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Abstract

Herschel-Bulkley materials can be set in motion when a sufficiently high shear

stress or body force is applied. We investigate the behaviour of a layer of

Herschel-Bulkley fluid when suddenly tilted. The material’s dynamic response

depends on the details of its constitutive equation. When the rheological be-

haviour is viscoelastoplastic with no thixotropic behaviour, the material is set

in motion instantaneously along its base. When the rheological behaviour in-

volves two yield stresses (static and dynamic yield stresses), the material must

be destabilised before it starts to flow. This problem is then similar to a Stefan

problem, with an interface that separates sheared and unsheared regions and

moves from top to bottom. In both these cases , the time needed to set the layer

in motion is short when the layer is shallow. This makes it possible to assume

that viscoplastic flows can erode shallow viscoplastic layers almost instanta-

neously. We show the consequences of this sudden incorporation of material on

the motion of viscoplastic dambreak flows.

Keywords: Herschel-Bulkley fluids, Stokes problem, lubrication theory, shear

flow

1. Introduction

Viscoplastic fluid theory has long been used to approximate the complex

rheological behaviour of natural materials such as snow and mud, particularly

Email address: christophe.ancey@epfl.ch (Christophe Ancey)

Preprint submitted to Journal of Non-Newtonian Fluid Mechanics August 2, 2016



their transition between solid- and fluid-like states [1]. The theory’s strength lies

in its capacity to describe flow initiation and cessation using a single constitutive

equation. Natural materials can also erode the bed on which they flow and, in

this case, it is tempting to see bed erosion as a form of yielding induced by the

passage of the flow [2–4].

Various processes are at work when bed materials are set in motion. Among

these, two are expected to play a major part: the increase in the normal and

shear stresses applied to the bed surface, and the decrease in the shear strength

relative to gravitational forces. The first process is certainly the easiest to

investigate experimentally and theoretically. The Stokes problem provides a

theoretical perspective: fluid is set in motion by applying a shear stress to its

boundary or by moving that boundary at a constant velocity [5, 6]. The second

process can be studied by suddenly applying a body force to the fluid initially

at rest. For convenience, this paper refers to this problem as Stokes’ third

problem. For Newtonian fluids, there exists a similarity solution to this problem,

which shows that the fluid is instantaneously set in motion and virtually all

the fluid layer is entrained even though the effects far from the boundary are

exponentially small [6]. Compared to Newtonian fluids, the dynamic response

of Herschel-Bulkley materials to a sudden change in the stress state is made

more complex by their ability to remain static when the stress state lies below

a certain threshold, and to yield when the stress state moves above it.

This paper investigates Stokes’ third problem for Herschel-Bulkley fluids.

More specifically, we aim to determine the characteristic time tc associated

with the setting in motion of a Herschel-Bulkley fluid suddenly experiencing a

body force and/or a shear stress, as well as the features of the layer of fluid that

is entrained. Time tc is of particular relevance when determining the erosion

rate of static viscoplastic layers or assessing the strength of the coupling between

entrainment and flow. Indeed, if we consider that viscoplastic materials flow over

a static viscoplastic layer, we can relate tc to the flow timescale tf . If tc = O(tf ),

then the governing equations for the flow eroding its bed involve one equation

for the evolution of the flow and another for describing bed dynamics, and they

2



are coupled. Otherwise, when tc ≪ tf , yielding and entrainment are nearly

instantaneous at the flow scale, and a single equation suffices to describe the

bulk dynamics. This paper will give an example of an application by considering

the motion of a viscoplastic avalanche entraining a shallow stationary layer made

of the same fluid.

We begin by setting out what we refer to as Stokes’ third problem (Sec. 2).

We focus on Herschel-Bulkley fluids and outline the current state of the art in

modelling Herschel-Bulkley fluids. Our literature review led us to consider two

types of Herschel-Bulkley fluids: simple Herschel-Bulkley fluids, whose rheo-

logical behaviour is well described by a one-to-one constitutive equation, and

non-simple Herschel-Bulkley fluids, whose rheological behaviour exhibits shear-

history dependence. The details of the constitutive equation have a great deal

of influence on the solution to Stokes’ third problem. In Sec. 3, which is devoted

to simple Herschel-Bulkley fluids, we show that the material is instantaneously

set in motion. By contrast, non-simple Herschel-Bulkley materials do not start

moving spontaneously; they must first be destabilised. A front subsequently

propagates through the static layers and sets them in motion (Sec. 4). In Sec. 5,

we study how the instantaneous entrainment of a shallow stationary viscoplastic

layer affects the motion of a viscoplastic avalanche. The theoretical results are

discussed in Sec. 6.

2. Stokes’ third problem

The literature refers to two Stokes problems. Stokes’ first problem refers to

the impulsive motion of a semi-infinite volume of Newtonian fluid sheared by an

infinite solid boundary. Stokes’ second problem concerns the cyclical motion of

this volume sheared by an oscillatory boundary [6]. These two problems have

also been investigated for viscoplastic materials [7–9].

A related problem concerns the setting in motion of a layer of fluid of depth

H , initially at rest and suddenly tilted at an angle θ to the horizontal (see

Fig. 1). Contrary to the two Stokes problems above, we consider a volume that
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Figure 1: Setting in motion a volume of fluid suddenly tilted at an angle θ.

is not bounded by an infinite plate, but by a free surface. As this problem

bears some resemblance to the original Stokes problem, this paper refers to it

as Stokes’ third problem (mainly for convenience). Previously, it was partially

studied for viscoplastic flows [2–4].

2.1. Governing equations

We consider an incompressible Herschel-Bulkley fluid with density ̺; its

constitutive equation is discussed in Sec. 2.2. The fluid is initially at rest. There

is a free surface located at z = 0, with the z-axis normal to the free surface and

pointing downward. We also introduce the z′-axis, normal to the free surface,

but pointing upward. The x-axis is parallel to the free surface. At time t = 0,

the volume is instantaneously tilted at an angle θ to the horizontal. We assume

that a simple shear-flow takes place under the effects of gravitational forces, and

that the flow is invariant under any translation in the x-direction. The initial

velocity is

u(z, 0) = 0. (1)

At the free surface z = 0, in the absence of traction, the shear stress τ is zero

τ = 0 at z = 0. (2)

A key issue in this problem is the existence of a propagation front z = s(t) (i.e.

a moving interface between the sheared and stationary layers) and the boundary
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conditions at this front. For Stokes’ first problem, shear-thinning viscoplastic

fluids behave like Newtonian fluids: the momentum balance equation reduces to

a linear parabolic equation, and the front propagates downward instantaneously

[7, 9]. The question arises as to whether this is also the case for Stokes’ third

problem.

