x− x′)
)

dt

In a spatially homogeneous situation, g(x, x′, t) is a function
of r = |x−x′| only, which we call g(r, t). Thus, substituting
Eq. (10) into Eq. (12), we obtain:

1

2

∂g(r, t)

∂t
= D

∂2g(r, t)

∂r2
− (σ − µ)g(r, t) + µ 〈γ〉s δ(r) (13)

Note that the advection term disappears because ∂/∂x =
−∂/∂x′. Thus, the spatial correlation has no dependence on
the mean velocity of particles. For t → ∞, the stationary
solution gs(x) is obtained by means of Fourier transforms
(see Appendix B).

The relation between second-order moments in the Pois-
son representation and in the real variable is obtained using

Eq. (8). In our case, this yields the simple relation:

〈

η(x, t), η(x′, t)
〉

=
〈

γ(x, t), γ(x′, t)
〉

− δ(x− x′) 〈γ(x, t)〉 .

Thus, the stationary homogeneous spatial correlation func-
tion of the particle activity reads:

〈

γ(x, t), γ(x′, t)
〉

s
= δ(x− x′) 〈γ〉s

+
〈γ〉s
2ℓc

µ

σ − µ
exp

(

−|x− x′|
ℓc

)

, (14)

where we have introduced the correlation length in the x-
direction ℓc =

√

D/(σ − µ). The stationary spatial corre-
lation function is thus the sum of a Dirac delta function of
intensity equal to the mean density of moving particles and
a term corresponding to non-Poissonian behavior. The lat-
ter has a characteristic length scale defined by ℓc. Thus, the
correlation length increases with the diffusivity of particles
and the collective entrainment rate, but decreases with the
deposition rate.

The correlation length becomes infinitely large when µ→
σ. When µ = σ, the system looses its stability and we ob-
serve a exponential increase in the number of moving parti-
cles. This limit might be associated with a phase transition.
Physically, deposition dissipates energy and counterbalances
collective entrainment.

Another quantity of interest, often used to describe a spa-
tial point process, is the conditional intensity h(x−x′), that
gives the conditional probability of finding a particle at x′

given that there is a particle at x [Cox and Isham, 1980].
The conditional intensity and the correlation function are
directly related by:

〈

γ(x, t), γ(x′, t)
〉

s
= δ(x− x′) 〈γ〉s + 〈γ〉s h(x− x′)− 〈γ〉2s ,

so that by identification, we have :

h(x− x′) = 〈γ〉s +
1

2ℓc

µ

σ − µ
exp

(

−|x− x′|
ℓc

)

. (15)

A more convenient function for data analysis is the K-
function [Ripley , 1976], where K(x) represents the expected
number of moving particles found in a ball of radius x cen-
tered on a particle location divided by the mean process
rate. This can be calculated from the conditional intensity
function by:

K(x) =
1

〈γ〉s

∫ x

0

h(u)du

= x+
1

〈γ〉s
µ

σ − µ

[

1− exp

(

− x

ℓc

)]

. (16)

For a Poisson point process in one dimension, we have
K(x) = x. Furthemore, Eq. (16) shows that K(x) > x
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if µ > 0; so the point process is said to be clustered. This
is not surprising as we observed a clustering of particles in
Fig. 2.

2.4.2.2. Spatio-temporal correlations

We are now interested in the spatio-temporal correlation
function of Eq. (7). Following Chaturvedi and Gardiner
[1978], we define:

G(x, t) = 〈γ(x, t), γ(0, 0)〉s (17)

For any linear Markovian system, a linear equation also ex-
ists for the evolution of the time correlation [Gillespie, 1991]:

∂G(x, t)

∂t
= D

∂2G(x, t)

∂x2
− ūs

∂G(x, t)

∂x
− (σ−µ)G(x, t) (18)

with the initial condition G(x, 0) given by Eq. (14). By
making the transformations t̃ = (σ − µ)t, x̃ = x/ℓc, we
can obtain the expression of the spatio-temporal correlation
function (details in Appendix C) that is

G
(

x̃, t̃
)

= Gd(x̃, t̃) +Gr(x̃, t̃) (19)

with

Gd

(

x̃, t̃
)

=
〈γ〉s

2ℓc
√
πt̃

exp
[

−(x̃− Pet̃)2/t̃− t̃
]

(20)

and

Gr(x̃, t̃) =
〈γ〉s
4ℓc

µ

σ − µ
· (21)

{

exp
[

x̃− Pet̃
]

erfc
[

(1 + Pe/2)
√

t̃+ x̃/(2
√

t̃)
]

+ exp
[

Pet̃− x̃
]

erfc
[

(1 + Pe/2)
√

t̃− x̃/(2
√

t̃)
]}

.

Pe = ūsℓc/D can be interpreted as a local Péclet number
comparing the relative importance of the mean advection
against the diffusion process over the correlation scale ℓc.
G(x, t) is the sum of two contributing terms. Gd(x, t) quan-
tifies the spread and advection of the delta-correlated Pois-
sonian term of Eq. (14) while Gr(x, t) encodes the relaxation
of the non-Poissonian correlations through time. If µ = 0,
fluctuations are purely Poissonnian so that Gr(x, t) = 0.
In Fig. 5, we plot G

(

x̃, t̃
)

/(〈γ〉s /ℓc) for different values of
Pe.

3. Local and global fluctuations

After deriving spatial and spatio-temporal correlation
functions, we examine how they can be used to characterize
fluctuations in the particle activity. Specifically, we want
to determine the relative importance of these fluctuations
compared to the mean activity, depending on the spatial or
temporal scales considered.

