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When a mixture of particles, which differ in both their size and their density,
avalanches downslope, the grains can either segregate into layers or remain mixed,
dependent on the balance between particle-size and particle-density segregation. In this
paper, binary mixture theory is used to generalize models for particle-size segregation
to include density differences between the grains. This adds considerable complexity
to the theory, since the bulk velocity is compressible and does not uncouple from the
evolving concentration fields. For prescribed lateral velocities, a parabolic equation
for the segregation is derived which automatically accounts for bulk compressibility.
It is similar to theories for particle-size segregation, but has modified segregation
and diffusion rates. For zero diffusion, the theory reduces to a quasilinear first-order
hyperbolic equation that admits solutions with discontinuous shocks, expansion fans
and one-sided semi-shocks. The distance for complete segregation is investigated
for different inflow concentrations, particle-size segregation rates and particle-density
ratios. There is a significant region of parameter space where the grains do not
separate completely, but remain partially mixed at the critical concentration at which
size and density segregation are in exact balance. Within this region, a particle may
rise or fall dependent on the overall composition. Outside this region of parameter
space, either size segregation or density segregation dominates and particles rise or
fall dependent on which physical mechanism has the upper hand. Two-dimensional
steady-state solutions that include particle diffusion are computed numerically using a
standard Galerkin solver. These simulations show that it is possible to define a Péclet
number for segregation that accounts for both size and density differences between
the grains. When this Péclet number exceeds 10 the simple hyperbolic solutions
provide a very useful approximation for the segregation distance and the height of
rapid concentration changes in the full diffusive solution. Exact one-dimensional
solutions with diffusion are derived for the steady-state far-field concentration.
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1. Introduction
Shallow granular free-surface flows are one of the most common particle transport

mechanisms in both our natural environment and industry. Hazardous geophysical
mass flows such as snow avalanches (Savage & Hutter 1989; Ancey 2012), debris
flows (Iverson 1997), rockfalls, pyroclastic flows (Branney & Kokelaar 1992) and
lahars (Vallance 2000) all fall into this category, while in industry examples include
chute flows (Pouliquen 1999a) as well as thin fluid-like avalanches that develop in
the free-surface layers of heaps (Williams 1968), silos (Schulze 2008) and rotating
tumblers (Gray & Hutter 1997; Hill et al. 1999). It is precisely these granular
avalanches that are particularly efficient at segregating particles by size (Middleton
1970; Savage & Lun 1988) and density differences between the particles (Drahun
& Bridgwater 1983). Despite many years of research, both particle size and density
segregation continue to present considerable practical problems in many industrial
processes (Johanson 1978; Gray 2010). Sometimes the segregation is useful, such as
in the mining industry (Wills 1979), but mostly it is undesired and it can degrade
the quality of products, leading to increased costs and considerable wastage.

An ability to predict segregation is the first step in understanding the phenomenon
and ultimately being able to design equipment to either enhance or mitigate its
effect. Early continuum models for particle-size segregation were first formulated
by Bridgwater, Foo & Stephens (1985). Their very simple one-dimensional time-
dependent model consisted of an advection diffusion equation for the concentration
of one of the species, with a flux function that shut off when the concentration
reached zero or unity. This essential structure is still present in current bidisperse
segregation models. Savage & Lun (1988) used an information entropy approach to
model particle-size segregation. They argued that the avalanche acted as a ‘random
fluctuating sieve’ in which small particles were statistically more likely to fall down
into gaps than large grains, as particles were sheared over one another. This led to
differential percolation rates of the large and small particles; this was opposed by
a mechanism called ‘squeeze expulsion’, which gave an equal probability for all
particles to be levered upwards. When these two processes were combined, there was
a net flux of small particles to the base of the flow and a net flux of large particles
towards the surface. It is not immediately apparent, but Savage & Lun’s (1988) theory
is, in fact, closely related to that of Bridgwater et al. (1985). This is because the
flux functions appear to be much more complicated and the model was formulated
in terms of number densities rather than concentrations. For a prescribed downstream
velocity field Savage & Lun’s (1988) theory was able to compute the steady-state size
distribution in a chute flow which was in good agreement with experiments that took
relatively coarse resolution samples by using a movable hopper, splitter plates and
a binning procedure. Dolgunin & Ukolov (1995) postulated a model that was based
on the simple observation that the segregation must shut off when the concentration
reaches zero or unity. This was very much in the spirit of Bridgwater et al.’s (1985)
approach, but it was two-dimensional, time-dependent and included the effects of
particle diffusion.

Over recent years there has been a lot of work on developing models for
particle-size segregation from mixture theory. A review of this approach together
with a detailed discussion of how it relates to earlier work is provided by Gray,
Gajjar & Kokelaar (2015). Mixture theory provides a useful framework, with
clear definitions of intrinsic and mixture quantities as well as individual mass and
momentum conservation laws for each species of particle. Gray & Thornton (2005)
formulated a theory for bidisperse segregation in which the interstitial pore space
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was implicitly incorporated into the bulk density of the particles, while Thornton,
Gray & Hogg (2006) explicitly included the air by using a three-phase mixture
theory. Gray & Chugunov (2006) showed how to include diffusive remixing of the
particles into the theory, and used the Cole–Hopf transformation (Hopf 1950; Cole
1951) to construct exact time and spatially dependent solutions with diffusion. All
of these theories are closely related to those of Bridgwater et al. (1985), Savage
& Lun (1988) and Dolgunin & Ukolov (1995), but provide a much more detailed
derivation that can easily be extended to other situations. Although the theories are
relatively simple, they are able to accurately model the concentration distribution in
chute flow experiments. Wiederseiner et al. (2011) averaged 2000 high-speed camera
images taken through a transparent sidewall at 10 downstream locations along a
chute and used a calibration curve to build up a complete picture of the spatial
evolution of the particle-size distribution. They showed that the theory was able to
accurately capture the complete spatial evolution from a normally graded inflow (with
all the small particles on top of the large grains) to a reverse-graded steady-state
distribution sufficiently far downstream (in which large particles were concentrated
in the surface layers). Typical Péclet numbers for segregation were found to be in
the range 11–19, with complete segregation occurring 70 cm downstream for a flow
of depth 24 mm. The theory has also been able to accurately match time-dependent
segregation data derived from discrete particle method (DPM) simulations performed
on a periodic box (Thornton et al. 2012; Staron & Phillips 2014). While there is
considerable scope for developing more experimental and DPM data sets to help
in calibrating the parameters in the models, the work of Wiederseiner et al. (2011),
Thornton et al. (2012) and Staron & Phillips (2014) provides very strong evidence
that the segregation models have the correct underlying mathematical structure.

Simple insights into the nature of segregation are provided by the non-diffuse
theory, which allows exact two-dimensional time-dependent solutions (Gray, Shearer
& Thornton 2006; Shearer, Gray & Thornton 2008) to be constructed, as well as
steadily travelling breaking waves (Thornton & Gray 2008; Gray & Ancey 2009;
Johnson et al. 2012). These develop as small particles are sheared over large grains
and play an important role near flow fronts. The theory has also been depth averaged
(Gray & Kokelaar 2010a,b) to provide a simplified description of large-particle
transport, which facilitates easy coupling to depth-averaged avalanche models (e.g.
Gray & Edwards 2014), which can be used to study segregation–mobility feedback
effects that lead to flow fingering (Pouliquen, Delour & Savage 1997; Pouliquen &
Vallance 1999; Woodhouse et al. 2012).

Fan & Hill (2011) have extended the theory to shear-induced, rather than
gravity-driven, segregation and Tripathi & Khakhar (2013) have derived a theory
for pure density segregation that has a similar structure to the size-segregation
models. In addition, Gray & Ancey (2011) and Marks, Rognon & Einav (2012)
have generalized the theory to polydisperse systems, with both discrete grain-size
classes and continuous distributions. The size-segregation theory of Marks et al.
(2012) is particularly interesting, because it includes the effects of both particle
size and particle density, although the combined effect was not explored in the
paper. Tunuguntla, Bokhove & Thornton (2014) have used this approach to derive a
conservation law for bidisperse segregation which explicitly includes the effects of
density differences between the particles. This is a distinctly non-trivial extension of
the theory, because as the particles segregate the local density changes in response
to the changing concentration of each species. As a result, the bulk velocity u is
intimately linked to the evolving bulk density ρ, i.e. the bulk flow is no longer
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incompressible, but is compressible. The bulk velocity field can therefore no longer
be simply prescribed, but one component must be solved for at the same time as the
concentration. This aspect was not picked up on by Tunuguntla et al. (2014), who
solved their model using a prescribed incompressible velocity field. As a result, mass
was not properly conserved. This paper derives an alternative theory for particle size
and density segregation that automatically accounts for bulk compressibility of the
flow.

2. Derivation of the particle-size and -density segregation equations
2.1. Mixture framework

Consider a binary mixture composed of particles of differing size and density. The
two species of particles will be denoted as phases A and B and their local volume
fractions per unit mixture volume are defined as

φa ∈ [0, 1] and φb ∈ [0, 1] (2.1a,b)

respectively. When the volume fraction equals zero there is a complete absence of that
phase, while a value of unity indicates 100 % concentration. For simplicity, phases
A and B are assumed to occupy all of the available space, so that the local volume
fractions sum to unity,

φa + φb = 1. (2.2)

This implicitly assumes that the solids volume fraction is constant and uniform
throughout the flow and that it can be incorporated into the intrinsic density of A
and B (see, e.g., Thornton et al. 2006). It should be noted that it is well known that
particles of differing sizes may pack more closely together in static configurations (see,
e.g., Herrmann, Mantica & Bessis 1990). However, when the particles are sheared,
DPM simulations suggest that mixed regions have only a very slightly higher solids
volume fraction than the pure phases (Thornton et al. 2012), so the assumption of
constant uniform solids volume fraction is a reasonable first approximation.

Mixture theory is formulated in terms of partial variables, defined per unit mixture
volume, which are linked to intrinsic variables, defined per unit volume of the pure
phase (see, e.g., Truesdell 1984; Morland 1992). The partial density ρν and intrinsic
density ρν∗ of constituent ν are necessarily linked by a linear volume fraction scaling,
while the partial and intrinsic velocities, uν and uν∗, are the same,

ρν = φνρν∗, uν = uν∗, ν = a, b. (2.3a−c)

Each of the phases satisfies mass and momentum conservation laws,

∂ρν

∂t
+∇ · (ρνuν)= 0, (2.4)

∂

∂t
(ρνuν)+∇ · (ρνuν ⊗ uν)=−∇pν + ρνg+ βν, (2.5)

where ⊗ is the dyadic product, g is the gravitational acceleration vector and pν is the
partial pressure of constituent ν. It should be noted that deviatoric stresses have been
neglected in (2.5) for simplicity. The interaction force βν is the force exerted on phase
ν by the other constituent and sums to zero over the two phases,

βa + βb = 0. (2.6)
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The bulk density ρ, the barycentric velocity u and the bulk pressure p are defined as

ρ = ρa + ρb, ρu= ρaua + ρbub, p= pa + pb (2.7a−c)

respectively. Summing the constituent mass balances over phases A and B yields an
equation for the evolution of the bulk density,

∂ρ

∂t
+∇ · (ρu)= 0. (2.8)

When the intrinsic densities, ρa∗ and ρb∗, are equal, (2.2), (2.3) and (2.7) imply that
the bulk density ρ = ρa∗ = ρb∗, and the bulk mass balance (2.8) then implies that the
bulk velocity field u is incompressible. When there is a density difference between
the particles, ρa∗ 6= ρb∗, the bulk density ρ is no longer constant and the bulk velocity
field u is compressible. This a major departure from the assumptions of constant
density and incompressibility, which are typically made in avalanche models (see,
e.g., Grigorian, Eglit & Iakimov 1967; Savage & Hutter 1989; Iverson 1997; Gray,
Wieland & Hutter 1999; Pouliquen 1999a,b; Iverson & Denlinger 2001; Gray, Tai &
Noelle 2003; Gray & Edwards 2014). It should be noted that mixture theory does
not formally yield an equation for the bulk velocity field, by summing the constituent
momentum balances, because the momentum transport terms cannot be rewritten
just in terms of u. Instead, the constituent momentum balances must be solved for
individually.