Let us admit that the interface moves at a finite velocity vf . The dynamic

boundary condition at this interface is given by a Rankine-Hugoniot equation

J−̺u(u · n− vf ) + σ · nK = 0,

where JfK denotes f ’s jump across the interface [10]. In the absence of slip

u = 0 at z = s(t), (3)

this equation implies the continuity of the stresses across the interface

JτK = 0 and JσzzK = 0, (4)

where σzz is the normal stress in the z-direction. If the material slips along the

bed-flow interface at a velocity us, then the Rankine-Hugoniot equation implies

that the shear stress exhibits a jump across the interface, while the normal stress

is continuous

JτK = −̺usvf and JσzzK = 0.

The first relationship has often been used in the form vf = −JτK/(̺us), which

fixes the entrainment rate when the other variables are prescribed [3, 11, 12].

Internal slip in viscoplastic materials is only partially understood. It may be

a consequence of shear localisation or shear banding in thixotropic viscoplastic

fluids [13, 14]. In the rest of the paper, we assume that the no-slip condition

applies at the interface, and so the boundary condition is given by equation (4).

For this problem, the governing equation is derived from the momentum

balance equation in the x-direction

̺
∂u

∂t
= ̺g sin θ − ∂τ

∂z
. (5)

To solve the initial boundary value problem (2)–(5), we need to specify the

constitutive equation.
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2.2. Constitutive equation

For simple shear-flows, the Herschel-Bulkley constitutive equation reads







γ̇ = 0 if τ < τc,

τ = τc + κ|γ̇|n if τ ≥ τc,
(6)

where τc denotes the yield stress, γ̇ = du/dz the shear rate, n the shear-thinning

index (as in most cases n ≤ 1) and κ the consistency. This equation essentially

relies on a phenomenological basis. A tensorial equation can be derived by using

a von Mises yield criterion to define the yield surface (i.e. the surface separating

sheared from unsheared regions) [1]. The interpretation of Eq. (6) is classic: for

the material to flow, the shear stress τ must exceed a threshold τc, called the

yield stress. When τ < τc, the material remains unsheared.

The existence of a true yield stress was long debated. It is now well accepted

that for a class of fluids referred to as simple yield-stress fluids, Eq. (6) closely de-

scribes the rheological behaviour in steady-state simple-shear flows [15, 16], and

in a tensorial form, the Herschel-Bulkley equation offers a correct approximation

of three-dimensional flows, notably with regards to the von Mises criterion for

yielding [17]. This means that for these fluids in steady state viscometric flows,

the shear rate tends continuously to zero when the shear stress approaches the

yield stress. For non-simple yield stress fluids, e.g. those exhibiting thixotropy,

the shear rate cannot be given a value when τ → τc: indeed, there may be no

homogeneous steady-state flow when the shear rate drops below a finite critical

value γ̇c [15–20]. This also entails that the material exhibits a static yield stress

τ0 > τc that differs from the dynamic yield stress τc in Eq. (6). The steady state

constitutive equation reads

τ = τc + κ|γ̇|n if |γ̇| ≥ γ̇c, (7)

with τ0 = τc+κγ̇n
c . For 0 < |γ̇| ≤ γ̇c, the rheological behaviour exhibits complex

properties (time dependency, a thixotropy loop, shear banding, aging and shear

rejuvenation, or minimum in the flow curve ) depending on the material [14–

16]. Various approaches have been proposed to incorporate the effect of shear
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history in the constitutive equation, but a general framework of the underlying

mechanisms is still lacking [14, 18, 21, 22]. For the sake of simplicity, we assume

that as the shear rate increases from zero, the shear stress must exceed τ0 for

a steady state flow to occur. When the shear rate decreases from a sufficiently

high value in a steady-state regime, the shear stress follows the flow curve (6)

continuously even for |γ̇| < γ̇c [19, 23–25]. Thus, flow cessation and fluidisation

cannot be described by a one-to-one constitutive equation.

Prior to yielding, a Herschel-Bulkley material is often considered to behave

like an elastic solid. A simple idea is then to supplement the constitutive equa-

tion (6) with an equation reflecting the elastic behaviour for τ < τc, but this

leads to inconsistencies such as the non-uniqueness of the yield function due to

finite deformations (and thus normal stresses) in the solid material [26]. One al-

ternative is to use an elastoviscoplastic constitutive equation [27], which extends

Oldroyd’s viscoelastic model to plastic materials [28]. Although the model is

consistent from a continuum mechanics’ point of view and experimentally [29], it

involves nontrivial differential operators (Gordon-Schowalter derivatives), which

make analytical calculations intricate. Here, we follow Lacaze et al. [30], who

suggested neglecting the nonlinear differential terms in order to end up with an

approximate constitutive equation for simple shear flows

1

G

∂τ

∂t
= γ̇ −max

(

0,
|τ | − τc
κ|τ |n

)1/n

τ, (8)

where G is the elastic modulus. Under steady state conditions, this equation

leads to the Herschel-Bulkley model (6).