3.1. Spatial fluctuations

Let us consider the number of moving particles in a win-
dow of length L at a given time t:

N(L, t) =

∫

L

γ(x, t)dx. (22)

The volume average of this number is:

Mean[N(L, t)] =

〈
∫

L

γ(x, t)dx

〉

= 〈γ〉s L, (23)

while the expected variance of this number, also called the
variance of the sample mean, is defined by:

Var[N(L, t)] =

∫

L

∫

L

〈

γ(x, t), γ(x′, t)
〉

dxdx′. (24)

Introducing Eq. (14) into Eq. (24) and integrating it (see
Appendix D), we find:

Var[N(L, t)] = 〈γ〉s L (25)

+ 〈γ〉s ℓc
µ

σ − µ

(

L/ℓc + e−L/ℓc − 1
)

.

Eq. (25) shows the dependence of the variance of N(L, t)
on the length L of the sampling window. Let us define the
dispersion indexI(L) as the ratio of the variance over the
mean:

I(L̃) =
Var[N(L̃, t)]

Mean[N(L̃, t)]
= 1 +

µ

σ − µ

(

1 +
e−L̃ − 1

L̃

)

, (26)

with L̃ = L/ℓc.
The dispersion index is used to characterize the relative

positions of points (particles locations). Three classes are
generally distinguished depending on the value of I : under-
dispersed processes for I < 1; purely random processes (or
Poisson process) when I = 1; and over-dispersed or clustered
processes when I > 1 (Fig. 3).

In our model, the dispersion index is shown to grow
from 1, when the window is small, to the constant value
1+µ/(σ−µ), as the window length tends to infinity (Fig. 4).
In other words, depending on the length of observation, the
process exhibits a different statistical behavior.

The limit to the Poisson process (I = 1) when L → 0 is
explained by the presence of the Dirac delta function in the
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spatial covariance (14). For decreasing values of L, a limit
will be reached when most of the the sampling windows usu-
ally contain no particles, or rarely one particle. This limiting
behavior can be seen as a Bernoulli process; that is, within
the limit of small probability of occurrence, a Poisson pro-
cess.

On the contrary, when L→∞, I reaches a constant value
I(∞). Note that I(∞) > 1 if µ > 0. Moving particles are
thus expected to form clusters during their motion when
collective entrainment is considered.

3.2. Temporal fluctuations

Most of bedload measurement devices do not sample bed-
load spatially but temporally [Bunte and Abt , 2005]. For
instance, weighting bins [Singh et al., 2009] or geophone sen-
sors [Rickenmann et al., 2012] monitor the bedload discharge
at a given location over time. In this case, Eq. (26) cannot
be used to test stochastic predictions. Instead, we have to
look for the fluctuations of the mean number of particles
that pass through a given location during a time of length
T :

N(x, T ) =

∫

T

γ(x, t)dt.

The variance of this number is defined by:

Var[N(x, T )] =

∫

T

∫

T

〈

γ(x, t), γ(x, t′)
〉

dtdt′,

=

∫

T

∫

T

G(0, t− t′)dtdt′. (27)

Unfortunately, this integral is too complex to be calcu-
lated analytically but estimates can readily be obtained
at large Pe (for high average particle velocity). In this
case, it can be assumed that the spatial correlation func-
tion is projected on the temporal axis without deformations.
The equivalence between time and space is then given by
t ∼ x/ūs. This approximation can be compared to Taylor’s
frozen-flow hypothesis in turbulent flows with a dominant
average velocity. In other words, the relative positions of
particles in space correspond exactly (up to a scaling fac-
tor) to their relative time of passage through a given loca-
tion. From Eq. (26), this approximation leads to:

I(T̃ ) =
Var[N(x, T̃ )]

Mean[N(x, T̃ )]
= 1 +

µ

σ − µ

(

1 +
e−T̃ − 1

T̃

)

, (28)

with T̃ = T/tc. We introduced tc = ℓc/ūs as the charac-
teristic time that is related to the frozen-flow hypothesis.
Thus, at the high particle velocity limit, the variance of the
sampled solid discharge at a given location has the same
dependence on the acquisition duration as the variance of
the number of moving particles has on the observation win-
dow length. We demonstrate below that Taylor’s frozen-flow
hypothesis, often used in fluid turbulence, is irrelevant for
bedload transport.

3.3. Consequences for model fitting

Eq. (26) and (28) have major consequences for parameter
fitting. Consider a sample of particles trajectories observed
in a window of length L. If L ≪ ℓc, the experimental vari-
ance of the number of moving particles is likely to be close
to the arithmetic mean so that, one can naturally conclude
in favor of a Poisson distributed variable. However, this is
obviously wrong if µ > 0. If L ∼ ℓc, the observed variance
will b greater than the mean, and we can now exclude the
Poisson distribution. However, by changing L a little, the
dispersion index also changes, such that it is not possible to
find a unique set of model parameters (with the method of
moments, for instance) that works at all scales. The larger
the window, the larger the index and the larger the fluctua-
tions around the mean. Finally, if L≫ ℓc, the index eventu-
ally reaches a plateau. For these observation windows, it is
possible to fit a single set of parameters that is valid at both
small and large scales. The same argument applies for the
sampling of particles over time in the frozen-flow hypothesis.
We will show below that the minimum length L required is
often so large that the majority of experiments cannot en-
sure an unbiased estimation of the parameters. Worse, bias
always leads to the under-estimation of large scale particle
activity fluctuations. This is partly the topic of the next
section, where we present three different experimental data
sets.

