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Abstract

Natural gravity-driven flows can increase in volume by eroding the bed on which

they descend. This process is called basal entrainment and is thought to play

a key role in the bulk dynamics of geophysical flows. Although its study is

difficult using field measurements, basal entrainment is more easily amenable to

analysis using laboratory experiments. We studied basal entrainment by con-

ducting dam-break experiments releasing a fixed amount of viscoplastic fluid

(a Herschel-Bulkley fluid) on a sloping, erodible bed of fixed depth. Entrain-

ment was observed continuously, far from the sidewalls, using cameras. Bed

material was quickly entrained, which led to flow advancement. Although the

slope inclination had clear effects on the entrainment mechanisms, as shown by

the internal measurements, this did not translate into faster front progression.

Instead, the depth and length of the entrainable material were the most im-

portant controlling parameters of front velocity, as the surge scoured out the

entrainable layer, pushing the entrainable material downstream and following

the rigid bed’s geometry. Bulk measurements (front position and flow depth

profile) were also compared with predictions from lubrication theory.
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1. Introduction

Gravity driven flows, such as snow avalanches and debris flows, pose a threat

to human activities and settlements in mountain areas. The economic impor-

tance of these activities (e.g. mining, forestry, electricity production, tourism,

transportation) has encouraged research into methods for calculating the main

features of these flows (e.g. run-out distance, flow depth, impact force) [1]. In

the 1960s, the idea emerged that an analogy could be made between avalanches

and water flows, and since then the Saint-Venant equations have been increas-

ingly used to describe the motion of “snow floods” [2–4], rock avalanches [5],

debris flows [6], turbidity currents [7], and submarine avalanches [8].

Although the analogy with water waves has been pivotal to laying out the

mass and momentum balance equations, there are crucial differences between

water and natural materials involving mixtures of fluids and solids. A large

amount of research has been done to determine the effects of bulk composi-

tion on rheological behaviour, flow resistance and self-organisation during flow.

Another key difference between water and natural materials is related to mass

exchanges between the flow and the bed: gravity driven flows can grow in size

by mobilising loose material lying in their paths, or they can lose mass as a

result of various processes (e.g. levee formation, debulking due to solid particle

sedimentation) [9–15]. This raised the question of whether basal entrainment

affects bulk dynamics. For instance, for powder-snow avalanches, Kulikovskiy

and Svehnikova [16] developed a simple model which took into account the incor-

poration of air and snow and showed that basal entrainment plays an essential

part in the growth of high-velocity avalanches. Without snow entrainment, air

entrainment causes a dilution of the snow cloud, and thus a decrease in buoyancy

forces [17]. Generalising the depth-averaged Saint-Venant equations to eroding

flows mobilising natural materials has proved challenging to the different groups

working on the issue. Recently, Iverson and Ouyang [18] reviewed the various

attempts to model mass exchanges between flows and beds within the frame-

work of the Saint-Venant equations. They showed that many existing models
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violated mass and momentum conservation laws, mostly because the boundary

conditions at the bed-flow interface were incorrect. One underlying issue raised

by their review was the absence of closure equations for the entrainment and

deposition rates.

To shed light on basal entrainment’s effects on the behaviour of gravity-

driven flows, we investigate a problem that retains the essential features of natu-

ral scenarios, while being sufficiently simple to be manageable semi-analytically.

We consider the dam-break problem for a viscoplastic fluid, i.e. the flow of a

fixed volume of fluid suddenly released down a slope from a reservoir. The slop-

ing bed is a solid substrate, but at a certain distance from the reservoir, the

flow enters into contact with an erodible stationary layer composed of the same

fluid and starts entraining it. We sought to determine how basal entrainment

affected the front position and flow-depth profile over time.

The viscoplastic dam-break problem is a typical example of time-dependent

flow, in which the flow passes through different phases from release to run-

out. This problem has been studied within the frameworks of the Saint-Venant

equations [19–22] and lubrication theory [23–30]. Based on the assumptions

that the flow is shallow (i.e. the aspect ratio ǫ = L/H , where L and H denote

scales of length and depth) and slow (i.e. the Reynolds flow number is low),

lubrication theory approximates the local momentum-balance equation using an

asymptotic expansion in ǫ. The decisive advantage of lubrication theory over

the Saint-Venant equations is that the velocity and stress fields are calculated

with no recourse to closure equations as long as inertia plays a negligible role.