3. Solution to Stokes’ third problem for simple Herschel-Bulkley flu-

ids

3.1. Dimensionless governing equations

We introduce the following scaled variables

u → U∗û, z → H∗ẑ, t → T∗t̂, and τ → µU∗

H∗

û (9)
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with U∗ = ̺gH2 sin θ/µ the velocity scale,H∗ = H the length scale, T∗ = H∗/U∗

the time scale, µ = κ(U∗/H∗)
n−1 the bulk viscosity. We also introduce the

Reynolds, Bingham and Deborah dimensionless numbers

Re =
̺U∗H∗

µ
,Bi =

τc

µ
U∗

H∗

, and De =
µU∗

GH∗

. (10)

The governing equations reduce to a nonhomogeneous linear hyperbolic problem

Re
∂û

∂t̂
= 1 +

∂τ̂

∂ẑ′
, (11)

De
∂τ̂

∂t̂
=

∂û

∂ẑ′
− F (τ̂ ), (12)

with F (τ̂ ) = max (0, |τ̂ | − Bi)
1/n

τ̂/|τ̂ |. The boundary and initial conditions are

û = 0 at ẑ′ = 0, τ̂ = 0 at ẑ′ = 1, and τ̂ = û = 0 at t̂ = 0. The analysis of the

associated characteristic problem shows that the material starts moving at its

base instantaneously when the initial thickness H is sufficiently large, i.e. for

Bi < 1 (see Appendix A). The disturbance propagates toward the free surface

at velocity ĉ = 1/
√
ReDe. The time of setting in motion is defined here as the

time

t̂c = 1/ĉ =
√
ReDe (13)

needed for this disturbance to reach the free surface.

3.2. Numerical solutions

Numerical solutions to the problem (11)–(12) can be obtained using the

method of characteristics (see Appendix A). Figure 2 shows an example of the

evolution of the velocity profile for a particular set of values of De, Re, Bi, and

n. In short time periods (t̂ < t̂c), the velocity varies linearly close to the bottom,

while the upper layers of the material remain unsheared. For t̂ ∼ t̂c, there is

a phase of elastic adjustment, and then at longer time periods (t̂ > t̂c), the

velocity approaches its steady-state profile characterised by a shear region for

ẑ′ ≤ Bi and a plug flow for ẑ′ > Bi.

Figure 3 shows the stress evolution. At short time periods (t̂ < t̂c), the shear

stress varies linearly near the bottom and is zero in the upper layers. The elastic
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Figure 2: Evolution of the velocity profile for De = 0.1, Re = 10, Bi = 0.5, and n = 1/3. We

report the computed velocity profiles at times t̂ = 0.1, 0.2, 0.5, 1, 2, 5 and 10. Numerical

simulation with N = 1, 000 nodes. Here the fluid is set in motion at t̂c = 1.

adjustment phase entails the propagation of shear waves that dampen quickly.

At long time periods (t̂ > t̂c), the shear stress is close to its steady state profile

τ̂ = 1− ẑ′.

4. Solution to Stokes’ third problem for non-simple Herschel-Bulkley

fluids

When the fluid exhibits a static yield stress τ0 that is larger than its dy-

namic yield stress τc, it is sufficiently rigid to stand the sudden tilting without

deforming instantaneously as long as τ0 > ̺gH sin θ. Yet, in such a case, if

the free surface becomes sufficiently destabilised (see below), a front propagates

downwards from the free surface. This is the result of the fluid destructuration

during yielding. For the sake of simplicity, we focus on a Bingham fluid (n = 1),

the results of which can be readily extended to Herschel-Bulkley fluids. We con-

sider a thixotropic Bingham fluid, whose constitutive equation depends on its
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Figure 3: Evolution of the shear stress profile for De = 0.1, Re = 10, Bi = 0.5 and n = 1/3.

We report the computed velocity profiles at times t̂ = 0.1, 0.2, 0.5, 1, 2, 5 and 10.

shear history as follows (see Sec. 2.2 and Fig. 4)



















γ̇ = 0 if τ < τc,

τ = τc + κ|γ̇| if τ ≥ τ0 for increasing γ̇,

τ = τc + κ|γ̇| if τ ≥ τc for decreasing γ̇.

(14)

In Stokes’ third problem, when the layer is suddenly tilted, the shear stress

adopts a linear profile in the absence of motion: τ(z) = ̺gz sin θ. If this layer is

not disturbed, it will stay indefinitely at rest. Contrary to the previous section,

we need to alter the initial condition to create motion. Any disturbance in the

upper layer 0 ≤ z ≤ hc = τc/(̺g sin θ) is quickly dampened, and so we need to

disturb the layer in the intermediate region hc ≤ z ≤ h0 = τ0/(̺g sin θ). We

can also apply a shear stress τc at the free surface so that the stress state in the

upper layer just exceeds the yield stress. For the sake of simplicity, instead of

addressing these two scenarios, in the calculations below and without a loss of

generality, we assume that the yield stress τc is zero. We can then return to the

original problem by considering that either a sufficient shear stress is applied at

the free surface or that the domain of integration lies in the h0 − hc range.
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γ̇

γ̇c

τ0

τc

τ

Figure 4: Flow curve. We assume that when the material is at rest, it behaves like a rigid body.

When the shear stress exceeds a threshold called the static yield stress τ0, it starts moving,

but until the shear rate exceeds a critical shear-rate γ̇c, there is no steady state. When the

shear rate is increased above this critical value, the material behaves like a Bingham fluid. If

the shear rate is decreased from a value γ̇ > γ̇c, then the shear stress follows another path

marked by the down arrow. In that case, it can approach the zero limit continuously, while

the shear stress comes closer to the static yield stress τc.

4.1. Dimensionless governing equations

We make the problem dimensionless using the same scales as in Sec 3. The

dimensionless initial boundary value problem is

Re
∂û

∂t̂
= 1 +

∂2û

∂ẑ2
, (15)

subject to the boundary conditions at the free surface ẑ = 0

∂û

∂ẑ
(0, t̂) = 0. (16)

There is a moving boundary at ẑ = ŝ(t̂) for which the no-slip condition holds

û(ŝ, t̂) = 0. (17)

while the stress continuity (4) across this interface gives

∂û

∂ẑ
(ŝ, t̂) = −γ̂c with γ̂c = τ̂0 − Bi > 0. (18)
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t̂

ẑ

A (ŝ0, dt̂)O

B (ŝ0 + dŝ, dt̂)C

û = 0 and ∂ẑû = −a∂ẑû = 0

û(ẑ, 0) = û0(ẑ)

Figure 5: Incipient motion. At time t = 0, we impose a velocity profile û0 to the layer

0 ≤ ẑ ≤ ŝ0, and so the front is initially at point A. At time dt̂, the front has reached point B

located at ŝ+ dŝ.

The initial condition is

û(ẑ, 0) = û0(ẑ) for 0 ≤ ẑ ≤ ŝ0, (19)

with û0 > 0. For the initial and boundary conditions to be consistent, we also

assume that û′

0(0) = 0 and û′

0(ŝ0) = −γ̂c.