Figure 6. Image recorded during a B experiment and
visualization of particles trajectories after image process-
ing.
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Table 1. Experimental parameters and model fits.

d50 τs Fr tanθ ū h̄ qs 〈γ〉s us D λ σ µ ℓc Pe I(∞)
B12-9 6 0.10 2.20 12.5 0.42 0.7 9.3 63.0 0.12 25 86.4 8.42 7.05 4.27 2.05 6.15
B10-6 6 0.11 1.42 10.0 0.41 1.0 5.3 28.9 0.16 27 41.8 6.50 5.05 4.32 2.63 4.48
B10-7 6 0.12 1.37 10.0 0.41 1.1 6.7 32.3 0.19 25 54.4 5.58 3.90 3.85 2.98 3.32
B10-8 6 0.13 1.38 10.0 0.44 1.2 8.0 37.1 0.18 33 65.4 6.46 4.70 4.33 2.35 3.67
B10-9 6 0.14 1.36 10.0 0.44 1.3 10.0 43.4 0.18 33 66.3 5.38 3.85 4.65 2.49 3.51
B10-16 6 0.19 1.24 10.0 0.48 1.7 15.4 69.3 0.19 43 159.6 6.70 4.40 4.32 1.90 2.91
B7-9 6 0.21 1.15 7.5 0.56 2.5 8.7 37.7 0.21 30 54.6 5.45 4.00 4.55 3.22 3.75
R0-1 0.5 0.06 0.35 ≪ 1 0.31∗ 12.5 78.9 1711 0.05 1.3 85.5 2.51 2.46 5.16 17.88 50.20
H4-2 8 0.11 1.35 4.14 0.78 3.4 1.6 5.9 0.27 35 24.8 0.58 0.43 15.3 12.04 3.87
H2-2 8 0.07 1.24 2.43 0.76 3.8 2.3 8.5 0.27 30 37.1 0.40 0.25 14.1 12.50 2.67

d50, mean particle diameter [mm]; τs, Shields stress [-]; Fr, Froude number [-]; tan(θ), slope angle [%]; ū, mean fluid velocity [m/s];
h̄, mean water depth [cm]; q̄s, mean output solid discharge [particles/s], 〈γ〉s mean activity [particles/m],. ūs mean particle velocity
[m/s], D diffusion coefficient [cm2/s], λ entrainment rate [particles/m/s], σ deposition rate [s−1], µ collective entrainment rate [s−1],
ℓc correlation length [cm], Pe local Péclet number [-], I(∞) dispersion index for an infinite window length [-]. ∗: In this experiment,
ū is the average fluid velocity 1 cm above the bed.

4. Experiments

To test our previous theoretical predictions, we used three
different experimental data sets. Two of them have been
previously published [Ancey et al., 2008; Roseberry et al.,
2012]. The third comes from an experimental setup espe-
cially built to observe spatial and temporal fluctuations of
bedload at the same time. All three studies provide high res-
olution measurements of particle transport using high speed
imaging.

Hereafter, we denote all Böhm et al. [2004] experiments
by using the prefix B, the new data set using H and Rose-
berry et al. [2012] experiment using R. The numbers follow-
ing the prefix specify experimental slope and solid discharge.
For instance B12-9 stands for Böhm et al. [2004] experiment
conducted using a 12% sloping flume with a mean solid dis-
charge of 9 particles/s.

4.1. Experimental setups.

4.1.1. B experiments.

These experiments were carried out in a narrow steep
flume where sediment consisted of glass beads of equal size
(6 mm). Particle transport was completely two-dimensional;

Figure 7. Map view of R experiments showing particle
motions occurring during the 0.4 sec time series; note the
clustering of motions, partly reflecting effects of the tur-
bulent sweeps. (Reproduced from [Roseberry et al., 2012]
with the authorization of the authors and AGU.)

this allowed Böhm et al. [2004] to take pictures through the
side wall and detect and track individual particles via image
processing. Camera resolution was 640 × 192 pixels with a
frame rate of 129.2 frame per seconds (fps). Each sequence
comprised 8000 images corresponding to a duration of ap-
proximately 1 min. The acquisition length was 22.5 cm, for
a resolution of 0.3 mm/pixel. Thus this imaging technique
covers about 2 orders of magnitude in space. For further
information on the experimental conditions, the reader is
referred to [Böhm et al., 2004; Ancey et al., 2006, 2008].

Fig. 6 shows an example of a recorded image and the cor-
responding reconstruction of particle positions and velocities
using image processing.
4.1.2. R experiment.

Roseberry et al. [2012] presented a set of experi-
ments where particle trajectories were sampled in a two-
dimensional window of the bed viewed from the top. High-
speed imaging at 250 fps over a 7.57 cm (streamwise)
by 6.05 cm (cross-stream) bed-surface domain, and with
1280×1024 pixels resolution provided the basis for tracking
particle motions (with a precision of 0.06 mm/pixel). Bed
material consisted of relatively uniform coarse sand with an
average diameter of d50 = 0.5 mm.

The data set involved one experiment with a total du-
ration of 0.4 seconds, i.e. 100 frames (Fig. 7). In contrast
with the two other data sets, the R experiment concerns rel-
atively small particles (sand) over shallow slope (the slope
is not given in [Roseberry et al., 2012] but one can guess
it because the Froude number is much lower than unity).
We will show that the same spatial patterns form in their
experiments.
4.1.3. H experiments.

The originality of this data set compared to the two oth-
ers lies in its high temporal and spatial resolutions. The
length of the observation window was slightly less than 1 m
(with a precision of about 1 mm/pixel) while the duration
of a sequence was 10 seconds.