2.2. Mass fluxes and pressure perturbations
The grains are assumed to segregate as they avalanche down a slope inclined at an
angle ζ to the horizontal, as shown in figure 1. A coordinate system Oxyz is defined
with the x-axis pointing down the slope, the y-axis pointing across it and the z-axis
being the upward-pointing normal. The components of the barycentric velocity u and
constituent velocity uν are defined as (u, v, w) and (uν, vν, wν) respectively. The
avalanche is assumed to be shallow, so that the segregation velocity in the streamwise
direction is negligible compared with the bulk velocity. Hence, the down- and cross-
slope constituent velocity components are assumed to be equal to those of the bulk
velocity in each of these directions,

uν = u, vν = v, (2.9a,b)

which is consistent with measurements made in segregation experiments by
Wiederseiner et al. (2011). In the normal direction phases A and B move relative
to the bulk. The shallowness of the flow also implies that the normal acceleration
terms are sufficiently small that they can be neglected. It follows that the sum of the
normal momentum balances over phases A and B implies that the bulk pressure is
lithostatic,

∂p
∂z
=−ρg cos ζ , (2.10)

where g is the constant of gravitational acceleration. For purely particle-size-driven
segregation ρ is constant and (2.10) can be integrated with respect to z to yield an
explicit expression for the bulk pressure, p. When the particles differ in density (2.10)
cannot be integrated without knowing the distributions of species A and B through the
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FIGURE 1. A sketch showing a mixture of large dense and small light particles
avalanching down a chute inclined at an angle ζ to the horizontal. A coordinate
system Oxyz is defined with the x-axis pointing down the chute, the z-axis being the
upward-pointing normal and the y-axis pointing across the chute and into the page. From
a homogeneously mixed inflow, at x = 0, the large particles are sufficiently dense to
overcome size segregation and sink to the base of the flow as they avalanche downslope.
Smaller lighter particles are displaced upwards.

depth of the layer, which potentially complicates the description of both the basal and
the depth-averaged overburden pressures in avalanche models.

Mixture theory is a continuum theory that does not have an explicit way of
representing the finite size of the particles or their differing diameters. However,
motivated by the idea that during size segregation the large particles carry proportion-
ately more of the load than the small particles, its effect is modelled indirectly
through the partial pressures. Following Gray & Thornton (2005), the partial pressure
pν is assumed to be related to the lithostatic pressure p by a linear scaling,

pν = f νp, (2.11)

where f ν determines the proportion of the lithostatic pressure carried by each
constituent. In order to prevent tensile stresses, or pressures greater than p from
developing, f ν lies in the range

0 6 f ν 6 1, (2.12)

and (2.7) and (2.11) also imply that

f a + f b = 1. (2.13)

The use of the factors f ν differs from standard mixture theory, where the partial
pressures are usually scaled using a linear volume fraction scaling φν (Morland
1992).



628 J. M. N. T. Gray and C. Ancey

In order to derive an equation for the mass flux of each of the species, Gray &
Chugunov (2006) proposed an interaction drag law βν that automatically satisfied the
summation constraint (2.6) of the form

βν = p∇f ν − ρνc(uν − u)− ρ d∇φν, (2.14)

where c is the coefficient of interparticle drag and d is the coefficient of diffusive
remixing. The first term ensures that particle percolation is driven by intrinsic rather
than partial pressure gradients, the second provides a linear resistance to motion and
the final term models diffusive mixing of the particles. This form of the interaction
drag is particularly simple and allows an explicit formula for the normal velocity of
species A and B to be derived. Substituting (2.14) into the normal component of the
constituent momentum balance (2.5), neglecting the acceleration terms and using (2.3),
(2.10) and (2.11) implies

ρνwν = ρνw+ q[ρf ν − ρν∗φν] − ρD
∂φν

∂z
, (2.15)

where the constants
q= g

c
cos ζ and D= d

c
. (2.16a,b)

The first term on the right-hand side of (2.15) advects the particles with the bulk
normal velocity, the second term drives segregation and the final term is responsible
for diffusion. The density difference between the particles significantly complicates the
equations, and its effect can best be understood by adding and subtracting ρν∗f ν within
the square bracketed term and using the identities

ρ − ρa∗ = φb(ρb∗ − ρa∗) and ρ − ρb∗ = φa(ρa∗ − ρb∗), (2.17a,b)

to show that the normal mass fluxes of species A and B are

ρawa = ρaw+ q[(ρb∗ − ρa∗)f aφb + ρa∗(f a − φa)] − ρD
∂φa

∂z
, (2.18)

ρbwb = ρbw+ q[(ρa∗ − ρb∗)f bφa + ρb∗(f b − φb)] − ρD
∂φb

∂z
(2.19)

respectively. The terms multiplied by the intrinsic density difference ρb∗ − ρa∗

are responsible for density segregation, while the terms multiplied by the factor
f ν − φν drive particle-size segregation. It should be noted that in the absence of size
segregation, i.e. when f a=φa and f b=φb, the density-segregation terms have the same
φaφb structure as derived by Tripathi & Khakhar (2013) using an effective-medium
approach.

For purely size-driven segregation (when ρa∗=ρb∗), the particles will rise relative to
the bulk if f ν >φν , they will fall if f ν <φν and there will be no motion when f ν =φν .
Gray & Thornton (2005) based the form of f ν on the following three ideas: (i) when
there is none of a constituent present it cannot support any of the overburden pressure,
(ii) when there is 100 % of a constituent it must support all of the load and (iii) when
the small particles are percolating downwards the large grains must support more of
the overburden pressure. The simplest function that satisfies these three constraints is

f ν = φν + Bνµφνφµ, (2.20)
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FIGURE 2. A graph of f ν against φν for different values of the size-segregation parameter
Bνµ. The case Bνµ= 0 is the straight line f ν = φν . The function f ν lies above this line for
positive values of Bνµ and lies below the line for negative values. It should be noted that
|Bνµ|6 1 for f ν ∈ [0, 1].

where the size-segregation parameter Bνµ is positive if species ν is larger than
species µ. This automatically satisfies the summation condition (2.13) provided that

Bab =−Bba. (2.21)

The function (2.20) has been chosen for simplicity (Gray & Thornton 2005) and
does not automatically satisfy the inequalities (2.12). This places a constraint on the
magnitude of Bνµ, which must satisfy

|Bνµ|6 1 (2.22)

to prevent f ν from becoming negative or exceeding unity, as shown in figure 2. This
significantly limits the size of the pressure perturbations that can be generated in
(2.11) by using the function (2.20). If larger perturbations are needed, a function
with a stronger nonlinear dependence on φν can be used that still keeps f ν in the
range [0, 1] for all φν . It should be noted that (2.20) is the simplest possible flux
model for segregation. This does a very good job of matching the chute experiments
of Wiederseiner et al. (2011) as well as the DPM simulations of Thornton et al.
(2012) and Staron & Phillips (2014). However, in other configurations, such as ring
shear cells (Golick & Daniels 2009) and shear boxes (van der Vaart et al. 2015),
there is growing evidence that non-convex flux curves are needed, which allow low
concentrations of small particles to segregate more quickly than low concentrations
of large grains (Gajjar & Gray 2014). The precise form of the flux function is
therefore a subject of ongoing research. In particular, the DPM simulation method
provides a useful way of determining the functional dependence of the flux function
on composition, shear rate, particle size and particle density, which are needed to
determine the precise functions and parameters used in the mixture-theory approach.
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2.3. Derivation of the segregation equations
It is now easy to derive two equations for the size- and density-driven segregation of
species A and B. The normal mass fluxes can be derived by substituting (2.20) into
(2.18) and (2.19), and using the definition (2.7) of the bulk density ρ, to give

ρawa = ρaw+ q[ρb∗ − ρa∗ + ρBab]φaφb − ρD
∂φa

∂z
, (2.23)

ρbwb = ρbw+ q[ρa∗ − ρb∗ + ρBba]φaφb − ρD
∂φb

∂z
. (2.24)

Substituting the constituent velocities (2.9) and the mass fluxes (2.23) and (2.24) into
the constituent mass balance equations (2.4) yields

∂ρa

∂t
+∇ · (ρau)+ ∂

∂z
(q[ρb∗ − ρa∗ + ρBab]φaφb)= ∂

∂z

(
ρD

∂φa

∂z

)
, (2.25)

∂ρb

∂t
+∇ · (ρbu)+ ∂

∂z
(q[ρa∗ − ρb∗ + ρBba]φaφb)= ∂

∂z

(
ρD

∂φb

∂z

)
. (2.26)

It should be noted that these can be summed to recover the bulk mass balance
equation (2.8). Dividing (2.25) and (2.26) by the intrinsic density, ρν∗, yields the
segregation equations

∂φa

∂t
+∇ · (φau)+ ∂

∂z
(qaφ

aφb)= ∂

∂z

(
Da
∂φa

∂z

)
, (2.27)

∂φb

∂t
+∇ · (φbu)+ ∂

∂z
(qbφ

aφb)= ∂

∂z

(
Db
∂φb

∂z

)
. (2.28)

In each of these equations, the first term on the left-hand side describes the rate of
change of the concentration φν with time, the second describes the transport of φν due
to the bulk flow field, the third is due to segregation (with a typical φaφb structure)
and the term on the right-hand side accounts for diffusive remixing of the particles.
The segregation and diffusion rates are defined as

qa = q
[
ρb∗ − ρa∗

ρa∗ + ρ

ρa∗Bab

]
, Da = ρ

ρa∗D, (2.29a,b)

qb = q
[
ρa∗ − ρb∗

ρb∗ + ρ

ρb∗Bba

]
, Db = ρ

ρb∗D, (2.30a,b)

and account for both particle-size and particle-density segregation, with density
segregation driven by the intrinsic density difference ρb∗ − ρa∗ and size segregation
driven by the terms involving Bab and Bba. It is very important to note, however, that
(2.27) and (2.28) do not sum to zero, as one might expect. The root cause of this is
that the bulk velocity field u is no longer incompressible.

For pure size segregation, when the intrinsic particle densities are equal, ρa∗ = ρb∗,
there is no density segregation and (2.27) and (2.28) reduce to precisely the same
form as the bidisperse particle-size segregation equations (Gray & Ancey 2011). In
this case, the bulk velocity field u is incompressible and is therefore not linked to the
bulk density ρ. In this case, the velocity can be (i) prescribed, (ii) reconstructed from
depth-averaged avalanche models (Gray & Ancey 2009; Woodhouse et al. 2012) or
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(iii) computed using the µ(I) rheology (GDR-MiDi 2004; Jop, Forterre & Pouliquen
2006) or any other reliable constitutive relation. Given u, either of (2.27) or (2.28)
can be solved for one of the concentrations by virtue of the constraint (2.2).

2.4. Reformulation to account for compressibility of the flow
When density effects are present, ρ is not constant, the bulk velocity field u is
compressible and it does not uncouple from the evolving concentration field. This adds
considerable complexity to the model. Assuming that u and v are either prescribed
or can be computed independently, the normal bulk velocity w must be solved for
at the same time as the evolving concentration, φν . Equation (2.27) or (2.28) can be
reformulated to automatically account for the changes in the bulk normal velocity.
Using (2.3) and (2.7) to show that ρ = ρb∗ + φa(ρa∗ − ρb∗), substituting this into the
time derivative in (2.8), using (2.27) to substitute for ∂φa/∂t and rearranging terms
implies

∂w
∂z
= ∂

∂z

[(
ρa∗ − ρb∗

ρb∗

)(
qaφ

aφb −Da
∂φa

∂z

)]
−
(
∂u
∂x
+ ∂v
∂y

)
. (2.31)

Integrating once with respect to z, subject to the boundary condition that the normal
velocity at the base of the flow is zero, w= 0, and that the normal flux, F a, of species
A at the base of the flow is equal to zero, i.e.