This initial boundary value problem is very close to the Stefan problem,

which describes the evolution in temperature within a medium experiencing a

phase transition. As in the Stefan problem, the evolution equation (15) is a

linear parabolic equation, but the whole system of equations is nonlinear [31];

this results from the existence of a moving boundary ŝ(t̂), which has to be

determined while solving the system (15)–(18). The present problem shows

two crucial differences from the Stefan problem: there is a source term in the

diffusion equation (15), and the position ŝ(t̂) of the moving boundary does not

appear explicitly in Eqs. (15)–(18).

4.2. Existence of a solution

Contrary to the Stefan problem, the moving boundary ŝ(t̂) will not start

moving spontaneously. Part of the fluid must be destabilised prior to incipient

motion, and that is the meaning of the initial condition (19). This is also
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consistent with the thixotropic behaviour described by the constitutive equation

(14).

To show this, let us consider what happens in the earliest moments of motion

by using the Green theorem. Initially the interface position is at ŝ(0) = ŝ0 (point

A in Fig. 5), and after a short time ∆t̂, it has moved to ŝ0 + dŝ (point B in

Fig. 5). The displacement increment can be determined by differentiating the

boundary condition (17)

d

dt̂
û(ŝ, t̂) =

∂û

∂x̂

∣

∣

∣

∣

ŝ

dŝ

dt̂
+

∂û

∂t̂

∣

∣

∣

∣

ŝ

= 0. (20)

Using the evolution equation (15) and the boundary condition (18), we deduce

γ̂c
dŝ

dt̂

∣

∣

∣

∣

0

=
1 + u′′

0(ŝ0)

Re
.

We then deduce that the front has moved a distance dŝ = (1+u′′

0(ŝ0))dt̂/(γ̂cRe).

Applying the Green theorem to the oriented surface OABC gives
∮

OABC

(

Re
∂û

∂t̂
− ∂2û

∂ẑ2

)

dẑdt̂ =

∫

OABC

Re ûdẑ +
∂û

∂ẑ
dt̂.

On the path CB, the only condition is that the velocity must be positive:
∫

CB
ûdẑ > 0. Making use of the boundary conditions (16)–(18) and initial

condition (19), we find the necessary condition for motion

∫ ŝ0

0

û0dẑ >
γ̂c + ŝ0
Re

dt̂+
1 + u′′

0(ŝ0)

2γ̂cRe
dt̂2. (21)

No solution satisfies this condition in the limit s0 → 0. A sufficiently high shear

must be applied to the upper layer over a thickness ŝ0 for the flow to start.

4.3. Similarity solution

There is no exact similarity solution to the problem (15)–(18), but we can

work out an approximate solution, which describes the flow behaviour in the

vicinity of the interface ŝ(t̂). To that end, we seek a solution in the form

û(ẑ, t̂) = t̂F (ξ, t̂) with ξ = ẑ/t̂ the similarity variable. Substituting û with

this form into the governing equation (15) gives

F (ξ, t̂) + t̂
∂F

∂t̂
= ξ

∂F

∂ξ
+ 1 +

1

t̂

∂2F

∂t̂2
. (22)
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We then use the expansion F (ξ, t̂) = F0(ξ)+ t̂ν1F1(ξ)+ . . .+ t̂νiFi(ξ)+ . . ., with

Fi functions of ξ alone and νi > 0. To leading order and in the limit t̂ ≫ 1,

Eq. (22) can be reduced to a first order differential equation

ReF0 = 1 + ReξF ′

0, (23)

subject to F (ξf ) = 0 and F ′(ξf ) = −γ̂c, where ξf = ŝ/t̂ is the position of the

interface. The solution is

F0 =
1

Re
− γ̂cξ. (24)

The solution satisfies the two boundary conditions (17)–(18) at the interface, but

not boundary condition (16) at the free surface. A boundary layer correction

should be used to account for the influence of this boundary condition. As

shown by the numerical solution in Sec. 4.4, the approximate similarity solution

(24) offers a fairly good description of the solution, and so we will not go further

in this direction.

From this calculation, we deduce that the interface behaves like a travelling

wave, whose velocity is constant and fixed by the critical-shear rate: v̂f =

(Reγ̂c)
−1. The interface position is then

ŝ = s0 +
t̂

Re γ̂c
. (25)

The velocity profile is linear in the vicinity of the interface

û =
t̂

Re
− ẑγ̂c. (26)

It can be readily shown that the structure of the travelling wave does not

depend on the shear-thinning index n. Indeed, the details of the constitutive

equation affect the structure of the diffusive term in the momentum balance

equation, but in the vicinity of the interface, this contribution is negligible

compared to the source term. Whatever the value of n, the critical time period

for the interface to travel the distance Ĥ = 1 is thus

t̂c ∼ Re γ̂c. (27)
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Figure 6: Interface position ŝ(t̂) over time. The solid line shows the numerical solution to

system (15)–(18) whereas the dashed line represents the approximate solution (25). Numerical

solution for γ̂c = τ̂0 − Bi = 0.5 and Re = 1.

4.4. Numerical solution

We used a finite-difference scheme to solve the system (15)–(18) (see Appendix B

for the details). In Figures 6 to 8, we show an example of a simulation for

γ̂c = 0.5. For the initial disturbance, we assumed that the velocity profile was

û =
γ̂c
2
ŝ0

(

1−
(

ẑ

ŝ0

)2
)

,

with ŝ0=1. The mesh size was h = 0.01. Figure 6 shows the interface position

as a function of time. The analytical solution (25) closely matches the numerical

solution, confirming that the disturbance grows and propagates as a travelling

wave. Figure 7 shows the velocity profiles at different times. These profiles

show that the approximate similarity solution (26) provides a fairly good de-

scription of the velocity profile over 75% of the depth. Figure 8 shows the shear

stress profiles, which were obtained by numerical integration of the numerical

solution. Except for the initial time, the shear stress spans the range [0, τ̂0−Bi]

(as expected considering the boundary conditions imposed). Over longer time

periods, the shear stress is close to the static yield stress τ0 over a large part of

the depth.
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Figure 7: Velocity profiles for t̂ = 0, 2, 4 and 6. Numerical solution to Eqs. (15)–(18) for

γ̂c = τ̂0 − Bi = 0.5 and Re = 1.