Experiments were carried out in a 2.5-m-long flume. The
erodible bed was made of natural sediment particles with
mean diameter of 8mm. The flume was 3.5 cm wide and
the water depth was about 3.7 cm during experiments. The
channel slope ranged between 2.4% and 4%. The flow was
fully supercritical. As the flow depth to channel width ratio
was relatively large, any three dimensional variation of the
bed surface was avoided. The channel bed remained nearly
flat during the whole experiment, so that an approximation
of homogeneous transport conditions could be made.

The image sequences were taken by two cameras placed
side by side so that their field of vision overlapped by a few
centimetres. Located in the central part of the flume, they
filmed through the transparent side wall. Camera resolution
was 1024×200 pixels while the frame rate was set to 150 fps.
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Figure 8. Preview of particle trajectories obtained from the first camera in the H experiments.
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Figure 9. Dispersion indices through different scales for the B experiments. L∗ = L/d50 = ūsT/d50.

Given the memory limitation during acquisition, sequences
of 10 seconds (1500 images) were taken repeatedly.

Image processing and automatic particle tracking were
then performed on these images. Systematic human moni-
toring was applied to make sure that the automatic-capture
algorithm was not missing any particles. The processing
steps from the raw images to particles trajectories were the
following:

1. First we treated the raw images using the powerful yet
simple method of median background subtraction [Yilmaz
et al., 2006]. This allows a distinction between an immobile
background (made up of particle resting on the bed) and a
moving foreground (the moving particles).

2. A tracking algorithm was then used to detect and fol-
low the moving particles in the foreground images. We used
polyparticletracker [Rogers et al., 2007], a powerful algo-
rithm that is able to track particles of various shapes. At
this stage, about 70 % of the particle trajectories had been
correctly reconstructed.

3. Finally, we performed a manual check to track the par-
ticles that the algorithm had missed. This was done using
ImageJ software and the MtrackJ plugin.

This was the most time consuming task (approximately 3
hours for 10 seconds of film), thus only two experiments at
different flume angles are presented here. Each experiment
represents 100 seconds of acquisition, for about 2000 par-
ticles trajectories. We have summarized the experimental
characteristics in Tab. 1.

4.2. Experimental results

4.2.1. B experiments

In accordance with Ancey et al. [2008], we included both
rolling and saltating particles in the group of moving parti-
cles. A velocity threshold was used to discriminate between
resting or moving particles. It was not always clear which
threshold to apply, as a moving particle can have its instan-
taneous velocity equal to zero (but a non-zero acceleration).
To avoid this, we applied a threshold of 0.05 m/s on a time
moving average of the velocities over about 5 frames (i.e.
∼0.04s).

The experimental dispersion indices are presented in
Fig. 9 (see Appendix E for the computation details). Note
that the correlation length is not known a priori and thus
we scale the space axis by the diameter d50 of the particle:
L∗ = L/0.006.
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As expected, the dispersion index changes through spa-
tial scales. From a Poisson type process (the mean equals
the variance) at small scales (L∗ → 0), I(L∗) continuously
increases with increasing scales (see Fig. 9(b),(c) and (d)).

One striking feature of the experimental dispersion index
is the slight decrease below unity for L∗ ∼ 1 (Fig. 9(a)).
This phenomenon results from negative values in the cor-
relation function at those scales and cannot be described
by our Markov model. Indeed the theoretical correlation
function (Eq. (14)) is strictly greater than zero so that the
variance is expected to grow monotonically. The presence of
negative values in the experimental correlation function is
explained by the finite diameter of the particles. Thus, there
is less probability of finding two particles separated by a dis-
tance smaller than the particles’ diameters. Note that we
use the term “less probability” and not “zero probability”
because the moving particles in an observation window are
summed over the whole water depth (z direction), so that
it is still possible that the distance separating two moving
particles (in the x direction) is less than the particle diam-
eter. This results in anti-correlation at scales close to the
particle diameter (L∗ ∼ 1).

For a constant flume angle (10%), the variance of exper-
iments carried out at different Shields stresses (at different
transport stages) is represented in Fig. 9(b). It is unclear
how changes in the Shields stress affect the experimental
curve since all of the curves roughly superimpose one an-
other. Recall that the theoretical expression (26) depends
only on the collective entrainment rate µ and deposition rate
σ. The latter is a function of the particle fall velocity while
the former has been reported not to change much with fluid
forcing [Ancey et al., 2008; Heyman et al., 2013]. In all these
experiments, the only parameters that change significantly
are the fluid entrainment rate λ and the average particle ve-
locity ūs. Because the dispersion index does not depend on
these variables, we expect all curves to overlap.

In Fig. 9(c), we plot the dispersion indices of experiments
carried out at different flume angles but with the same solid
discharge. Generally, it can be seen that experiments car-
ried out at steeper angles show a larger dispersion index at
large scales than those conducted at shallower angle. This is
true for B12-9, whose variance reaches five times the mean,
whilst experiments B7-9 and B10-9 show fluctuations only
equal to about three times the mean. This indicates that
the ratio µ/(σ − µ) may increase with slope angle.