F a = qaφ
aφb −Da

∂φa

∂z
= 0, at z= 0 (2.32)

(see Gray & Ancey 2011, for a general derivation), implies that the normal velocity

w=
(
ρa∗ − ρb∗

ρb∗

)(
qaφ

aφb −Da
∂φa

∂z

)
−
∫ z

0

(
∂u
∂x
+ ∂v
∂y

)
dz′. (2.33)

This can then be substituted into (2.27) to obtain a modified segregation equation for
species A in which the normal velocity w is eliminated. An exactly similar procedure
can be performed for species B, and the pair of reformulated particle-size and -density
segregation equations become

∂φa

∂t
+Div(φau)− ∂

∂z

(
φa
∫ z

0
Div u dz′

)
+ ∂

∂z
(qAφ

aφb)= ∂

∂z

(
DA
∂φa

∂z

)
, (2.34)

∂φb

∂t
+Div(φbu)− ∂

∂z

(
φb
∫ z

0
Div u dz′

)
+ ∂

∂z
(qBφ

aφb)= ∂

∂z

(
DB
∂φb

∂z

)
, (2.35)

where Div= ∂/∂x+ ∂/∂y is the two-dimensional divergence operator. The segregation
and diffusion coefficients are modified by a factor ρ/ρb∗ for species A and a factor
ρ/ρa∗ for species B. It follows that the reformulated segregation rates and diffusivities
are

qA = ρq
[
ρb∗ − ρa∗

ρa∗ρb∗ +
ρ

ρa∗ρb∗Bab

]
, DA = ρ2

ρa∗ρb∗D, (2.36a,b)

qB = ρq
[
ρa∗ − ρb∗

ρa∗ρb∗ +
ρ

ρa∗ρb∗Bba

]
, DB = ρ2

ρa∗ρb∗D, (2.37a,b)
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and it is clear that qA = −qB and that DA = DB. The structure of (2.34) and
(2.35) is therefore particularly nice, because it is now easy to see that their sum
is trivially satisfied. Only one of them therefore needs to be solved. The resulting
equation reduces to that of Gray & Chugunov (2006) when ρ = ρa∗ = ρb∗, since the
incompressibility condition, ∇ · u = 0, implies that the two-dimensional divergence
Div u=−∂w/∂z.

2.5. Non-dimensionalization
Avalanches are typically long and thin. It follows that given an avalanche depth, H,
length, L, and downslope speed, U, the bulk flow variables can be scaled as

(x, y)= L(x̃, ỹ), z=Hz̃, (u, v)=U(ũ, ṽ), w=
(

HU
L

)
w̃, t=

(
L
U

)
t̃,

(2.38a−e)
where H � L and the tilded variables are non-dimensional. Applying these scalings
to the segregation equations (2.34) and (2.35) gives the time derivatives and the
transport terms equal status. In order to scale the segregation and diffusion terms, it
is convenient to assume that phase A is smaller than or of equal size to phase B. To
make this assumption easier to remember we make the identifications

φs ≡ φa and φl ≡ φb (2.39a,b)

and use the superscripts s and l to refer to small and large particles respectively. This
does not exclude the possibility that the large and small particles are of the same size.
In order to scale the equations properly it is necessary to non-dimensionalize the bulk
density on the magnitude of the largest intrinsic particle density, i.e.

ρ =max(ρs∗, ρ l∗)ρ̃, (2.40)

which implies that

ρ̃ =
{

R+ φs(1− R), R 6 1,
1− φs(1− 1/R), R> 1,

(2.41)

where the non-dimensional density ratio, R ∈ (0,∞), is defined as

R= ρ
l∗

ρs∗ . (2.42)

Using this scaling, the non-dimensional bulk density ρ̃ is always less than or equal
to unity. Balancing the lateral transport with the segregation and diffusive terms in
(2.34) implies that typical length scales for density segregation, size segregation and
diffusion are

Lρ = min(ρs∗, ρ l∗)
|ρ l∗ − ρs∗|

HU
q
, Lr = HU

λqBls
, LD = H2U

λD
(2.43a−c)

respectively, where the non-dimensional parameter

λ=max
(
ρ l∗

ρs∗ ,
ρs∗

ρ l∗

)
=max

(
R,

1
R

)
. (2.44)
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Curiously, if there are density differences between the particles, the parameter λ is
always greater than unity, and the length scales for size segregation, Lr, and diffusion,
LD, are reduced. This is a very important effect, which allows particle-size segregation
and diffusion to compete with what might at first glance appear to be larger density
effects. The ratio of the length scale imposed by the bulk flow L to the lengths defined
in (2.43) introduces the three non-dimensional parameters

Sρ = L
Lρ
= |ρ

l∗ − ρs∗|
min(ρs∗, ρ l∗)

Lq
HU

, Sr = L
Lr
= λLqBls

HU
, Dr = L

LD
= λ LD

H2U
. (2.45a−c)

The non-dimensional density segregation rate Sρ is a new parameter, while the non-
dimensional particle-size segregation rate Sr and the non-dimensional diffusivity Dr
are the same as those of Gray & Chugunov (2006) except for an additional factor λ
that enhances their strength when there are density differences between the particles.

For steady-state fully developed flows it is also useful to know the ratios of the
density and size segregation rates to the diffusion rate. This introduces two Péclet
numbers

Peρ = Sρ
Dr
= LD

Lρ
= |ρ l∗ − ρs∗|

max(ρs∗, ρ l∗)
Hq
D
, Per = Sr

Dr
= LD

Lr
= HqBls

D
. (2.46a,b)

The Péclet number for size segregation, Per, is precisely the same as that defined
by Gray & Chugunov (2006) and is unaffected by the density ratio of the particles.
Wiederseiner et al. (2011) found that in the absence of density differences typical
values of Per in chute flow experiments ranged from 11 to 19. Substituting the
scalings (2.38) and (2.40) into (2.34) and dropping the tildes (for simplicity), the
non-dimensional small-particle segregation equation becomes

∂φs

∂t
+Div(φsu)− ∂

∂z

(
φs
∫ z

0
Div u dz′

)
+ ∂

∂z
(Sφsφl)= ∂

∂z

(
Drρ

2 ∂φ
s

∂z

)
, (2.47)

where the function
S= Sρρ sgn(ρ l∗ − ρs∗)− Srρ

2. (2.48)

The sign function takes account of the fact that we have taken the modulus of ρ l∗ −
ρs∗ in the length scalings (2.43), and the minus sign in front of the size-segregation
term arises because we have used the positive segregation parameter Bls to ensure
that Lr is positive. The scalings (2.38) are based on the typical ones used to non-
dimensionalize the avalanche equations for the bulk flow (see, e.g., Savage & Hutter
1989; Gray et al. 2003; Gray & Edwards 2014), and it is expected that they may be
imposed on the segregation equation in typical calculations. They are, however, not
ideal, because the three non-dimensional parameters Sρ , Sr and Dr are conditionally
dependent on the non-dimensional parameter R. As a result, Sρ , Sr and Dr cannot be
set independently. It is interesting, however, that this conditional dependence draws
out the fact that any density difference between the particles enhances the strength of
size segregation, which is a novel and counterintuitive effect.

For a given flow depth h and lateral velocities (u, v) the segregation equation (2.47)
must be solved subject to suitable boundary and initial conditions. In particular, at the
free surface and the base of the flow the no-flux condition (2.32) is usually imposed,
which in non-dimensional variables becomes

F s = Sφsφl −Drρ
2 ∂φ

s

∂z
= 0. (2.49)
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In the absence of diffusion this is satisfied when

φs = 0, φl = 0 or S= 0. (2.50a−c)

That is, when there is either a pure phase of particles or the segregation is zero, in
which case the concentration is arbitrary.

3. Steady uniform flows
3.1. Alternative non-dimensionalization

For steady uniform flows it is possible to use an alternative scaling that removes the
conditional dependence of the non-dimensional parameters. Assuming that the down-
and cross-stream bulk velocity components are prescribed,

u= u(z), v = 0, z ∈ [0, 1], (3.1a,b)

the two-dimensional divergence Div u= 0 everywhere, and the bulk normal velocity w
is zero at z= 0, 1, by virtue of (2.33) and the no-flux condition (2.49) at the surface
and the base of the avalanche. It follows from the free-surface kinematic condition
(see, e.g., Savage & Hutter 1989; Gray & Kokelaar 2010a) that an initially flat free
surface remains flat, because the normal velocity w= 0 at z= 1. It should be noted,
however, that the normal bulk velocity w(z), within the interior, can adjust due to
changes in the local bulk density, i.e. the flow is still compressible. In this situation
there is no intrinsic avalanche length scale L and a much simpler scaling can be
adopted. Using the intrinsic small-particle density ρs∗ to scale the density, irrespective
of whether the density ratio R is greater than or less than unity, implies

ρ = R+ φ(1− R), (3.2)

where we have assumed for notational simplicity that φ=φs= 1−φl. Taking account
of the velocity field (3.1) and using a generic segregation length scale

L= HU
q

(3.3)

in the scalings (2.38), the small-particle segregation equation (2.34) reduces to

∂φ

∂t
+ ∂

∂x
(φu)+ ∂

∂z

(ρ
R
(R− 1− Blsρ)φ(1− φ)

)
= ∂

∂z

(
ρ2

RPe
∂φ

∂z

)
, (3.4)

where the generic Péclet number

Pe= Hq
D
. (3.5)

Typical values of the generic Péclet number Pe will be larger than those of the
Péclet number for size segregation, Per ' 11–19, reported for chute flow experiments
by Wiederseiner et al. (2011), because Per/Pe = Bls 6 1 by (2.22). The reduced
segregation equation (3.4) contains three independent non-dimensional parameters R,
Bls and Pe, which has the major advantage that a change in the density ratio R does
not affect Bls or Pe. This makes it much easier to assess the relative importance of
the different segregation terms and the diffusion.
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FIGURE 3. Flux functions F for density segregation plotted as a function of the small-
particle concentration φ. The value of the density ratio R is shown on every other curve.
When R = 1 there is no segregation. The flux functions are either convex up or convex
down for R ∈ (1/2, 2) and are non-convex outside this range. The inflection points are
indicated by the white markers. It should be noted that the curves are invariant under the
mapping R 7−→ 1/R, φ 7−→ 1− φ and F 7−→−F.

3.2. The segregation flux function
Many of the properties of the solutions, as well as whether a particle will rise or fall,
are determined by the small-particle segregation flux, which is defined as

F= ρ
R
(R− 1− Blsρ)φ(1− φ). (3.6)

This has the same φ(1− φ) structure as the models of Gray & Thornton (2005) and
Gray & Chugunov (2006), which implies that the segregation shuts off when

φ = 0 and φ = 1, (3.7a,b)

but, in addition, provided that Bls 6= 0 and R 6= 1, the flux is also zero when

φ = R
R− 1

− 1
Bls
= φcrit ∈ [0, 1]. (3.8)

In this case the effects of particle-size segregation are exactly balanced by the effects
of particle-density segregation and the mixture stays at the critical concentration φcrit.

In the absence of size segregation, i.e. when Bls = 0, the critical regime (3.8) does
not exist and the flux curves have a relatively simple form, as shown in figure 3. For
R = 1 there is no segregation. For R < 1 the flux curves lie below zero and species
‘s’ sinks to the base of the flow, while for R> 1 species ‘s’ will rise. Calculating the
second derivative of the flux function with respect to φ implies

F′′ = 2
(R− 1)

R
(1− 2R− 3(1− R)φ), (3.9)
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which is equal to zero when the concentration is equal to

φinf = 1− 2R
3(1− R)

. (3.10)

For R ∈ (1/2, 1) the curves are convex up, i.e. F′′ > 0 for all φ ∈ [0, 1], and look
similar to those for pure size segregation. Conversely, for R∈ (1, 2) the flux is convex
down, i.e. F′′ < 0 for all φ ∈ [0, 1]. For simplicity, we will term both of these cases
convex. For R > 2 and R 6 1/2 there is an inflection point, where F′′ changes sign.
These points are indicated by the white markers in figure 3. The switch from convex
to non-convex flux functions for different values of the density ratio R is an interesting
feature that changes the underlying nature of the solutions to the hyperbolic theory
(see, e.g., Buckley & Leverett 1942; Jeffrey 1976; Rhee, Aris & Amundson 1986;
Gajjar & Gray 2014).