5. Dam-break wave eroding a stationary layer

This section examines the effects of basal entrainment on the front motion of

a viscoplastic avalanche. Let us consider that at time t = 0, an avalanche made

up of a Herschel-Bulkley fluid is released from a reservoir. Initially the fluid

material flows over a sloping solid boundary. The bottom inclination is denoted

by θ. At time t = t0, the material encounters a stationary layer made up of the

same fluid and occupying a step of length ℓbed (see Fig. 9). The viscoplastic flow

spreads across this stationary layer and entrains part of it. The front position is

denoted by xf (t), the flow depth by h(x, t) and the velocity field by u = (u,w).

We use a Cartesian frame with the x-axis pointing downward and the z-axis

normal to the slope.

To solve this problem, we use lubrication theory. Within the framework of

this theory, the momentum balance equations are simplified by neglecting inertia

terms and the streamwise gradient of the normal stress. This makes it possible to

deduce the pressure and shear stress distributions to the leading order. Making

use of the constitutive equation then leads to the velocity profile and, finally, the

depth-averaged mass conservation provides the evolution equation for the flow
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Figure 8: Shear stress profiles for t̂ = 0, 2, 4 and 6. Numerical solution to Eqs. (15)–(18) for

γ̂c = τ̂0 − Bi = 0.5 and Re = 1.

z

x

h(x, t)

δhstationary layer

fixed bottom

ℓbed
xstep

Figure 9: Configuration of the flow. A viscoplastic avalanche is released from a reservoir. It

flows over a sloping rigid bed until it gets in contact with a stationary layer made of the same

fluid.

depth h(x, t). There is a large body of work applying this theory to viscoplastic

flows [32–37]; it is succinctly summarised in the next section.

5.1. Solution for rigid bottoms

In the limit of low Reynolds number and small aspect ratio numbers, motion

is dictated by the balance between the streamwise gradient of the pressure ∂xp,

gravitational forces and the cross-stream gradient of the shear stress ∂yτ . To

the first order, the pressure p adopts a hydrostatic distribution, while the shear

stress τ follows a linear distribution whose coefficient is controlled by the bed
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slope and free surface gradient:

p = ̺g(h− z) cos θ and τ = ̺g sin θ(h− z)

(

1− cos θ
∂h

∂x

)

. (28)

These expressions hold regardless of the constitutive equation.

We now consider the constitutive equation (6) for simple Herschel-Bulkley

materials. These materials flow when the basal-shear stress exceeds the yield

stress τc. When this condition is satisfied, there exists a surface z = Y (x, t)

where the shear stress equals the yield stress:

Y = h− τc

̺g sin θ

∣

∣

∣

∣

1− cot θ
∂h

∂x

∣

∣

∣

∣

. (29)

Below this surface, the fluid is sheared and above this surface it moves like a

plug.

Equations (6) and (28) lead to the following expression for the streamwise

velocity component u(x, z, t)

u(x, z, t) =
n

n+ 1
A

(

1− S
∂h

∂x

)1/n
(

Y 1+1/n − (Y − z)
1+1/n

)

for 0 ≤ z ≤ Y,

(30)

with

A = (̺g sin θ/κ)1/n and S = cot θ. (31)

For z > Y , the velocity is constant and equal to the plug velocity up = u(x, z =

Y, t).

Integration of the continuity equation leads to the bulk mass conservation

equation
∂h

∂t
+

∂hū

∂x
= 0, (32)

with ū the depth-averaged velocity obtained by integration of the velocity field

(30)

ū =
1

h

∫ h

0

u(x, z, t)dz =
A

h

nY 1+1/n

(2n+ 1)(n+ 1)

(

1− S
∂h

∂x

)1/n

(n(h−Y )+(n+1)h).

(33)
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5.2. Extension to erodible bottoms

At time t = t0, the flow front is about to enter the erodible domain, where a

layer of fluid is held initially at rest behind a backwards step (see Fig. 9). The

stationary fluid lies between z = 0 and z = b(x) ≤ 0, defining a rigid base below

which entrainment is impossible.

The problem of basal entrainment can be greatly simplified by considering

that the transmission of stress into the bed occurs very quickly, almost instanta-

neously, and from the outset, the velocity between the overriding avalanche and

the bed is continuous. Indeed, in sections 3 and 4 we determined the characteris-

tic time point tc at which a layer of Herschel-Bulkley fluid was set in motion once

it has been suddenly tilted. The solution to this problem greatly depends on

the details of the constitutive equation. For simple Herschel-Bulkley fluids, the

material starts flowing by slipping along its base, provided that Bi < 1. Fluidisa-

tion occurs from bottom to top during a characteristic time period t̂c =
√
ReDe.

For non-simple Herschel-Bulkley fluids, the material starts to deform where it

was disturbed, and the bed-flow interface moves quickly from top to bottom. To

illustrate how fast fluidisation occurs, we consider a Herschel-Bulkley fluid with

index n = 1/3, yield stress τc = 100 Pa, consistency κ = 50 Pa sn and elastic

modulus G = 100 Pa; the static yield (if used) is set to τ0 = 120 Pa. We consider

a 10-cm thick layer tilted at an angle θ = 10◦ to the horizontal. If the fluid is

simple, then tc ∼ 0.3 s, whereas for a non-simple fluid, we get tc ∼ 9 ms. Calcu-

lation of the characteristic times for Stokes’ first problem, studied in [7, 9], led to

similar estimates of tc. The numerical application thus shows that fluidisation

occurs nearly instantaneously in shallow viscoplastic layers.

Equation (32) can be extended to varying bottoms (see Appendix C)

∂h

∂t
+A

∂

∂x

(

n(Y − b)1+1/n

(1 + n)(1 + 2n)

(

1− S
∂h

∂x

)1/n

(n(h− Y ) + (n+ 1)(h− b))

)

= 0.