The relatively high temporal resolution (30 seconds for
each experiment) allowed us to test the frozen-flow hypoth-
esis against experimental data. To that end, we randomly
chose a set xi of locations over the maximum observation
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Figure 10. Spatial dispersion index for the R experi-
ment. L∗ = L/d50.

length. We then counted the moving particles that crossed
these locations. The variance of the counts as a function of
the counting duration is then computed. As explained previ-
ously, the frozen-flow hypothesis states that spatial correla-
tions are identically transformed into temporal correlations
with the relation x ∼ ūst. Spatial and temporal dispersion
indices should thus fall on the same curve with the appropri-
ate scaling of the time axis (see Fig. 9(d)). In a similar way
to the spatial dispersion index, the temporal index increases
from unity at the smallest time scales to larger values at
longer time scales. However, we can infer from Fig. 9(d)
that the frozen-flow hypothesis is far from being correct for
the B experiments– the spatial and temporal indices are ex-
tremely different. Indeed, we will show below that the local
Péclet number of those experiments lies between 2 and 3,
showing that the mean advection is not the only dominant
term in the spatio-temporal correlation function.
4.2.2. R experiments

As the R experiment was originally two dimensional, we
first summed the number of moving particles over the win-
dow width. Then the procedure described in Appendix E
was applied to compute the dispersion index. Again, the in-
dex curve is seen to increase through spatial scales (Fig. 10).
From a Poisson type process (the mean equals the variance)
at small scales, the index continuously rises with increasing
scales. Note that, as for the B experiments, the plateau is
not reached when the scale tends to the maximum observ-
able length.

Interestingly enough, we see that spatial correlations oc-
cur even for gently sloping bed under subcritical flow con-
ditions. Recall that collective entrainment is the only cause
of spatial correlation in our model. In this case, for small
particle diameters and gentle slopes, collective entrainment
is likely to be triggered by coherent turbulent structures
rather than by direct particle-particle interaction (for a dis-
cussion about the possible causes of collective entrainment,
see [Heyman et al., 2013]).

Another noteworthy feature is the relative magnitude of
the fluctuations: up to 20 times the mean particle activity.
Although the B experiments ware carried out on a steeper
bed, their fluctuations did not exceed 5 times the mean par-
ticle activity. A reasonable explanation might be that par-
ticle diameters in the R experiment were much smaller than
in the B experiments. As a consequence, turbulent eddies
may entrained many more particles at the same time, thus
making the collective effects appear stronger.
4.2.3. H experiments

The dispersion indices of these experiments developed in
a similar way to those of the two preceding experiments
(Fig. 11(b)). Despite the relatively large observation win-
dow, the plateau was not reached. Similarly to Ancey et al.
[2008] experiments, the steepest sloped experiment –H4-2–
had a larger index than H2-2. This substantiates the idea
that µ/(σ − µ) increases with slope.

Fig. 11(a) also shows the comparison between spatial and
temporal averages. As expected, the agreement was perfect,
such that it was equivalent to computing the average parti-
cle activity in time or in space. This was not true for the
second-order moments (Fig. 11(b)). Still, the agreement be-
tween the two curves was better than for the B experiments
but a perfect overlap was not obtained. Below, we show that
the local Péclet number is about 12, a value still too small
to ensure the relevance of the frozen-flow hypothesis.

4.3. Model calibration

In this section, we show how it is possible to determine
the model parameters (λ,µ, σ, V,D) from each experimental
data set.

The mean velocity is the easiest parameter to compute;
it is the average of the velocities of all moving particles over
all trajectories (Fig. 12(a)).
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Diffusivity is harder to estimate. Unlike the movement of
Brownian particles that undergo uncorrelated motion, the
velocities of bedload particles shows some non-vanishing cor-
relation over time (Fig. 12(a)). Moreover, as particles start
from rest and eventually return to rest after some time, the
velocity of a single particle exhibits periodicity. According
to Furbish et al. [2012b], the effective diffusivity can be ob-
tained by calculating the variance of the particle velocity as
well as the integral of its auto-correlation. However, because
of the periodicity, the integral does not grow monotonically
towards a constant value over long time scales. Thus, we
use a different method here. The mean squared displace-
ment of a particle undergoing diffusion is known to evolve
linearly with time

〈

X2
〉

∝ 2Dt [Taylor , 1922]. Finding
D is thus equivalent to fitting the particle’s mean squared
displacement through time with a linear regression curve
(Fig. 12(b)). For short time scales (t < 0.2s), the mean
squared displacement shows a t2 dependence, confirming the
super-diffusive behavior due to particle velocity correlations.
A linear dependence on time is seen to occur between about
0.5 and 0.8 s. For times longer than 0.8 s, there are not
enough sufficiently long trajectories to get an accurate esti-
mate of

〈

X2
〉

. For each experiment, we thus calculate D by
fitting a linear curve on the time range t = [0.5, 0.8] s.

The mean deposition rate is readily obtained using indi-
vidual particle trajectories. To find σ, we construct a list of
the deposition event times. The time series forms a counting

process whose mean rate, divided by the mean number of
moving particles, is equal to σ.