For the case of both particle-size and particle-density segregation the flux curves
are much more complicated. However, there are only 10 qualitatively different flux
functions, denoted by C1 to C10, as shown in figure 4. They differ with respect to the
regions in which they are positive or negative, as well as whether they are convex or
non-convex with single or double inflection points. The inflection points are calculated
by setting the second derivative of the flux function to zero, which yields a quadratic
equation for φinf that has two solutions,

φαinf =
−γ +√9R2 − 18R− 6BlsR2 + 9+ 6Bls + 9B2

lsR2 − 6B2
lsR+ 9B2

ls

12Bls(R− 1)
(3.11)

and

φ
β

inf =
−γ −√9R2 − 18R− 6BlsR2 + 9+ 6Bls + 9B2

lsR2 − 6B2
lsR+ 9B2

ls

12Bls(R− 1)
, (3.12)

where the coefficient γ = 3R− 9BlsR+ 3Bls− 3 and the superscripts α and β are used
to distinguish the two roots. The regions of parameter space where the different flux
curves exist are shown in figure 5. The dividing lines occur when the inflection points
intersect with the stationary points of the flux function, (3.7) and (3.8). The inflection
point coincides with φ = 0 along the two dot-dashed lines given by

Bls = 2R2 − 3R+ 1
R(3R− 2)

, (3.13)

and with φ = 1 along the two dashed lines at

Bls = R2 − 3R+ 2
2R− 3

. (3.14)

These formulae are written in the form Bls = Bls(R) for compactness, and have
singularities at R = 2/3 and R = 3/2 respectively. They can also be written as a
quadratic in R and solved for R= R(Bls), which yields explicit formulae for the two
solution branches. The main dark shaded region in figure 5 is where φcrit, defined in
(3.8), lies in the region [0, 1]. Its upper and lower boundaries are given by

Bls = R− 1
R

and Bls = R− 1 (3.15a,b)
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FIGURE 4. (a) Eight qualitatively different flux functions F for particle-size and -density
segregation as a function of the small-particle concentration φ. The grey markers indicate
positions where φ=φcrit and F= 0, while the white markers indicate inflection points. The
curves C1 and C8 differ with regard to whether they are positive or negative and whether
they are convex up, convex down or non-convex with an inflection point to the left or the
right of the local maximum/minimum. (b) An additional two curves C9 and C10 that have
two inflection points. The regions of parameter space where curves C1–C10 are defined are
illustrated in figure 5.

respectively. This shaded region is very significant, because within it the grains no
longer separate out into pure phases of large and small particles. Instead, as we shall
demonstrate in § 4, even when fully separated the solutions contain regions of partially
mixed grains that are at the critical concentration φcrit. The shaded region in figure 5
therefore may be thought of as a region of incomplete segregation.
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FIGURE 5. The regions in which the qualitatively different flux curves C1–C10 are defined.
The density ratio R ∈ (0,∞) is shown on the right axis and the variable χ = (R − 1)/
(R+1) is used to map it onto a finite range [−1,1] shown on the left axis. The strength of
the particle-size segregation is determined by Bls. The dot-dashed line is when the
inflection point is at φ = 0, the dashed line is when the inflection coincides with φ = 1
and the dotted line is when the inflection lies at φ = φcrit. The shaded region is where
φcrit ∈ [0, 1].

The inflection point coincides with φcrit when

Bls = R− 1
R

(R+ 1−
√

R2 − R+ 1), (3.16)

which corresponds to the dotted line in figure 5. The lines (3.13)–(3.16) divide the
parameter space into a total of 10 regions, which are denoted by C1–C10. Curves in
C1–C3 are all negative, implying that size segregation dominates and small particles
percolate downwards. Those in C6–C9 are all positive, which implies that density
segregation wins and large dense particles sink to the base of the flow instead. In
the transition region, corresponding to C4, C5 and C10, each of the curves is positive
to the right of the critical point, φcrit, and negative to the left, which implies that
a small particle can either rise to the surface or sink to the base, dependent on
the composition. Curves in C2 are negative and convex up, and similar to those
investigated for standard size-segregation problems (see, e.g., Gray & Thornton 2005;
Gray & Chugunov 2006; Gray et al. 2006; Thornton et al. 2006; Shearer et al. 2008).
There are also sections of the curves, in the range [0, φcrit], for C5 and C10 that are
also negative and convex up. Curves in C7 are positive and convex down, as is a
section of the flux curve in the range [φcrit, 1] in class C4. Curves in C1, C5 and C6
have inflection points to the left of a local maximum or minimum. In the case C5
this lies in the range [φcrit, 1]. Curves in C3, C4 and C8 have inflections to the right of
a local maximum or minimum, with that in C4 lying in the range [0, φcrit]. Curves in
C9 and C10, illustrated in figure 4(b), are interesting because they have two inflection
points on either side of the maximum. Finally, it is worth noting that for pure density
segregation, when Bls = 0, the flux curves shown in figure 3 lie in classes C1, C2, C7
and C8.
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4. Exact solutions in the absence of diffusion
Numerical solutions to the particle-size and -density segregation equation (3.4)

including diffusive terms will be performed in § 5. Previous studies (e.g. Gray &
Thornton 2005) have found it useful to examine the case when there is no diffusion,
since it is possible to construct exact solutions that yield considerable insight, as
well as good approximations for strong segregation. Consider then the steady-state
problem in which there is a prescribed steady uniform flow (3.1) on a semi-infinite
chute and the particles segregate from an initially homogeneously mixed inflow at
x= 0, i.e.

φ(0, z)= φ0, z ∈ [0, 1], (4.1)

with no normal flux at the surface and base of the avalanche,

F(x, 1)= 0, and F(x, 0)= 0. (4.2a,b)

In the absence of diffusion the segregation equation (3.4) can be written in the form

∂

∂x
(φu)+ ∂F

∂z
= 0, (4.3)

where the flux function F is given by (3.6). It should be noted that this equation
assumes that the downslope velocity u = u(z) is either prescribed or computed
independently. In particular, it does not take account of any downstream variations
that may be induced by feedback of either the segregation or the density on the bulk
flow (e.g. Johnson et al. 2012; Woodhouse et al. 2012). Under these assumptions,
(4.3) can be transformed into a problem that is independent of the velocity profile
by making the transformation to streamfunction coordinates (Gray & Thornton 2005;
Gray & Ancey 2009),

ξ = x, ψ =
∫ z

0
u(z′) dz′, (4.4a,b)

and dividing through by u(z) 6= 0, to obtain

∂φ

∂ξ
+ ∂F
∂ψ
= 0. (4.5)

In the change of coordinates (4.4) the base of the flow is mapped to ψ = 0 and,
without loss of generality, the magnitude of the downstream velocity U, in the scalings
(2.38), can be chosen to ensure that the surface of the flow is mapped to ψ = 1.
It should be noted that the mapped segregation equation (4.5) has exactly the same
mathematical structure as a time-dependent problem in which the concentration is
independent of x and y.

For smooth solutions, (4.5) can be expanded into quasilinear form,

∂φ

∂ξ
+ F′

∂φ

∂ψ
= 0, (4.6)

where the prime indicates differentiation with respect to φ. This can be solved by the
method of characteristics. A characteristic curve can be represented in parametric form
ξ = ξ(s), ψ = ψ(s), where s is defined as the distance along the curve. Comparing
the total derivative

dφ
ds
= ∂φ
∂ξ

dξ
ds
+ ∂φ

∂ψ

dψ
ds

(4.7)
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with (4.6) implies
dφ
ds
= 0,

dξ
ds
= 1,

dψ
ds
= F′. (4.8a−c)

Hence, the parameter s can be eliminated to give the characteristic equations

dφ
dξ
= 0,

dψ
dξ
= F′. (4.9a,b)

These can be solved, subject to the initial conditions that φ=φ∗ at ψ =ψ∗ and ξ = ξ∗,
to show that the concentration is equal to a constant φ∗ along the straight line

ψ =ψ∗ + F′(φ∗)(ξ − ξ∗). (4.10)

It should be noted that (4.9) implies that the slope of the characteristics is equal to
the gradient of the flux curve evaluated at φ∗.

For non-smooth solutions the jump condition (see, e.g., Chadwick 1976; Gray &
Thornton 2005) implies that the gradient of the shock is given by

dψ
dξ
= JFK

JφK
= F(φ+)− F(φ−)

φ+ − φ− , (4.11)

where J K are the jump brackets and the plus and minus superscripts imply evaluation
on the forward and rearward sides of the shock respectively. Equation (4.11) implies
that the gradient of the shock is equal to the gradient of the secant line joining φ−

to φ+.
One of the major differences between convex and non-convex flux curves is

the entropy condition. For convex flux functions the Lax entropy condition (Lax
1957) is a necessary and sufficient condition for admissibility of the shock. Lax’s
condition requires characteristics to propagate into the shock from either side, i.e.
F′(φ−)> JFK/JφK> F′(φ+). For non-convex flux functions the Lax entropy condition
is a necessary but not sufficient condition. Instead, the Oleinik entropy condition
(Oleinik 1959; Rhee et al. 1986; Laney 1998) must be satisfied. This prevents
intersections of the flux curve with the secant line joining φ− to φ+ and requires that

F(φ)− F(φ−)
φ − φ− > F(φ+)− F(φ−)

φ+ − φ− > F(φ+)− F(φ)
φ+ − φ , (4.12)

for all φ ∈ [φ−, φ+]. An observer moving along the secant line from φ− to φ+ would
therefore see the flux curve to their left. It should be noted that in the limit as
φ −→ φ− in the left inequality, and φ −→ φ+ in the right inequality, the derivatives
F′(φ−) and F′(φ+) are obtained, which implies that the Oleinik condition satisfies the
Lax condition.

4.1. Solutions in classes C1–C8

Particle-size and -density segregation introduce 10 qualitatively different flux curves,
C1–C10, each of which may have multiple solutions dependent on the flow composition.
Despite this complexity, many of the solutions in different classes can be mapped onto
one another, so only a few cases need to be considered in detail. A typical flux curve
from class C4 is illustrated in figure 6(a), together with the four qualitatively different
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FIGURE 6. (a) The flux curve for Bls = 0.8 and R= 2, which lies in C4. It has a critical
point at φcrit and an inflection at φinf . The tangent from φcrit intersects the flux curve at
concentration φtan. Thick arrowed lines show the secants associated with a shock from
φ− = φ1 to φ+ = φ0 = 0.25 and from φ− = φ0 to φ+ = 0. Four qualitatively different
solutions dependent on φ0 are shown in (b) φ0= 0.15, (c) 0.4, (d) 0.6, and (e) 0.8. Shocks
are indicated by thick lines, intersections by white markers and expansions by thin lines.

solutions that it generates, 6(b–e). The curve has a stationary or critical point φcrit ∈
[0, 1], where the flux is zero. If the inflow concentration φ0 is equal to φcrit, then the
concentration stays at critical concentration throughout the domain, i.e.

φ(ξ, ψ)= φcrit, (4.13)
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since it satisfies both (4.3) and the boundary conditions (4.2). The critical concentra-
tion acts as a natural barrier, which divides the flux curve into two sections [0, φcrit]
and [φcrit, 1] that are strictly positive or strictly negative in the interior and have zeros
at the end points. Since there is no further segregation when the concentration reaches
φcrit, an initially homogeneous mixture that starts in either of these ranges will stay in
that range. Each range can therefore be treated in isolation. This allows us to reduce
the number of cases that need to be considered dramatically. We will denote the two
stationary points at the end of a subdomain as φmin and φmax, where φmin <φmax. For
the case of C4 shown in figure 6, if φ0 ∈ [0, φcrit] then φmin= 0 and φmax=φcrit and the
flux curve is strictly negative in the interior, whereas if φ0 ∈ [φcrit, 1] then φmin = φcrit
and φmax = 1 and the flux curve is strictly positive.