(34)
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5.3. Numerical solution

We consider a viscoplastic dam-break wave eroding a layer of viscoplastic

fluid of thickness δh and length ℓbed (see Fig. 9). We solve Eq. (34), which is

a nonlinear, parabolic, partial differential equation, for determining the front

position xf and the flow depth profile h(x, t). We used the inbuilt MatLab

solver pdepe to do this. Note that the Galerkin method [38] used in this

solver is unable to cope with shocks. We therefore smoothed the discontinu-

ities in the topography at each end of the step by approximating the step as

b(x) = −δh/2(tanh(a(x − xstep)) − tanh(a(x − xstep − ℓbed))) where a is a free

parameter. In practice, setting a = 103 provided good results (for mesh size

∆x = 0.5 mm, the thickness of the regularised step was 4 mm, i.e. 8∆x). Using

no-flux boundary conditions at each end, we solved the governing equation (34)

for the flow depth.

Figure 10(a) shows the flow depth evolution for a viscoplastic avalanche

released from a reservoir of length ℓres = 30 cm and volume (per unit width)

V0 = 0.05 m2, in the absence of entrainment (δh = 0). Figures 10(a-b) show

how basal entrainment alters the flow depth profile. The depth of the stationary

layer is either δh = 1 cm or δh = 2 cm, and its length is the same (ℓbed =

20 cm). When the material flows over the stationary layer, it accelerates, which

is reflected by a decrease in the flow depth. The material decelerates as soon

as it reaches the fixed bottom. When the front lies over the erodible bed, the

flow depth profile is blunter. Figure 10(d) shows the front position with time:

the acceleration produced by the stationary layer is clearly visible whereas its

deceleration is less marked. The deeper the stationary layer, the more vigorously

the front accelerates. Contrary to Newtonian fluids, for which there is little

difference between a solution with and without basal entrainment [39], we find

that basal entrainment produces a noticeable increase in the front position in

the long run.
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Figure 10: Viscoplastic avalanche over a stationary layer of length ℓbed = 20 cm. (a–c)

Flow depth profiles at times t = 0, 6 s, 60 s, 600 s and 6,000 s. (a) Bed depth δh = 0

(no entrainment). (b) δh = 1 cm. (c) δh = 2 cm. (d) Front position with time for different

heights δh of the stationary layer: solid line δh = 0 (no entrainment), dotted line δh = 0.5 cm,

dashed line δh = 1 cm, dot-dash line δh = 2 cm. The grey area indicates the stationary layer.

Computations for a Herschel-Bulkley fluid of index n = 1/3, consistency κ = 50 Pa s1/n, yield

stress τc = 100 Pa. The initial volume (per unit width) is V0 = 0.05 m2 and the slope is

θ = 30◦.

21



6. Concluding remarks

In this paper, we investigated Stokes’ third problem with the aim of cal-

culating the characteristic time period tc for a layer of thickness H to be set

in motion. For simple Herschel-Bulkley fluids, the base of the layer is unable

to resist a shear stress and the material starts moving instantaneously. The

characteristic time period tc is then defined as the time needed for the ini-

tial disturbance to propagate from the bed to the free surface. We found that

t̂c =
√
ReDe or dimensionally, tc = H

√

̺/G. For non-simple Herschel-Bulkley

fluids, the material needs to be destabilised. Equation (21) provides a necessary

condition for the initial disturbance to create motion. The disturbance propa-

gates down to the bottom at a constant velocity. The time needed to cross the

static layer is t̂c = Reγ̂c or dimensionally, tc = H(τ0 − τc)/(µg sin θ). In both

cases, this characteristic time period is short.

There is no significant difference between Stokes’ first and third problems

with regards to a Herschel-Bulkley material’s dynamic response when suddenly

solicited. One important result of this study was to shed light on the role played

by the dynamic yield stress in this time-dependent problem. When the dynamic

and static yield stresses coincide and the fluid behaves like a viscoelastoplastic

material, the governing equations are linear and hyperbolic. There is no moving

boundary separating sheared and unsheared regions. The situation does not dif-

fer from that found for Stokes’ first problem [7, 9] except that in the present case,

even shear-thickening fluids (n > 1) do not produce moving boundaries. When

the dynamic yield stress exceeds the static yield stress and the fluid behaves

like a rigid body in the static regime, the governing equations are nonlinear and

parabolic. There is a moving boundary that separates the static and flowing

layers. We conclude that Herschel-Bulkley materials are set in motion quickly

and this can be assumed to be instantaneous if the flow timescale is much longer

than tc.

Stokes’ third problem has been addressed by a few authors in recent years.

Eglit and Yakubenko [2] solved the problem for a non-simple Bingham fluid
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numerically. They regularised the constitutive equation by using a biviscous

fluid. They observed that the interface moved as a travelling wave with velocity

vf = µg sin θ/(τ0 − τc), as we did, but their numerical simulations were not

in full agreement with our results: they found that the thickness of the plug

region grew indefinitely and that the interface velocity depended on consistency

when the fluid was shear thinning. Our analysis considers that the thickness

of the plug region is bounded by hc = τc/(̺g sin θ). We found that locally,

the interface behaved like a travelling wave whose velocity depended only on

the difference ∆τ = τ0 − τc regardless of n. As Eglit and Yakubenko [2] did

not give much detail to their numerical solution, it is difficult to appreciate the

reasons for this disagreement. Issler [3] investigated Stokes’ third problem for

non-simple Herschel-Bulkley fluids, but to remove time dependence, he assumed

that the mobilised material was of constant thickness. By assuming the existence

of a travelling wave solution, he ended up with an expression of the interface

velocity vf , but due to his working assumption, there is no agreement between

his solution and our calculations. Bouchut et al. [4] also studied Stokes’ third

problem, but for plastic materials with a Drucker-Prager yield criterion (i.e.

with a yield surface that depends on the first invariant of the stress tensor).

They worked out an exact solution for purely plastic materials (i.e. with zero

viscosity) that showed that motion dies out quickly after an initial disturbance.