The main difficulties lie in the determination of the fluid
entrainment rate λ and the collective entrainment rate µ.
Indeed, it is impossible to distinguish between the two by
looking at single particle trajectories. Moreover, the two
processes are likely to act in a coupled way: a turbulent
event occurring along with a particle impact has a greater
chance of entraining an immobile particle than if both hap-
pened individually. We thus need to consider the model’s
prediction to determine their relative importance. Note that
if one of them is known, the second is directly determined by
the steady-state mean 〈γ〉s = λ/(σ−µ). Our model thus re-
quires a single tuned’ parameter. To find µ (or equivalently
λ), one needs to calculate the limiting value of the spatial
dispersion index I(∞) for a long enough observation window
(for L = 100ℓc, the dispersion index equals approximately
99% of its infinite value). From Eq. (26), we get:

µ = (1− I(∞))σ

λ = 〈γ〉s (σ − µ) (29)

Unfortunately, I(∞) is not known in the experiments pre-
sented here, as the dispersion index did not reach a constant
value for the maximum available window length. We must
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Figure 14. Experimental K-function (dots) and comparison with theoretical predictions (line). The
Poissonian case is also represented by dashed lines.

thus attempt to approach the experimental index curve by

tuning parameter µ. Fig. 13 shows an example, where ex-

periments are compared to the theoretical predictions. The

agreement between theory and experiment is good and the
growth rate of the index curves is accurately reproduced.
A summary of the calibrated parameters for all the experi-
ments are given in Tab. 1. We also compare the experimen-
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tal K-function to its theoretical expression (16) in Fig. 14.
The agreement between theory and experiments is not as
good for the K-function as for the dispersion index. This
can be explained by the fact that the value of 〈γ〉s appears
in Eq. (16) whilst it is absent from Eq. (26). Meanwhile,
estimation of 〈γ〉s needs large sample sizes as the system has
proved to exhibit large fluctuations. Thus, estimates of 〈γ〉s
might be biased.

5. Summary and Conclusion

In this paper, we studied the spatial and temporal fluc-
tuations of the number of moving particles per unit bed
area, also called the particle activity [Furbish et al., 2012a].
These fluctuations have been shown to have a great deal
of effect on the measurements of bedload transport rates in
both field and experimental surveys [Bunte and Abt , 2005;
Cudden and Hoey , 2003; Garcia et al., 2000; Dinehart , 1992;
Gomez et al., 1990]. The Eulerian model recently proposed
by the authors [Ancey and Heyman, 2013] offers a simple
theoretical framework to understand and quantify these fluc-
tuations.

In that model, particle activity is shown to have a unique
stationary average value, providing that the particle depo-
sition rate is greater than their collective entrainment rate.
However, the present paper has shown that locally particle
activity evolves far from equilibrium, displaying large fluctu-
ations around the mean. These fluctuations strongly depend
on the spatial or temporal scale at which they are observed.
Fluctuations are Poissonian at small scales; their ampli-
tudes become larger than the mean for increasing scales;
and eventually fluctuations reach a maximum at infinitely
large scales. A characteristic length scale ℓc =

√

D/(σ − µ)
emerges from the analysis of the spatial correlation function.
For scales close to ℓc, only 37% of the maximum possible
fluctuations were observed. We also defined a local Péclet
number Pe= ūslc/D that describes the relative importance
of advection against diffusion for particles at the correlation
scale. This number plays an important role in the shape of
the spatio-temporal correlation function.

Large endogenous fluctuations around the mean have also
been reported for non-linear chemical systems that react
and diffuse at the same time [Nicolis and Prigogine, 1971;
Malek-Mansour and Nicolis, 1975; Gardiner et al., 1976;
Sornette, 2006; Schulz , 2008]. In these far from equilib-
rium systems, the microscopic fluctuations associated with
the macroscopic state are not Poissonian as given by the
theory of thermal equilibrium.

We compared our model with three experimental data
sets, carried out under very different experimental condi-
tions. Theoretical predictions agreed well with the experi-
mental data. Note that in the model, only the free parame-
ter µ (or λ) had to be tuned artificially to match the experi-
ments; the others were calibrated independently. Neverthe-
less, it closely described the evolution of first- and second-
order moments through space. The correlation length ℓc is
between 4 and 5 cm for the B and R experiments while H
experiments show a longer correlation length (ℓc = 15 cm)
because of smaller deposition rates. Local Péclet numbers in
these experiments ranged between 2 and 17. This relatively
large range shows that the main transport mode of particles
can be very different from one experiment to another, de-
pending on the shape and size of the particles as well as the
bed slope and flow conditions. For instance, while in the B
experiments particles are advected and diffused equally, in
the R experiment particles are mostly advected by the fluid
flow.

Another striking result of this study was the failure of the
frozen-flow hypothesis. Although widely accepted and used

by researchers in fluid turbulence, it appears to be inaccu-
rate when applied to bedload transport. If average quanti-
ties are conserved, no obvious link exists between spatial and
temporal second-order moments. Thus, no firm conclusion
can be drawn for the spatial fluctuations of particle activity
when bedload is measured at a given location through time
(for instance with sediment traps or geophones). Conversely,
a picture of the spatial variation in particle activity cannot
be easily related to the fluctuations of the solid discharge
measured at a given location. Still, a relationship must ex-
ist and solving Eq. (27) could be of interest in overcoming
this limitation in the future.

This study also provided interesting guidelines for re-
searchers studying the fluctuations of bedload transport
rates. We showed that an ideal design for an experimental
setup should resolve scales equal to 100ℓc to capture 99% of
the fluctuating behavior of particle activity. This suggests
that for Böhm et al. [2004] experiments, a 4 m long obser-
vation window would be necessary. Note that, Ancey et al.
[2008] considered the length necessary to fit the single cell
model to be about 22.5 cm≪4 m. However, we have shown
that the variance does not reach its maximum value at this
scale, so Ancey et al. [2008] model certainly under estimates
fluctuations that would occur at scales longer than 22.5 cm.
Furthermore, to accurately estimate the variance, several in-
dependent samples resolving this specific length scale have
to be recorded. From these rough estimates, it is clear how
difficult it becomes to get high quality measurements from
such a wide range of scales. It is to be hoped that faster
digital data transfer and massive storage capacity, coupled
to modern imaging techniques, will soon overcome present
limitations.