Motivated by the negative part of the flux curve in figure 6(a) we now consider a
problem in the domain φ ∈ [φmin, φmax] in which the flux curve is negative and has an
inflection point between the minimum and φmax. Since the flux curve is negative, small
particles will tend to percolate downwards until they reach a concentration φmax, while
large particles will be squeezed upwards until the concentration reaches φmin. A layer
with concentration φmax therefore forms at the base and a layer with concentration φmin
forms at the surface. Since φmin and φmax are both stationary points, it follows that the
surface and basal no-flux boundary conditions (4.2) are satisfied. For the negative part
of the flux curve in class C4 this implies that a layer of large grains collects at the
surface and a layer of concentration φcrit forms at the base, as shown in figure 6(b–d),
i.e. the presence of the critical point prevents the grains from fully segregating at the
base.

Three basic solutions exist to the problem described above. We focus first on a
solution that has three shocks, which separate three constant concentration regions,
as illustrated in figure 6(b) for class C4. The shock from (0, 0) to point C can be
calculated using the jump condition (4.11) with a rearward state φ− = φmax and a
forward state φ+=φ0. Solving the jump condition, subject to the initial condition that
ψ = 0 at ξ = 0, and noting that at the stationary point F(φmax) = 0 implies that the
shock is

ψ = −F0

φmax − φ0
ξ, (4.14)

where F0 = F(φ0). Similarly, the shock from (0, 1) to point C that separates φ− = φ0
from φ+ = φmin is

ψ = 1+ F0

φ0 − φmin
ξ . (4.15)

The intersection point C therefore lies at

ξC =− (φmax − φ0)(φ0 − φmin)

F0(φmax − φmin)
, ψC = φ0 − φmin

φmax − φmin
. (4.16a,b)

A third and final shock emanates from this point,

ψ =ψC, for ξ > ξC, (4.17)

and separates the two stationary states φmin and φmax. For the size segregation problems
of Gray & Thornton (2005), where φmax = 1, φmin = 0 and F0 = −Srφ0(1 − φ0), the
segregation distance ξC = 1/Sr.

The three shocks are valid provided that they each satisfy the Oleinik entropy
condition (4.12). This is true provided that φ0 ∈ [φmin, φtan], where φtan is the point
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where the tangent to the flux curve at φmax intersects the flux curve again. This is
shown as a dot-dashed line in figure 6(a). As φ0 increases past φtan, a section of the
flux curve lies to the right of the secant line from φ− to φ+ and the entropy condition
(4.12) is violated. In this situation the φmax characteristics emanating from the base
are not steep enough to intersect with the lower shock (4.14) and an empty region is
formed. Such regions are usually filled by an expansion fan, centred at (0, 0), instead
of a shock. This happens for φ0 ∈ [φinf , φmax], as shown in figure 6(d). However, for
φ0 ∈ [φtan, φinf ] this structure breaks down, because the change in curvature at the
inflection point causes the fan to fold back on itself and the characteristics to cross.
To overcome this, both a shock and an expansion fan are required. For a straight
shock to lie adjacent to a straight characteristic, their gradients (4.9) and (4.11) must
be equal, i.e. there exists a point φ1 where

F(φ0)− F(φ1)

φ0 − φ1
= F′(φ1). (4.18)

For pure density segregation this condition implies that

φ1 = 2R− 1
2(R− 1)

− 1
2
φ0, (4.19)

while for size–density segregation a quadratic is obtained with two solutions. Rhee
et al. (1986) call this shock–expansion structure a semi-shock, because characteristics
only enter it from one side. It is also known in the literature as a ‘generalized Lax
shock’, a ‘one-sided contact discontinuity’ or an ‘intermediate discontinuity’ (Liu
1974; Jeffrey 1976).

In the case φ0 ∈ [φtan, φinf ] the semi-shock emanates from (0, 0) and by virtue of
(4.18) the equation for the shock can be expressed as

ψ = F′1ξ, (4.20)

where F′1 = F′(φ1). The corresponding expansion is centred at (0, 0) and is given by

ψ = F′(φ)ξ, for φ ∈ [φ1, φmax]. (4.21)

The entropy condition (4.12) implies that the top shock from φ− = φ0 to φ+ = φmax

is admissible and it is given by the existing formula (4.15). The two shocks meet at
point C, which lies at a downstream distance

ξC = φ0 − φmin

−F0 + F′1(φ0 − φmin)
= φ0 − φmin

−F1 + F′1(φ1 − φmin)
, (4.22)

where the second of these expressions is obtained by rewriting the denominator using
(4.18). This provides a useful form of the initial condition for solving for the shock
CD shown in figure 6(c). This shock separates the expansion fan (4.21) from the φmin

region above. The jump condition (4.11) implies that the shock is governed by the
ordinary differential equation

dψ
dξ
= −F(φ)
φmin − φ , (4.23)
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where φ ∈ [φ1, φmax] is the concentration in the fan (4.21). This equation can be solved
implicitly by writing it in the form

dψ
dφ
= −F(φ)
φmin − φ

dξ
dφ
, (4.24)

and using the fact that in the fan

dψ
dφ
= F′′ξ + F′

dξ
dφ
. (4.25)

Equating (4.24) and (4.25) and separating variables allows a first integral to be
obtained, which on substitution of the initial condition (4.22) implies that the shock
is given by

ξ = φ0 − φmin

−F+ F′(φ − φmin)
, ψ = F′ξ, for φ ∈ [φ1, φmax]. (4.26a,b)

In particular, the final point D lies at

ξD = φ0 − φmin

F′max(φmax − φmin)
, ψD = φ0 − φmin

φmax − φmin
, (4.27a,b)

which is the same height (4.16) as in the three-shock case. A horizontal shock

ψ =ψD, for ξ > ξD, (4.28)

separates the final fully segregated state. The full solution for φ0 ∈ [φtan, φinf ] is shown
for class C4 in figure 6(c). For the case when φ0 ∈ [φinf , φmax] there is no bottom shock,
but a simple expansion from φ0 to φmax centred at (0, 0), as shown in figure 6(d). The
results (4.15), (4.21), (4.22), (4.26)–(4.28) all still hold for this case, except that φ1
must be replaced by φ0. The three states shown in figure 6(b–d) complete the solution
structure for the negative part of the flux curve. It should be noted that as φ0 increases
towards φcrit the segregation distance becomes progressively longer, so much so that
figure 6(d) has to use a longer horizontal scale. When φ0 = φcrit particle-size and
particle-density segregation are in exact balance and there is no segregation, i.e. φ =
φcrit everywhere.

Figure 6(e) shows the solution for φ0 in the range [φcrit, 1], where the flux
function is positive. The small grains now rise to the surface and separate out into
a pure layer of fines, while the large grains percolate downwards, but get stuck at
concentration φcrit near the base. The solution has three shocks and three constant
concentration regions, and looks very similar to the case in figure 6(b), except that the
concentrations in the regions are different. Formulating this problem in the domain
φ ∈ [φmin, φmax], again, to achieve as much generality as possible, it follows that the
bottom shock is

ψ = F0

φ0 − φmin
ξ (4.29)

and the top shock is

ψ = 1− F0

φmax − φ0
ξ . (4.30)
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The intersection point C therefore lies at

ξC = (φmax − φ0)(φ0 − φmin)

F0(φmax − φmin)
, ψC = φmax − φ0

φmax − φmin
, (4.31a,b)

and the final shock
ψ =ψC, for ξ > ξC. (4.32)

The three-shock solution (4.14)–(4.17) for the negative flux function can be mapped
to the case of a positive flux function (4.29)–(4.32) by the transformations

F 7−→−F, ξ 7−→−ξ, φmax 7−→ φmin, φmin 7−→ φmax. (4.33a−d)

The combination of using the generalized domain [φmin, φmax] and mappings, such as
(4.33), provides a powerful tool that can be used to generate virtually all the solutions
necessary to cover the whole of the parameter space. The results for a semi-shock and
the three-shock solution, for both positive and negative flux functions, with a single
inflection point to the left/right of the local maximum/minimum, are summarized in
table 1. Case A is mapped to case B by the transformation (4.33). Case A to case
C is given by

F 7−→−F, ψ 7−→ 1−ψ (4.34a,b)

and case A to D is mapped by

ξ 7−→−ξ, ψ 7−→ 1−ψ, φmax 7−→ φmin, φmin 7−→ φmax. (4.35a−d)

Although the structure of the solutions is essentially the same, the minimum and
maximum concentrations, φmin and φmax, as well as the concentrations of the inflection
point φinf , the tangent intersection φtan and the semi-shock φ1 differ dependent on
the flux curves C1–C8 and the value of φ0, as summarized by the formulae in table 2.
Hence, given parameters Bls and R the type of flux curve can be determined from
figure 5 and the solution can be constructed directly from the results in tables 1
and 2.

4.2. Solutions in classes C9 and C10

Classes C9 and C10 introduce two qualitatively new solutions. An example of the flux
function is shown in figure 7(a) for class C9. It has two inflection points, one on either
side of the maximum, which are denoted φleft

inf and φright
inf . A tangent intersection point

φ
left
tan can be constructed from φmin= 0, and a similar one φright

tan from φmax= 1, as shown
by the dot-dashed lines. There are three cases: (i) when the tangent intersections do
not cross, (ii) when the tangent intersections cross and (iii) when in addition the
left-hand tangent intersection crosses the right-hand inflection point. This pattern also
develops in class C10, as shown by the shaded regions of (Bls, R) parameter space in
figure 7(b). It follows that dependent on the values of Bls, R and φ0, there can be
solutions with (a) just three shocks, (b) an additional single expansion as in cases B
and C of table 1, (c) two expansions and two semi-shocks and (d) two expansions
and a single semi-shock at the bottom. Other combinations are excluded by the nature
of the transition from class C9 to C10. The various cases and the relevant formulae for
the inflection, tangent and semi-shock concentrations are summarized in table 3.
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Class [φmin, φmax] F Type φinf φtan φ1 Solution

C1 [0, 1] Negative Non-convex β γ β D

C2 [0, 1] Negative Convex up — — — A /D

C3 [0, 1] Negative Non-convex β β β A

C4 [0, φcrit] Negative Non-convex β δ β A

[φcrit, 1] Positive Convex down — — — B/C

C5 [0, φcrit] Negative Convex up — — — A /D

[φcrit, 1] Positive Non-convex β δ β B

C6 [0, 1] Positive Non-convex β γ β B

C7 [0, 1] Positive Convex down — — — B/C

C8 [0, 1] Positive Non-convex α α α C

φαtan =
BlsR− R+ 1+ Bls +

√
B2

lsR2 − 2BlsR2 + 2B2
lsR+ R2 − 2R+ 1− 2Bls − 3B2

ls + 4BlsR
2(R− 1)Bls

φβtan =
BlsR− R+ 1+ Bls −

√
B2

lsR2 − 2BlsR2 + 2B2
lsR+ R2 − 2R+ 1− 2Bls − 3B2

ls + 4BlsR
2(R− 1)Bls

φγtan =
−R+ 3BlsR− Bls + 1−√R2 + 2BlsR2 − 4BlsR− 2R− 3B2

lsR2 + 2B2
lsR+ B2

ls + 2Bls + 1
2Bls(R− 1)

φδtan =
−1+ BlsR− Bls + R−√−3− 2Bls + 6R+ B2

lsR2 − 2B2
lsR+ 2BlsR2 + B2

ls − 3R2

2Bls(R− 1)

φα1 =
Blsφ0R− 3BlsR+ R+ Bls − 1− Blsφ0 −

√
∆

−3Bls(R− 1)

φ
β

1 =
Blsφ0R− 3BlsR+ R+ Bls − 1− Blsφ0 +

√
∆

−3Bls(R− 1)

where ∆= 1− 2R− 2B2
lsφ

2
0R2 + 3B2

lsφ0R2 − 4B2
lsφ0R+ 4B2

lsφ
2
0R− Blsφ0R2

+ 2Blsφ0R− Blsφ0 + B2
ls + Bls + R2 − BlsR+ B2

lsφ0 − 2B2
lsφ

2
0

TABLE 2. The type of flux curve and the nature of the solution are categorized for C1–C8
as a function of the inflow concentration φ0 ∈ [φmin, φmax]. For non-convex curves the
inflection point φinf , the tangent intersection φtan and the semi-shock concentration φ1 are
denoted using the superscripts α, β, γ , δ for different cases. The exact formulae for φtan
and φ1 are given below the horizontal line. The relevant solutions are of type A , B, C ,
D , which are given in table 1.