To the best of our knowledge, there is no experimental data with which

compare the theoretical predictions for Stokes’ third problem. In a companion

paper, we tested the shallow-flowmodel (34) and found excellent agreement with

regards to the front position xf (t). The characteristic time period associated

with the solid to fluid transition was investigated in Couette cells. For simple

yield stress fluids, careful rheometric investigations have revealed that the tran-

sition from solid-like to fluid-like behaviour does not occur instantaneously, but

over a length of time tf that scales as tf ∝ (τ − τc)
−p with p in the 3–8 range

under controlled stress experiments [40] or tf ∝ γ̇−q with q in the 1.8–3.1 range

under controlled shear-rate experiments [41], with n = q/p. Nor does this fluidi-

sation process occur homogeneously throughout the sample, rather it involves
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several local processes such as creep, elastic recoil, wall slip and shear banding

[42, 43]. From this perspective, it is not certain that the steady-state constitu-

tive equations (6) and (7) are sufficient to capture the dynamics of yielding in

Stokes problems.
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Appendix A. Characteristic problem

In this appendix, we show how the problem (11)–(12) can be cast in char-

acteristic form and how this can be used to solve the problem numerically.

The initial boundary value problem (11)–(12) addressed in Section 3 can be

cast in matrix form
∂

∂t
X +A · ∂

∂z′
X = B (A.1)

subject to u = 0 at z′ = 0, τ = 0 at z′ = 1, and τ = u = 0 at t = 0. The hat

annotation has been removed for the sake of simplicity. We have introduced

X =





u

τ



 ,A = −





0 Re−1

De−1 0



 , and B =





Re−1

−De−1F (τ)



 .

(A.2)

We now introduce the Riemann variables r = −ηu + τ and s = ηu + τ , where

η =
√

Re/De. The eigenvalues of A are constant and of opposite sign: ±λ with

λ = 1/
√
ReDe, which means that the characteristic curves are straight lines (see

Fig. A.11): z′ = ±λt+ c (with c a constant). The characteristic form of (A.1)
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Figure A.11: Characteristic diagram showing the two families of characteristic curves.

is

dr

dt
= R(τ) = −λ−De−1F (τ) along

dz′

dt
= λ, (A.3)

ds

dt
= S(τ) = λ−De−1F (τ) along

dz′

dt
= −λ, (A.4)

with the boundary conditions r = s at z′ = 0 and r = −s at z′ = 1. The initial

conditions are r = s = 0 at t = 0. As the source term is nonlinear in τ , this

system of equations has no analytical solution, but it lends itself more readily

to numerical solutions.

The domain is divided into N − 1 intervals whose nodes are zi = iδx, with

δz = 1/N , for 0 ≤ i ≤ N . The center of each interval is zi+1/2 = (zi + zi+1)/2.

The numerical integration of the system (A.3)–(A.4) involves two steps. We

assume that we know the values r2ki and s2ki of r and s at each node at time

t = 2kδt with δt = δx/2/λ. At time t+ δt, a first-order discretisation of (A.3)–

(A.4) is

r2k+1
i+1/2 = r2ki + R(τ2ki )δt and s2k+1

i+1/2 = s2ki+1 + S(τ2ki+1)δt, (A.5)

for 0 ≤ i ≤ N − 1. At time t+ 2δt, we have

r2k+2
i = r2k+1

i−1/2 +R(τ2k+1
i−1/2)δt and s2k+2

i = s2k+1
i+1/2 + S(τ2k+1

i+1/2)δt, (A.6)
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for 1 ≤ i ≤ N − 1, while at the boundaries, we have

r2k+2
0 = s2k+2

0 and s2k+2
0 = s2k+1

1/2 + S(τ2k+1
1/2 )δt, (A.7)

and

r2k+2
N = r2k+1

N−1/2 +R(τ2k+1
N−1/2)δt and s2k+2

N = −r2k+2
N . (A.8)

At each time step, the velocity and shear stress are thus

τ ji =
1

2
(rji + sji ) and uj

i =
1

2η
(sji − rji ). (A.9)

Appendix B. Numerical solution to the Stefan-like problem

In this appendix, we propose a finite-difference algorithm for the Stefan-like

problem (15). Various techniques have been developed to solve Stefan problems

[31, 44–47]. Here we take inspiration from Morland [48]. By modifying one of

the boundary conditions, we can work out a similarity solution which is then

used to test the algorithm accuracy.

Appendix B.1. Numerical scheme

For the sake of brevity, we omit the hat annotation in this appendix. We

make the following change of variable

u(z, t) = ũ(z, s),

where time has been replaced by s. Assuming that s(t) is a continuous mono-

tonic function of time and ṡ(t) > 0, the Jacobian of the transformation is non-

zero. The advantage of this change of variable is that the front position appears

explicitly in the governing equations and the domain of integration now has

known boundaries. We must solve the following initial boundary value problem

Reα(s)
∂ũ

∂s
= 1 +

∂2ũ

∂z2
with α(s) =

ds

dt
(B.1)

subject to the boundary conditions at the free surface

∂ũ

∂z
(0, s) = 0. (B.2)
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Figure B.12: Domain of integration. The change of variable t → s makes it possible to work

on a fixed domain, where the upper bound s is fixed in advance: s = s0 + z.

There is a moving boundary at z = s(t) for which the no-slip condition holds

ũ(s, s) = 0. (B.3)

while the stress continuity (4) across this interface gives

∂ũ

∂z
(s, s) = −γ̇c with γ̇c = τ0 − Bi > 0. (B.4)

The initial condition is

ũ(z, s0) = ũ0(z) for 0 ≤ z ≤ s0. (B.5)

Once the solution ũ(x, s) has been calculated, we can return to the original

variables by integrating α(s)

t =

∫ s

s0

ds′

α(s′)
. (B.6)

The numerical strategy is the following. The domain of integration is dis-

cretised using a uniform rectangular grid with a fixed mesh size h. Time t, and

thus parameter α, are calculated at each iteration so that the front has moved

a distance h (see Fig. B.12). The value of the numerical solution at z = ih

and s = jh is denoted by uj
i . The front position at time step jh is denoted
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by sj = s0 + jh. We use an implicit finite-difference scheme for discretising

the spatial derivatives and an explicit forward Euler for the time derivative in

Eq. (B.1):

−ruj+1
i−1 +(2r+aj+1)uj+1

i − ruj+1
i+1 = h2+(1− r)uj

i−1+(aj−2r)uj
i +(1− r)uj

i+1,

where 0 < r ≤ 1 is a weighting coefficient and aj = Rehαj , for 2 ≤ i ≤ j. In

practice, we take r = 1/2 (Crank-Nicolson scheme). The boundary condition

(B.2) is discretised as follows

ruj+1
2 − ruj+1

1 = (1− r)uj
1 + (1 − r)uj

2, (B.7)

While the boundary condition (B.4) gives

ruj+1
j+1 − ruj+1

j−1 = (1 − r)uj
j−1 + (1− r)uj

j+1 − 2hγ̇c. (B.8)

The scheme involves the value uj
j+1 outside the domain of integration. We use

a second-order Taylor-series extrapolation

uj
j+1 = −γ̇ch− 1

2
h2(1 − Reαj γ̇c), (B.9)

where we use the boundary condition (B.3) uj
j = 0, the boundary condition

(B.3) for the first-order term, and Eqs. (17) and (B.1) for the second-order

term.