Another major issue to be addressed is the dependence
of model parameters on external variables such as the bed
slope, Froude number or shear velocity, etc. For simplic-
ity, we took the parameters (λ, µ, σ, ūs, D) to be constant
in time and space, but in reality nothing justifies this ap-
proximation. In natural rivers, stationary flow conditions
are rarely met over long time periods. Moreover, bed-forms,
bars and other morphological structures often develop in
experimental flumes as well as in natural streams. As they
modifying the flow locally, they also in turn modify the sedi-
ment transport process. The correlation length scale emerg-
ing from sediment transport might be comparable to the
wavelength of these bed-forms so that non-trivial coupled
phenomena might occur. No simple analytical treatment
can be performed for parameters varying in space and time,
so we must rely on numerical analysis. An example of such
random simulations has been provided in our homogeneous
case, but the generalization to more complicated cases is
straightforward.
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Appendix A: Link to the “BCRE” model.

It is interesting to compare Eq. (7) to previous models
of dry granular avalanches. For instance, the BCRE model
first presented in Bouchaud et al. [1995] gives the density of
rolling grains R as the solution of:

∂tR+∇ (VR) = ∇2 (DR) −Rα∇h (A1)

where ∇h stands for the bed slope variations close to the
angle of repose and α is a constant. Thus, in their model,
when the slope is bigger than the angle of repose (∇h < 0)
the second term on the left-hand side acts as a source in
the equation. The number of rolling grains is thus increases
exponentially, leading to a local avalanche. On the contrary,
when the slope is less than the angle of repose (∇h > 0),
grains are mainly deposited, causing the avalanche to stop
(R = 0). The resemblance with Eq. (7) is striking. In the
latter, an exponential increase in the number moving parti-
cles occurs when the collective motion parameter is greater
than or equal to the deposition parameter (µ ≥ σ). How-
ever, when deposition is greater than collective entrainment,
a non trivial steady-state solution exists, due to the the par-
ticle entrainment process (with rate λ).

As the entrainment of particles by a turbulent fluid is a
random process [Papanicolaou et al., 2002; Valyrakis et al.,
2010], our model could be seen as a “BCRE” model that
includes a random perturbation. Though the present work
concerns bedload transport, and we restrict ourselves to the
steady-state case (µ < σ), the limit µ→ σ might be of par-
ticular interest for other granular systems. Thus, we sug-
gest that the stochastic model presented here may also be
applicable to certain dry granular flows where interactions
between moving grains are weak.

Appendix B: Spatial correlation function

The equation for the stationary spatial correlation func-
tion in the Poisson variable gs(r) = 〈η(x, t), η(x′, t)〉s reads:

D
∂2gs(r)

∂r2
− (σ − µ)gs(r) + µ 〈γ〉s δ(r) = 0, (B1)

with r = |x−x′|. One can simplify Eq. (B1) by rescaling the
variable r by r̃ = r/ℓc where ℓc =

√

D/(σ − µ). It yields:

∂2gs(r̃)

∂r̃2
− gs(r̃) +

〈γ〉s
ℓc

µ

σ − µ
δ(r̃) = 0. (B2)

By means of Fourier transforms such that

gs(r̃) =
1

2π

∫ +∞

−∞

G(ω)eiωr̃dω,

and using the property

δ(r̃) =
1

2π

∫ +∞

−∞

eiωr̃dω,

we obtain the algebraic equation:

G(ω) =
〈γ〉s
ℓc

µ

σ − µ

1

ω2 + 1
, (B3)

The Fourier inverse of Eq. (B3), is given by:

gs(r̃) =
〈γ〉s
2ℓc

µ

σ − µ
exp (−|r̃|). (B4)

Hence:

〈

η(x), η(x′)
〉

s
=
〈γ〉s
2ℓc

µ

σ − µ
exp

(

−|x− x′|
ℓc

)

. (B5)

Appendix C: Spatio-Temporal correlation
function

We want to solve the following equation:

∂G(x, t)

∂t
= D

∂2G(x, t)

∂x2
−ūs

∂G(x, t)

∂x
−(σ−µ)G(x, t), (C1)

with the initial condition G(x, 0) given by the solution of the
stationary spatial correlation function, Eq. (14). Taking the
dimensionless variables t̃ = (σ − µ)t and x̃ = x/ℓc one can
simplify Eq. (C1):

∂G(x̃, t̃)

∂t̃
=

∂2G(x̃, t̃)

∂x̃2
− Pe

∂G(x̃, t̃)

∂x̃
−G(x̃, t̃), (C2)

with Pe = ūsℓc/D. Representing G(x, t) as a Fourier inte-
gral:

G(x̃, t̃) =
1

2π

∫ +∞

−∞

G(ω, t̃)eiωx̃dω,

Eq. (C2) becomes:

∂G(ω, t̃)
∂t̃

= −(ω2 +Peiω + 1)G(ω, t̃). (C3)

The Fourier representation of the initial condition Eq. (14)
is:

G(ω, 0) = 〈γ〉s
ℓc

[

1 +

(

µ

σ − µ

)

1

ω2 + 1

]

, (C4)

so that the solution of Eq. (C3) is:

G(ω, t̃) = Gd(ω, t̃) + Gr(ω, t̃), (C5)

with :

Gd(ω, t̃) =
〈γ〉s
ℓc

exp
[

−(ω2 +Peiω + 1)t̃
]

,

Gr(ω, t̃) =
〈γ〉s
ℓc

µ

σ − µ

exp
[

−(ω2 + Peiω + 1)t̃
]

ω2 + 1
. (C6)