The new solutions, which are denoted to be of type E , occur for positive flux
curves and have two expansion fans. Two semi-shocks also form provided that φ0 ∈
[φright

tan , φ
left
tan ] and φ

left
tan < φ

right
inf . The relevant formulae for the expansion fans can be

found in table 1 for cases B and C and are given by

ψ = F′(φleft)ξ , φleft ∈ [φmin, φ
left
1 ], (4.36)

ψ = 1+ F′(φright)ξ , φright ∈ [φright
1 , φmax], (4.37)
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FIGURE 7. (a) The flux curve for Bls = 0.78 and R = 6, which lies in class C9. It has
two inflection points at φleft

inf and φright
inf , and corresponding tangent intersections at φleft

tan and
φ

right
tan . When the tangent intersections cross it is possible to choose an initial concentration
φ0 that generates two expansions. The thick arrowed lines show the secants when two
semi-shocks form. The shaded area in (b) shows where the tangents cross, and the dark
grey area is where in addition φ

left
tan > φ

right
inf in the parameter space (Bls, R). The lines are

the same as in figure 5. The stars mark the positions of the three solutions on the right,
which are all computed with R=6 and for (c) Bls=0.68, φ0=0.6, (d) Bls=0.78, φ0=0.65
and (e) Bls = 0.82, φ0 = 0.88. Note the formation of two expansions in (d,e), one with a
semi-shock and one without.
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Class φ0 ∈ [φmin, φmax] Type φ
left
inf φ

left
tan φ

left
1 φ

right
inf φ

right
tan φ

right
1 Solution

C9 [0, φαtan] [0, 1] Single β γ β — — — B

[φγtan, 1] [0, 1] Single — — — α α α C

[φγtan, φ
α
tan] [0, 1] Double β — β α — α E

C10 [0, φcrit] [0, φcrit] Convex up — — — — — — A /D

[φcrit, φ
α
tan] [φcrit, 1] Single β δ β — — — B

[φδtan, 1] [φcrit, 1] Single — — — α α α C

[φδtan, φ
α
tan] [φcrit, 1] Double β — β α — α E

TABLE 3. The type of flux curve and the nature of the solution are categorized for C9–C10
as a function of the inflow concentration φ0 ∈ [φmin, φmax]. The left and right inflection,
tangent intersection and semi-shock concentrations are denoted using the superscripts α,
β, γ , δ and are given by the formulae in table 2. The relevant solutions for types A , B,
C and D are given in table 1. Type E is solved in § 4.2.

where φright
1 is replaced by φ0 when no upper semi-shock forms, i.e. when φleft

tan >φ
right
inf .

The two semi-shocks are given by the same formulae, but with the relevant left or
right semi-shock concentration φ1. As figure 7(d) shows, the semi-shocks and the
expansion waves first meet at point C, which lies at

ξC = 1

F′(φleft
1 )− F′(φright

1 )
, ψC = F′(φleft

1 )ξC. (4.38a,b)

The final height of the shock separating φmax from φmin in the fully segregated state
is the same height as for cases B and C , i.e.

ψD = φmax − φ0

φmax − φmin
, (4.39)

which can be determined directly by considering the steady-state mass balance. The
points where the outermost characteristics in the left and right expansions intersect
with this line are therefore

ξ
left
D =

φmax − φ0

F′min(φmax − φmin)
, ξ

right
D = φ0 − φmax

−F′max(φmax − φmin)
, (4.40a,b)

and hence the furthest point D is located at

ξD =max(ξ left
D , ξ

right
D ). (4.41)

Figures 7(c) and 7(d) both show the bottom expansion intersecting further downstream,
but the converse may be true. Point E is where the last characteristic in the shorter
expansion intersects with the shock. Its position can be found by iterating for the
concentration φE such that the shock ξCD intersects with the last characteristic. This
can be found using the appropriate formulae for case B or C in table 1. The final part
of the shock between C and D has to be solved numerically using the jump condition
(4.11) and the concentration on either side of the expansion, i.e.

dψ
dξ
= F(φ+)− F(φ−)

φ+ − φ− , (4.42)
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subject to the initial condition that it starts at point (ξC,ψC) and that the concentrations
on the forward and rearward sides are given by those in the expansions

ψ = 1+ F′(φ+)ξ , ψ = F′(φ−). (4.43a,b)

Figure 7(d) shows a case when there are two semi-shocks and two intersecting
expansions, while figure 7(e) shows a case when the left-hand tangent intersection
crosses the right-hand inflection, when it is possible to construct a solution in which
there is only a semi-shock at the base with an appropriate choice of φ0.

4.3. Segregation distances
It is useful to define the critical density ratio

Rcrit = 1+ Blsφ

1− Bls(1− φ) (4.44)

when the flux function (3.6) is zero. This line is important because it defines the
transition between one species rising and the other falling, i.e. for R < Rcrit species
‘s’ falls to the base while for R > Rcrit species ‘s’ rises towards the surface. In the
case of pure density segregation (4.44) reduces to the horizontal line

Rcrit = 1, (4.45)

which is independent of the concentration. This is shown in figure 8(a) with a dot-
dashed line dividing the shaded and unshaded regions, where species ‘s’ rises/falls
respectively.

For non-convex flux functions there are two key points ξC and ξD that characterize
the solution. If a solution with three shocks develops, ξC is the segregation distance,
while if expansions form, ξC is where the first characteristic in the fan intersects with
the shock or the first characteristic of the other expansion in the case of solutions
in classes C9 and C10. We shall term ξC the ‘initial segregation distance’. The ‘final
segregation distance’, ξD, is where the last characteristic from the expansion fan
intersects with the shock. It is only defined when semi-shocks and expansions form,
but we shall assume that ξD = ξC if it is not otherwise defined.

The initial segregation distance for pure density segregation is contoured in
figure 8(a) as a function of the inflow concentration φ0 and the density ratio R.
Since the flux curves are purely convex for R∈ [1/2, 2], the total segregation distance
close to the critical line is given by the shock intersection point ξC for the three-shock
solution defined in table 1. Since, φmin = 0 and φmax = 1, this implies

ξC = φ0(1− φ0)

|F0| , (4.46)

where F0 = F(φ0). Hence, as the critical line is approached from above or below
the segregation distance ξC tends to infinity, because F0 −→ 0 as R −→ Rcrit = 1.
Figure 8(b) shows the final segregation distance ξD. It is equal to ξC in the unshaded
region, while in the shaded region, where a single expansion fan develops, ξD > ξC.
The formulae for ξD are found in table 1 for cases C and D . Since F′1 −→ −1
as R −→∞, the segregation distance ξD −→ φ0 at the top of the plot, while since
F′0 −→−1 as R−→ 0, the distance ξD −→ 1− φ0 at the bottom. It should be noted
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FIGURE 8. The non-dimensional distance (a) ξC and (b) ξD for initial and complete
segregation as a function of the inflow composition φ0 and the density ratio R and in
the case of pure density segregation (Bls = 0). The vertical axis uses χ = (R− 1)/(R+ 1)
to map density ratios R∈ (0,∞) into the range χ ∈ (−1, 1). In (a) in the unshaded region
species ‘s’ is dense and sinks to the base, while in the shaded region it is less dense and
rises to the surface. The critical line where R=Rcrit = 1 is marked with a dot-dashed line.
In (b) the unshaded regions are where ξD = ξC, while in the shaded regions the solutions
develop expansion fans and ξD > ξC. The dot-dashed line is the singular case when there
is no density segregation and ξD −→∞.

that the formulae for ξC imply that when an expansion forms ξC −→ 0 in the limits
R−→ 0 and ∞, as shown in figure 8(a). For very large or very small density ratios
the initial segregation distance therefore becomes vanishingly small, although the full
segregation distance is still finite. The 180◦ rotational symmetry in (φ, χ) space about
the point φ0 = 0.5, χ = 0 in figure 8(a,b) should be noted.
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FIGURE 9. The non-dimensional distances (a) ξC and (b) ξD for initial and complete
segregation as a function of the inflow composition φ0 and the density ratio R for
size–density segregation with Bls = 0.6. The vertical axis uses χ = (R − 1)/(R + 1) to
map density ratios R ∈ (0,∞) into the range χ ∈ (−1, 1). In (a) the unshaded region is
where the small particles sink to the base of the avalanche, while in the shaded region
they rise to the surface. The critical line where R=Rcrit is marked with a dot-dashed line.
In (b) the unshaded regions are where ξD = ξC, while in the shaded regions the solutions
develop expansion fans and ξD > ξC. The maximum segregation distance ξD −→ ∞ as
R−→ R1 (dashed line) and as R−→ R0 (dot-dashed line).

For pure size segregation (when R = 1) only three shock solutions form and the
segregation distance is simply ξC = 1/Bls. This lies along the line χ = 0 in figure 9(a)
for a typical value of Bls = 0.6. When size segregation and density segregation
are combined, however, the picture becomes very complex, since all the solution
types A –E form, dependent on the density ratio R, the segregation rate Bls and
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the concentration φ0. The critical line R = Rcrit(φ) is given by (4.45) and marks the
transition between small particles rising and falling. If the large particles are less
dense than the fines, particle-size and -density segregation enhance one another to
shorten the initial segregation distance ξC, i.e. for negative χ or R < 1. If, however,
the large particles are denser than the fines there is competition between particle-size
and -density segregation. For 1 < R < Rcrit particle-size segregation wins and large
particles continue to rise to the surface and ξC becomes increasingly longer, although
it remains finite. Once R exceeds Rcrit, density segregation overcomes the forces
of size segregation and large dense particles sink to the base of the flow instead,
which is indicated by the shaded region of parameter space in figure 9(a). As R
continues to increase, density segregation becomes stronger and ξC decreases. It is
interesting that ξC does not tend to infinity as R−→ Rcrit. Instead, the segregation is
only partial in the vicinity of R = Rcrit, i.e. there is a region that remains partially
mixed at concentration φcrit, since the solutions lie in classes C4 and C5. This region
of partial segregation lies between the dot-dashed and dashed lines in figure 9(b).
The dot-dashed line corresponds to where the critical density ratio Rcrit intersects the
φ0 = 0 axis, which occurs at

R0
crit =

1
1− Bls

, (4.47)

while the dashed line is defined by its intersection with the φ0 = 1 axis,

R1
crit = 1+ Bls. (4.48)

At the transition R = R0
crit the solution on either side of the dot-dashed line lies in

classes C5 and C6, which are both of type B. The dot-dashed line is also in the shaded
region of panel (b), which implies that expansion fans form. The total segregation
distance ξD is therefore given by the formula in table 1 for an expansion, with φcrit= 0
on the line, i.e.

ξD = 1− φ0

F′0
= 1− φ0

R− 1− BlsR
. (4.49)

However, since R is given by (4.47), the denominator is zero, and it follows that the
total segregation distance ξD tends to infinity. Similarly, on either side of the dashed
line R = R1

crit the solutions lie in classes C3 and C4, and are of type A and have
expansions. Furthermore, the denominator in the total segregation distance,

ξD = φ0

F′1
= φ0R

Bls + 1− R
, (4.50)

is also zero when R equals R1
crit, and therefore ξD also tends to infinity. Although the

transition region is very complicated, for very large and very small values of R the
segregation distances ξC and ξD are similar to those for density segregation, which is
a reflection of the fact that the flux curves are both in classes C1 and C8 at high and
low density ratios. For larger values of Bls this is not the case, since at large R the
flux curve can be of class C9, as can be seen by projecting a vertical line in figure 5.

As Bls−→ 1, the critical density R0
crit given by (4.47) tends to ∞, as can be seen in

figure 10. This implies that large dense particles will rise towards the surface of the
flow, regardless of the density ratio. However, in the same limit R1

crit=2, so the critical
line, which lies between R0

crit and R1
crit, has a very strong concentration dependence.