At time step j + 1, we thus have to solve the system of j + 1 equations

P (r, h, αj+1) ·U j+1 = Q(r, h, αj+1) ·U j+1 +R(h, γ̇c),

where P and Q are tridiagonal matrices and R is a constant vector, whose

entries are given by Eqs. (B.7)-(B.9). The coefficient αj+1 is adjusted until the

boundary condition (B.3) is satisfied: uj+1
j+1 = 0. To that end, we use the secant

method:

sj+1,(k+1) = sj+1,(k) − sj+1,(k) − sj+1,(k−1)

u
j+1,(k)
j+1 (sj+1,(k))− u

j+1,(k−1)
j+1 (sj+1,(k−1))

where sj+1,(k+1) the kth iteration to find sj+1. The stopping criterion is

∣

∣

∣sj+1,(k+1) − sj+1,(k)
∣

∣

∣ < h2
∣

∣

∣sj+1,(k)
∣

∣

∣ .
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Usually, only a few iterations are required to find αj+1. To estimate time t, we

integrate Eq. (B.6) numerically by approximating the integrand using a second-

order polynomial. We can then iteratively calculate tj

tj+1 = tj−1 +
h

3

(

1

αj+1
+

4

αj
+

1

αj−1

)

.

Appendix B.2. Testing the algorithm

The initial boundary value problem (B.1)–(B.4) has no similarity solution,

but if we replace the boundary (B.4) with

∂ũ

∂z
(s, s) = −as, (B.10)

where 0 < a < 1 is a free parameter, then we can work out a similarity solution

u(x, t) = tU(η) with η =
x

b
√
t
, b =

√

2
1− a

a
, (B.11)

and

U(η) =
b2

2 + b2
(1 − η2).

The front position is given by

s(t) = s0 + b
√
t. (B.12)

The algorithm of Appendix B.1 was adapted to take the change in the bound-

ary condition into account. Figure B.13 shows a comparison between the nu-

merical solution and the analytical solution (B.12). The initial condition is the

solution (B.10) reached by u at time t0 = (s0/b)
2. The initial front position is

arbitrarily set to s0 = 50h. There is a fairly good agreement, but even if the

algorithm is a second order one, errors accumulate. In the example in Figure

B.13, the error reaches 1.8% after 10,000 iterations.

Appendix C. Derivation of the extended evolution equation

In this appendix, we derive the evolution equation (34).
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Figure B.13: Comparison of the numerical solution (solid line) and the analytical solution

(dashed line) given by Eq. B.12. Simulation for a = 0.5 and h = 10−3.

In the shear-layer velocities will have the subscript S, and in the plug

layer they will have the subscript P . Applying the no-slip boundary condition

uS(x, z = b(x), t) = 0 on the rigid surface b(x) and solving

∣

∣

∣

∣

∂u

∂z

∣

∣

∣

∣

=

(

1

K

(

̺g sin θ(h− z)

(

1− cot θ
∂h

∂x

)

− τc

))1/n

. (C.1)

gives an equation for the velocity below the yield surface, in the shear layer:

uS(x, z, t) =
nA

n+ 1

(

1− S
∂h

∂x

)1/n
(

(Y (x, t)− b(x))1/n − (Y (x, t)− z)1+1/n
)

.

(C.2)

In this arbitrary geometry the yield surface is now

Y (x, t) = max









h− τc

̺g

∣

∣

∣

∣

1− S
∂h

∂x

∣

∣

∣

∣

, b(x)









. (C.3)

Then, in the plug layer,

uP (x, t) =
n

n+ 1
A

(

1− S
∂h

∂x

)1/n
(

(Y (x, t) − b(x))1+1/n
)

. (C.4)

The mass conservation equation is then used to obtain expressions for ∂wS/∂z

and ∂wP /∂z. These can be integrated using the no-slip condition uS · n = 0
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fixing the constant of integration below the yield surface, and the continuity

of the velocity across the yield surface fixing the constant in the pseudo-plug

region. Thus:

wS(x, z, t) =
S ∂2h

∂x2

n+ 1

(

1− S
∂h

∂x

)1/n−1

A

(

n

2n+ 1

(

(Y − z)
2n+1

n − (Y − b)2+1/n
)

+ (Y − b)1+1/n(z − b)
)

−
(

1− S
∂h

∂x

)1/n

A

((

∂Y

∂x
− ∂b

∂x

)

(Y − b)1/n(z − b)

+
n∂Y

∂x

n+ 1

(

(Y − z)1+1/n − (Y − b)1+1/n
)

)

,

wP (x, z, t) =
S ∂2h

∂x2

n+ 1

(

1− S
∂h

∂x

)1/n−1

A

(

(Y − b)1+1/n(z − b)− n(Y − b)2+1/n

2n+ 1

)

−
(

1− S
∂h

∂x

)1/n

A

((

∂Y

∂x
− ∂b

∂x

)

(Y − b)1/n(z − b)

− n∂Y
∂x (Y − b)1+1/n

n+ 1

)

. (C.5)

Finally, equations (C.2), (C.4) and (C.5) can be linked by solving for the

kinematic boundary condition on the surface z = h(x, t), so that

∂h

∂t
+ uP

∂h

∂x
= wP ,

giving

∂h

∂t
+A

∂

∂x

(

n(Y − b)1+1/n

(1 + n)(1 + 2n)

(

1− S
∂h

∂x

)1/n

(n(h− Y ) + (n+ 1)(h− b))

)

= 0.

(C.6)
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