The inverse Fourier transform of Eq. Gd(ω, t̃) is easily found
to be :

Gd(x̃, t̃) =
〈γ〉s

2ℓc
√
πt̃

exp

[

(x̃− Pet̃)2

4t̃
− t̃

]

. (C7)

Computing the inverse of Gr(ω, t̃) is a more difficult task.
The convolution property of Fourier transforms gives:

F−1 {F1 × F2} = f1 ∗ f2, (C8)

where Fi is the Fourier transform of fi and ∗ the convolu-
tion operator. Gr(ω, t̃) is the product of two functions whose
Fourier inverses are:

F−1

{

1

ω2 + 1

}

=
exp(−|x|)

2
, (C9)

F−1 {exp
[

−ω2t̃
]}

=
exp

[

−x2/(4t)
]

√
4πt̃

, (C10)
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so that the Fourier inverse of Gr(ω, t̃) is given by:

Gr(x̃+ Pet̃, t̃) =
〈γ〉s
ℓc

µ

σ − µ

exp
(

−t̃
)

2
√
4πt̃

(C11)

·
∫ +∞

−∞

exp (−|x̃− y|) exp
(

−y2

4t̃

)

dy.

Knowing the value of the following integrals:

∫ x

−∞

exp(y) exp

(

−y2

4t

)

dy =
√
πt exp(t)erfc

(

2t − x

2
√
t

)

,

and
∫ ∞

x

exp(−y) exp
(

−y2

4t

)

dy =
√
πt exp(t)erfc

(

2t+ x

2
√
t

)

,

where erfc is the complementary error function (e.g.
erfc(x)=1-erf(x)), one can obtain a general solution for Eq.
(C11):

Gr(x̃, t̃) =
〈γ〉s
4ℓc

µ

σ − µ
(C12)

·
{

exp
(

x̃− Pet̃
)

erfc
[

(1 + Pe/2)
√

t̃+ x̃/(2
√

t̃)
]

+ exp
(

Pet̃− x̃
)

erfc
[

(1 + Pe/2)
√

t̃− x̃/(2
√

t̃)
]}

.

Appendix D: Spatial fluctuations

We wish to compute the integral:

Var[N(L, t)] =

∫

L

∫

L

〈

γ(x, t), γ(x′, t)
〉

dxdx′.

That is:

Var[N(L, t)] = 〈γ〉s L

+
〈γ〉s
2ℓc

µ

σ − µ

∫ L/2

−L/2

∫ L/2

−L/2

e−|x−x′|/ℓcdxdx′.

The value of the integral can be obtained by using:

∫ L/2

−L/2

∫ L/2

−L/2

e|x−x′|/ℓcdxdx′ =

∫ L/2

−L/2

[

∫ x

−L/2

e(x−x′)/ℓcdx+

∫ L/2

x

e−(x−x′)/ℓcdx

]

dx′ =

ℓc

∫ L/2

−L/2

[

2− eL/(2ℓc)
(

e−x′/ℓc + ex
′/ℓc
)]

dx′ =

2ℓ2c

(

L/ℓc + e−L/ℓc − 1
)

.

Thus:

Var[N(L, t)] = 〈γ〉s L+ 〈γ〉s ℓc
µ

σ − µ

(

L/ℓc + e−L/ℓc − 1
)

.

Appendix E: Experimental dispersion index

From the individual particle trajectories, we define
N(L, t) as the number of particles in a window of length
L. To compare this with the theoretical result given in Eq.

(26), we compute the variance of N(L, t) as a function of
the window size L .

In practice, we proceed as follows. For a given length
scale, we randomly select n possible positions for the ob-
servation windows over the maximum length given by the
camera resolution. Note that these sampling windows may
possibly overlap each other if n or the length scale are large.
The variance is then computed from the particles counts lo-
cated in the n windows at each of the T recorded frames and
for each of the ne acquisitions. This sampling method gives
a total sample of n × ne × T ∼ 300 000 values per length
scales. It is worth mentioning that there are two reasons a
high number of samples is needed to get accurate statistics:
(i) sample values between frames are time-correlated, and
(ii) observation windows are not always independent (for
instance when the length scale approaches the maximum
observation length, windows overlap).

Computing the temporal dispersion index follows roughly
the same steps. We first randomly select n1 locations over
the maximum observation window. Then, for each ne ac-
quisition, we construct the n1 × ne time series of particle
crossing those locations. For a given time scale and for each
time series, we randomly select n2 time intervals inside the
total experimental period and count the number of parti-
cle crossing events falling inside them. The temporal index
is then computed by taking the variance of those interval
counts, over a sample of n1 × ne × n2 ∼ 400 000 values.

Notation

λ Average particle entrainment rate per meter
length in particles/m/s.

σ Average particle deposition rate in s−1.

µ Average collective entrainment rate in s−1.

d Local diffusivity in s−1.

D Macroscopic diffusivity in m2/s.

ūs Mean particle velocity in m/s.
∆x Cell length in m.
Ni Number of moving particles in cell i.

γ(x, t) Density of moving particles at location x and
time t in particles/m.

η(x, t) Poisson density of moving particles at location x
and time t in particles/m.

〈γ〉s Steady-state homogeneous average density of
moving particles in particles/m.

〈η〉s Steady-state homogeneous average Poisson den-
sity of moving particles in particles/m.

ℓc Correlation length in m.
tc Correlation time in s in the frozen-flow

hypothesis.

Pe local Péclet number (non dimensional number).
g Spatial correlation function.

G Spatio-temporal correlation function.
I Index of dispersion.

K K-function.
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