This behaviour is probably too extreme, and owes its existence to the precise way
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FIGURE 10. The non-dimensional initial segregation distance ξC is contoured as a function
of the inflow composition φs

0 and the density ratio R for size–density segregation with
Bls = 1. The vertical axis uses χ = (R− 1)/(R+ 1) to map density ratios R ∈ (0,∞) into
the range χ ∈ (−1, 1). The unshaded region is where the small particles sink to the base
of the avalanche, while in the shaded region they rise to the surface. The critical line
where R= Rcrit is marked with a dot-dashed line.

in which the factor f ν approaches zero and unity in figure 2. Given that very little
was known about the pressure perturbations induced by particle-size segregation when
Gray & Thornton (2005) chose the functional form (2.20) for f ν , some re-evaluation
is necessary. In order to examine this behaviour, the function f s for small particles is
used to solve for

Bls =− f s − φ
φ(1− φ), (4.51)

and this is substituted into the flux function (3.6) to show that in general

F= ρ
R
((R− 1)φ(1− φ)+ ρ(f s − φ)), (4.52)

where ρ =R+ φ(1−R) by (3.2). Close to φ= 0 the function f s can be approximated
by the Taylor series

f s = φ df s

dφ

∣∣∣∣
0

+ higher-order terms, (4.53)

which satisfies the constraint that f s(0)= 0. Equating (4.52) to zero, substituting (4.53)
and solving for the critical density ratio at zero, it follows that

R0
crit =

(
df s

dφ

∣∣∣∣
0

)−1

. (4.54)

Since the function f s = φ2 when Bls = 1, it follows that df s/dφ|0 = 0 and hence
that R0

crit tends to infinity. Conversely, as φ tends to unity the function f s can be
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approximated by the Taylor series

f s = 1− (1− φ) df s

dφ

∣∣∣∣
1

+ higher-order terms, (4.55)

and the flux is zero when

R1
crit =

df s

dφ

∣∣∣∣
1

. (4.56)

This shows that particle-size segregation can only overwhelm particle-density
segregation if f s has an infinite gradient at φ = 1. Since f s has a finite gradient
equal to 1 + Bls, the critical line lies at a finite height, e.g. R1

crit = 2 when Bls = 1,
as shown in figure 10. Very careful control of the shape and the gradients of the
function f s is required to set the correct height of the critical line in parameter space.
The function (2.20) postulated for f s by Gray & Thornton (2005) may therefore be
too simple, and new functional forms might need to be constructed that are based on
experimental data or discrete element simulations. In particular, the balance between
particle-size and particle-density segregation provides an important and sensitive
means of determining this dependence.

5. Steady-state particle-size and -density segregation with diffusion
5.1. Numerical solutions with downstream variation

The size-segregation experiments of Wiederseiner et al. (2011) indicate that although
the Péclet number is often large, diffusive effects play an important role in mixing
the particles and smoothing out the concentration shocks, semi-shocks and expansions.
The homogeneous inflow problem of § 4 is now solved with diffusive remixing, by
marching the segregation equation forward in the time-like x direction. A standard
Galerkin finite element solver is used, which is conveniently coded in the pdepe
routine in Matlab (Skeel & Berzins 1990) and has proved its effectiveness in a
number of particle-size-segregation problems (Gray & Ancey 2011; Wiederseiner
et al. 2011). For steady states, the non-dimensional segregation equation (3.4) can be
written as

u
∂φ

∂x
= ∂

∂z

(
ρ

R
(1− R+ Blsρ)φ(1− φ)+ ρ2

RPe
∂φ

∂z

)
, (5.1)

where the downstream velocity field is prescribed, and assumed to be the non-
dimensional Bagnold velocity profile (GDR-MiDi 2004; Jop, Forterre & Pouliquen
2005; Gray & Edwards 2014),

u= 5
3(1− (1− z)3/2), (5.2)

where the velocity magnitude U in the scalings (2.38) has been chosen to ensure that
the streamfunction coordinate ψ(1)= 1. It should be noted that although there is no
slip at the base (since u= 0 at z= 0), this does not cause problems in the mapping
used in the exact solution in § 4, since it coincides with the position where the
boundary condition is applied. Equation (5.1) is solved subject to the initial condition
(4.1) and the no-flux conditions (2.49) at the surface and the base of the flow. Using
the scalings of § 3 these boundary conditions are

F s = ρ
R
(1− R+ Blsρ)φ(1− φ)+ ρ2

RPe
∂φ

∂z
= 0, at z= 0, 1. (5.3)
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FIGURE 11. (Colour online) The left-hand panels show the steady-state concentration of
small particles in physical (x, z) coordinates assuming a Bagnold velocity profile and
φ0 = 0.5, Bls = 0.6, Pe= 20 and R equal to (a) 1/2, (b) 1, (c) R1

crit = 1.6, (d) Rcrit(1/2)=
1.8571, (e) R0

crit = 2.5 and (f ) 5. The exact solution in the absence of diffusion is shown
using thick lines for shocks, thin lines for expansions and a white marker for shock
intersections. The corresponding right-hand panels show a comparison between the final
computed concentration (in red) and the exact steady uniform solution (in black), which
are indistinguishable.

The left-hand panels in figure 11 show a series of steady-state numerical simulations
of the concentration as it evolves downstream of the inflow for Pe = 20, φ0 = 0.5,
Bls=0.6, with the density ratio of the particles varying as (a) 1/2, (b) 1, (c) R1

crit=1.6,
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(d) Rcrit(1/2) = 1.8571, (e) R0
crit = 2.5 and (f ) 5. The solutions are performed with

200 grid points in the z direction and a relative error tolerance of 10−3. Superposed
on top of the solutions are the corresponding non-diffuse exact solutions of § 4 in
physical coordinates. Thick lines correspond to shocks and semi-shocks, thin lines are
expansions and the white markers are where shocks and semi-shocks intersect. The
physical solutions have been mapped from (ξ, ψ) space by integrating the Bagnold
velocity profile (5.2) to show that the streamfunction coordinates (4.4) and the (x, z)
coordinates are related by the transformations

ξ = x, ψ = 5
3

(
z+ 2

5(1− z)5/2 − 2
5

)
. (5.4a,b)

The normal coordinate z is found iteratively for a given ψ . Since ξ is equal to x,
the segregation distances ξC and ξD, computed in § 4 and shown in figures 8–10, are
unchanged by the mapping. However, since the downstream velocity (5.2) is faster
near the avalanche surface than at its base, the same transport can be achieved in
a thinner layer in the near-surface layers. As a result, the mapping from ψ to z
stretches the solution in the normal direction, concentrating the surface layers and
expanding those near the base. When the segregation is strong, as in figure 11(a,b,f ),
the simple shock solutions provide a useful approximation for the full diffusive
solution, accurately delineating the position of high gradients in concentration and
explaining the thinner near-surface layers.

In figure 11(a–c) large particles rise to the surface, but the segregation becomes
progressively weaker with increasing R and hence the initial segregation distance
distance, xC = ξC, where the shock and/or semi-shocks meet, lies progressively further
downstream. In (a) the small particles are denser than the large ones, so the density
difference enhances the segregation above that of pure size segregation, which is
shown in (b). In (c), R = R1

crit, which lies at the lower boundary of the shaded
transition zone shown in figure 5. This is the beginning of the zone of incomplete
segregation, where the total segregation distance, xD = ξD, tends to infinity, as shown
by the dashed line in figure 9(b). In the absence of diffusion the fan expands
throughout the entire depth of the lower part of the solution. Panel (d) shows the
trivial case where the inflow concentration is equal to the critical concentration and
so φ = φcrit everywhere, i.e. the particles do not segregate at all. Panel (e) shows an
example in which R= R0

crit, which is at the upper boundary of the shaded transition
zone in figure 5. Here, the large particles are dense enough to sink to the base of the
avalanche, but the segregation is incomplete, i.e. xD = ξD −→∞ and the expansion
fan opens out over the entire lower layer of the solution in the hyperbolic case. For
stronger density differences, such as in (f ), the large particles segregate to the base of
the avalanche. In the right-hand panels of figure 11 a comparison is shown between
the final solution at x = 8 and an exact solution for the steady uniform state. In all
cases the solutions are so close that the red (computational) and black (exact) lines
are indistinguishable. In the case of (c,e) this indicates that the diffusive remixing
helps the avalanche to achieve its final state sooner than one might expect from the
distance ξD suggested by the hyperbolic solution.

5.2. Exact solutions for the far-field steady uniform state
As we have just seen, sufficiently far downstream the steady-state solution tends
towards a fully developed state that is independent of x. Assuming φ = φ(z), this
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exact solution can be found by integrating (5.1) with respect to z and applying the
no-flux condition (5.3), to show that

dφ
dz
= Pe
ρ
(R− 1− Blsρ)φ(1− φ), (5.5)

which is a separable first-order ordinary differential equation. It has stationary points
at φ = 0, 1 and φcrit. If the trivial cases of monodisperse flows are excluded, there is
a solution in which the concentration is equal to the critical concentration everywhere,

φ = φcrit, (5.6)

provided that φcrit ∈[0,1], which is the case in the shaded region of parameter space in
figure 5. For most of the rest of the parameter space equation (5.5) can be integrated
exactly to give a solution of the form

Pe z= ln(1− φ)
1− R+ Bls

− R ln(φ)
1− R+ BlsR

− (1− R)2 ln(|R− 1− Blsρ|)
(1− R+ Bls)(1− R+ BlsR)

+C, (5.7)

where C is a constant of integration. There are also two special cases which occur
when the critical point coincides with zero and unity. When φcrit = 0, or equivalently
R= R0

crit = (1− Bls)
−1, (5.5) can be integrated to show

Pe z= 1− Bls

B2
ls

ln
(

φ

1− φ
)
− 1

B2
lsφ
+C, (5.8)

while if φcrit = 1, or equivalently R= R1
crit = 1+ Bls, the integral gives

Pe z= 1+ Bls

B2
ls

ln
(

1− φ
φ

)
− 1

B2
ls(1− φ)

+C. (5.9)

In (5.7)–(5.9) the height z is given as a function of the small-particle concentration,
i.e. z= z(φ). In general, the expressions cannot be inverted to give explicit expressions
for φ = φ(z), although when R= 1 (5.7) reduces to the case of pure size segregation,
which can be inverted (see, e.g., Gray & Chugunov 2006).

To determine the constant of integration C it is useful to integrate the segregation
equation (5.1) through the avalanche depth, apply the no-flux condition (5.3) at the
surface and the base of the avalanche, and exchange the order of integration and
differentiation in the transport terms to show that the depth-averaged downstream
concentration flux is independent of x (see, e.g., Wiederseiner et al. 2011). It follows
that the integral

I =
∫ 1

0
φu dz (5.10)

is invariant at all downstream positions. In particular, at the inflow, where the
concentration is homogeneous, the integral is equal to

I0 =
∫ 1

0
φ0u dz= φ0

∫ 1

0
u dz= φ0. (5.11)
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FIGURE 12. Schematic diagrams showing how the order of integration is changed when
(a) R<Rcrit and (b) R>Rcrit. The thick black line shows the extended function ψe, which
stays in the range [0, 1] for all values of φ. Normally, the area integral is performed
by summing the horizontal (grey) elements, but by changing the order of integration the
vertical (grey) elements are summed instead.

The integral (5.10) cannot be evaluated directly, because the exact solution z= z(φ) in
(5.10)–(5.12). However, by changing from z to the coordinate ψ , the integral (5.10)
can be reformulated as a double integral,

I =
∫ 1

0
φ dψ =

∫ 1

0

∫ φ

0
1 dφ̂ dψ, (5.12)

where the integration area is shown by the shaded regions in figure 12(a,b) and φ̂ is
a dummy variable in the integration. The double integral can then be evaluated by
exchanging the order of integration. Since the function z= z(φ) can lie outside [0, 1]
for φ ∈ [0, 1], and sometimes has multiple branches, it is useful to define an extended
solution

ze =min(1,max(0, z))(1−G1 −G2) (5.13)

that automatically lies in the range [0,1]. The functions G1 and G2 eliminate unwanted
branches of the solution and are defined as

G1 =H((R0
crit − R)(R− Rcrit))H(φcrit − φ), (5.14)

G2 =H((Rcrit − R)(R− R1
crit))H(φ − φcrit), (5.15)

where H is the Heaviside function. The corresponding extended solution in mapped
coordinates is

ψe = 5
3

(
ze + 2

5(1− ze)
5/2 − 2

5

)
. (5.16)

As figure 12(a,b) shows, there are two cases dependent on whether the extended
solution ψe is an increasing or decreasing function of φ. The integrals for the two
cases are

I =





∫ 1

0

∫ ψe

0
1 dψ dφ̂ =

∫ 1

0
ψe dφ̂, R< Rcrit,

∫ 1

0

∫ 1

ψe

1 dψ dφ̂ = 1−
∫ 1

0
ψe dφ̂, R> Rcrit,

(5.17)
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FIGURE 13. Exact steady uniform solutions for the concentration of small particles φ as
a function of the depth z for segregation rate Bls = 0.6, generic Péclet number Pe = 20
and a Bagnold velocity profile. The density ratio of the particles R is equal to (a) 0.5,
(b) 1, (c) R1

crit = 1.6, (d) Rcrit(1/2)= 1.8571, (e) R0
crit = 2.5 and (f ) R= 5. Each curve is

for a different inflow concentration φ0, ranging from 0.1 to 0.9 in 0.1 unit intervals, as
indicated.

which can be evaluated by quadrature. The constant of integration C can then be found
by iterating until I = I0.

Figure 13 shows a series of exact steady uniform solutions for the same six cases
as shown in figure 11, but with inflow concentrations varying from φ0= 0.1 to 0.9 in
increments of 0.1. In (a,b) the ‘S’-shaped curves are all quite similar, with relatively
sharp transitions between large particles at the surface and small particles at the
base. Although the Bagnold velocity profile (5.2) does not appear explicitly in the
differential equation (5.7), it plays an important role in setting the height of the
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exact solution through the determination of the constant of integration C. When the
critical concentration coincides with φ= 1 the solutions change markedly, as shown in
figure 13(c). For low inflow concentrations the solutions still have noticeable gradients,
but as φ0 tends to unity the gradients decay to zero. The case R= Rcrit(1/2), which
is defined as the density ratio when the critical concentration φcrit = 1/2, is shown
in (d) and is particularly interesting. In this case, when the inflow concentration
φ0 = 1/2 equals the critical concentration φcrit the particles remain completely mixed.
For inflow concentrations below the critical concentration small particles percolate
down to the base, but for inflow concentrations above φcrit large particles sink to the
base instead. In both cases the segregation is weak, however. Panel (e) shows the
case when R= R0

crit and the critical concentration φcrit = 0. This is similar to case (c)
except that this time large particles segregate towards the base and the segregation
tends to zero as φ0 tends to zero. In case (f ), when the density ratio is quite large,
large particles sink to the base of the flow and small grains are pushed to the surface.
The segregation, however, appears to be much stronger in the surface layers than near
the base.

5.3. A Péclet number for particle-size and -density segregation
To explain the behaviour observed in figure 13(f ) it is useful to define a Péclet number
for particle-size and particle-density segregation, as

Pes = Pe
ρ
|R− 1− Blsρ|, (5.18)

where ρ = R + φ(1 − R) by (3.2). This is simply the modulus of the coefficient
multiplying φ(1− φ) in (5.5). Since the density is dependent on the composition of
the flow, this Péclet number will, in general, vary as a function of space and time. In
particular, the values at concentration zero and unity are

Pes(0)= Pe|1− 1/R− Bls|, (5.19)
Pes(1)= Pe|R− 1− Bls|. (5.20)

It follows that for relatively large values of R, such as R= 5 in figure 13(f ), Pes(1) is
much larger than Pes(0), and therefore much stronger segregation is expected in areas
of high concentrations of small particles than in high concentrations of large grains.
This explains why there is much stronger segregation in the near-surface layers, since
the fine particles rise to the surface. This effect is reversed when R� 1, however,
since small particles now sink to the base; stronger segregation still develops near the
surface of the flow. This effect can be seen in figure 13(a), although it is not as strong
as in figure 13(f ) because the reciprocal of the density ratio is not as large. In the case
of pure size segregation, when R= 1, shown in figure 13(b), there is no variation in
Péclet number for segregation with depth.

5.4. Pure density segregation
Exact solutions for pure density segregation with Pe = 20, φ0 = 0.5 and a Bagnold
velocity profile are shown in figure 14 for a range of density ratios R. When there is
no size segregation the critical density ratio Rcrit, defined in (4.44), is equal to unity,
since Bls= 0. This is the case when the particles have the same density as well as the
same size and as a result there is no segregation. When R<Rcrit, species ‘s’ percolates
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FIGURE 14. Exact far-field pure density-segregation solutions for the concentration of
species s through the avalanche depth z for a range of density ratios, R. The particle-size
segregation parameter Bls = 0 and a Bagnold velocity profile is assumed. The generic
Péclet number Pe= 20 and the inflow concentration φ0 = 0.5.
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FIGURE 15. Exact far-field pure density-segregation solutions for the concentration of
species s through the avalanche depth z for a range of generic Péclet numbers, Pe. The
particle-size segregation parameter Bls= 0 and a Bagnold velocity profile is assumed. The
density ratio R= 8 and the inflow concentration φ0 = 0.5.

downwards, while when R>Rcrit, species ‘l’ sinks. Since our choice of which species
of particle is denser is entirely arbitrary, (5.5) is invariant under the mapping R 7−→
1/R and φ 7−→ 1 − φ. If the initial concentration also satisfies the mapping φ0 7−→
1 − φ0, one gets precisely the same solution. In the case when φ0 = 1/2 shown in
figure 14 this implies that there are pairs of profiles with density ratios R and 1/R
that are symmetric about the line φ= 1/2. For the range of R shown in figure 14 the
strongest segregation occurs for the pair R = 1/8 and 8. The effect of changing the
generic Péclet number Pe, while holding the concentration φ0 and the density ratio R
fixed, is shown in figure 15. Increasing the generic Péclet number is seen to sharpen
up the interface between the two species.
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6. Conclusions
Binary mixture theory has been used to formulate a theory for particle-size and

particle-density segregation in granular avalanches. The theory arises naturally by
relaxing the assumption of equal particle density in the particle-size segregation
theories of Gray & Thornton (2005) and Gray & Chugunov (2006). While this is
a relatively simple step, it leads to a considerable increase in the complexity of the
model. In particular, the local bulk density ρ evolves with the changing concentrations
of the two species and the corresponding bulk velocity field u is therefore no longer
incompressible. As a result, for prescribed lateral and downslope velocities, u and
v, the normal velocity w must be solved for at the same time as the evolving
concentration field. A general expression (2.33) is used to eliminate the bulk normal
velocity w in the segregation equations (2.27)–(2.28), to obtain a pair of reformulated
parabolic segregation equations (2.34) and (2.35) that have segregation rates and
diffusivities (2.36) and (2.37) that account for both particle-size and particle-density
segregation. The structure of the reformulated equations is particularly nice, because
it is easy to see that their sum is trivially satisfied, so that only one of them needs
to be solved. The resulting scalar advection–diffusion equation for the concentration
of small particles (2.47) automatically compensates for the bulk compressibility of
the flow and ensures that mass is properly conserved.

The theory is much more complicated than that of pure size segregation, which has
a simple convex flux function. Dependent on the density ratio of the particles and
the strength of the segregation it is possible to generate 10 qualitatively different flux
functions, as shown in figure 4(a,b). These differ with regard to whether they are
strictly positive, strictly negative or are both positive and negative, and whether the
curves are convex or non-convex. When the flux curve crosses the zero-concentration
line, at a point that is not equal to zero or unity, it implies that there is a critical
concentration where the grains do not segregate. In fact, it transpires that the model
gives rise to a whole region in parameter space where the particles segregate, but only
partially, since there are regions of the flow that get stuck at the critical concentration.
The region of parameter space where this happens is shaded in figure 5. This is a new
and important finding.

In the absence of diffusive remixing, steady-state exact solutions can be constructed
in a prescribed steady uniform depth chute flow, which still has the flexibility to adjust
its normal velocity to accommodate the changing bulk density ρ. The existence of
the critical point as well as the convexity or non-convexity of the flux curve means
that there are a very large number of different cases. When there is a single inflection
point there are three basic solutions: (i) a three-shock solution, (ii) two shocks, a
semi-shock and an expansion and (iii) two shocks and an expansion, which are
dependent on the precise shape of the flux curve and the inflow concentration. By
using general domains and coordinate mappings, these three basic solutions, which
are described in § 4, can be mapped to virtually the whole of the parameter space.
There is also an additional case, in which the flux curve has two inflection points,
which implies that two expansion fans may form and interact. These exact solutions
allow the initial segregation distance ξC, where the shocks, or shock and expansion
first meet, to be solved for exactly. There is also a final segregation point ξD, where
the last characteristic in the expansion, or expansions, meets the final horizontal
shock. Both ξC and ξD are contoured as a function of the density ratio R and the
inflow concentration φ0 for pure density segregation in figure 8 and for particle-size
and -density segregation in figures 9 and 10. In each of these plots the critical line
Rcrit(φ0) determines whether a given species will rise or fall to the surface or the base
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of the avalanche respectively. Between the points Rcrit(0) and Rcrit(1) the segregation is
incomplete and part of the flow remains stuck at the critical concentration, although
some segregation does take place, except if the whole avalanche is at the critical
concentration at the inflow.

Numerical solutions that include the effects of diffusion can easily be performed
for the homogeneous inflow problem using the pdepe routine in Matlab, as shown
in § 5. Comparison is drawn with the exact solutions, which are mapped back from
streamfunction coordinates to physical coordinates assuming a Bagnold velocity
profile (see, e.g., Gray & Thornton 2005; Gray & Ancey 2009). These indicate that
provided the Péclet number for segregation (5.18) is high the exact solutions of § 4
accurately delineate the zones of high concentration gradients and provide a very
useful approximation for the segregation distance. However, when Pes is small the
segregation is weak and the distance for the solution to reach steady state moves far
downstream of the inflow. One-dimensional exact solutions are constructed for this
diffuse steady state, which are shown in figures 13 and 14. In particular, these show
that even when diffusion is present the segregation gets stuck close to the critical
concentration in large parts of the flow when the solution lies in the shaded region
of parameter space shown in figure 5.

Mixture theory provides the phenomenological framework for the segregation model,
and we have shown that it generates solutions with the right qualitative features. The
theory does not, however, provide detailed functional forms for the dependence of
the segregation coefficients q and D (defined in (2.16)) on field variables, such as
the pressure, shear rate, gravity, friction, solids volume fraction, particle diameter or
particle-diameter ratio. Dimensional analysis helps to define dimensionless groups,
but, since there are more than two, a simple functional dependence of the segregation
rate on the grain-size ratio or the inertial number cannot be inferred. Instead, the
theory relies on experiments (Vallance & Savage 2000; Golick & Daniels 2009;
Wiederseiner et al. 2011; van der Vaart et al. 2015) or DPM simulations (Rognon
et al. 2007; Thornton et al. 2012; Staron & Phillips 2014) to understand these
dependences. This is an area that is currently being actively researched. Notable
contributions include Thornton et al.’s (2012) computational measurement of the
variation of the Péclet number for size segregation with the grain-size ratio, as well
as van der Vaart et al.’s (2015) use of index-matched shear box experiments to show
that asymmetric flux functions exist even for pure size segregation. There is still a
long way to go to understand the full functional dependence of the non-dimensional
parameters Sρ , Sr and Dr (defined in (2.45)), which will require the analysis of
time or spatially dependent experiments and DPM simulations. This paper constructs
important exact solutions to compare with the raw data and hence calibrate the model.
In particular, the concentration-dependent partially segregated states, which occur in
the grey shaded region of figure 5, provide a key qualitative result that now needs to
be searched for in experiments and DPM simulations.
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