In the present paper, we focus on a nonlinear class of viscoplastic materials

called Herschel-Bulkley fluids. Viscoplastic materials behave like fluids when

they are sufficiently stressed, but like solids when the stress state is below a

given threshold (called the yield stress) [31–34]. As natural materials exhibit

solid- and fluid-like properties, the use of viscoplastic models has been pro-

posed in order to describe the rheological behaviour of snow [35], mud [20],

debris mixtures [36–38], lava [39] and submarine mud [8]. Actual rheological

behaviour exhibits complex properties—such as two-phase effects (pore pres-
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sure diffusion), dilatancy, particle migration and segregation [6, 40–42]—which

are not accounted for by the simple constitutive equations of single-phase con-

tinua such as the Herschel-Bulkley equation. Yet in spite of these limitations,

the Herschel-Bulkley equation provides a useful approximation of various nat-

ural viscoplastic flows [20, 22, 24, 27, 28, 43–47]. As viscoplastic models deal

with the solid-liquid transition, they also seem relevant for describing basal en-

trainment: part of the bed may yield under the effects of the normal and shear

stresses exerted by the flow, and then be entrained in that flow. This is, for

instance, what is thought to happen in snow avalanches [48–50].

In this paper, we tackle the issue of basal entrainment using lubrication the-

ory. We begin with a theoretical perspective of basal entrainment in shallow

flows within the framework of lubrication theory (see Sec. 2). In Sec. 3, we

describe the experimental procedure used for measuring the flow variables and

observing what happens inside eroding flows. Section 4 presents our experi-

mental results and compares them with theoretical predictions from lubrication

theory. Section 5 concludes the paper. Three videos are available to accom-

pany this paper (the acknowledgements section provides the link to the data

repository).

2. Dam-break wave eroding a stationary layer

This section examines the effects of basal entrainment on the front motion of

a viscoplastic avalanche. Let us consider that at time t = 0, an avalanche made

up of a Herschel-Bulkley fluid is released from a reservoir. Initially the fluid

material flows over a sloping solid boundary. The bottom inclination is denoted

by θ. At time t = t0, the material encounters a stationary layer made up of the

same fluid and occupying a step of length ℓbed (see Fig. 1). The viscoplastic flow

spreads across this stationary layer and entrains part of it. The front position is

denoted by xf (t), the flow depth by h(x, t) and the velocity field by u = (u,w).

We use a Cartesian frame with the x-axis pointing downward and the z-axis

normal to the slope.
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Figure 1: Configuration of the flow. A viscoplastic avalanche is released from a reservoir. It

flows over a sloping rigid bed until it gets in contact with a stationary layer made of the same

fluid.

To solve this problem, we use lubrication theory. Within the framework of

this theory, the momentum balance equations are simplified by neglecting inertia

terms and the streamwise gradient of the normal stress. This makes it possible to

deduce the pressure and shear stress distributions to the leading order. Making

use of the constitutive equation then leads to the velocity profile and, finally, the

depth-averaged mass conservation provides the evolution equation for the flow

depth h(x, t). There is a large body of work applying this theory to viscoplastic

flows [23, 26, 27, 30, 51]; it is succinctly summarised in the next section.

2.1. Solution for rigid bottoms

In the limit of low Reynolds number and small aspect ratio numbers, motion

is dictated by the balance between the streamwise gradient of the pressure ∂xp,

gravitational forces and the cross-stream gradient of the shear stress ∂yτ . To

the first order, the pressure p adopts a hydrostatic distribution, while the shear

stress τ follows a linear distribution whose coefficient is controlled by the bed

slope and free surface gradient:

p = ̺g(h− z) cos θ and τ = ̺g sin θ(h− z)

(

1− cos θ
∂h

∂x

)

. (1)

These expressions hold regardless of the constitutive equation.

We now consider the constitutive equation for simple Herschel-Bulkley ma-

terials
{

γ̇ = 0 if τ < τc,

τ = τc + κ|γ̇|n if τ ≥ τc,
(2)
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where τc denotes the yield stress, γ̇ = du/dz the shear rate, n the shear-thinning

index (as in most cases n ≤ 1) and κ the consistency. These materials flow when

the basal-shear stress exceeds the yield stress τc. When this condition is satisfied,

there exists a surface z = Y (x, t) where the shear stress equals the yield stress:

Y = h−
τc

̺g sin θ

∣

∣

∣

∣

1− cot θ
∂h

∂x

∣

∣

∣

∣

. (3)

Below this surface, the fluid is sheared and above this surface it moves like a

plug. Equations (2) and (1) lead to the following expression for the streamwise

velocity component u(x, z, t)

u(x, z, t) =
n

n+ 1
A

(

1− S
∂h

∂x

)1/n
(

Y 1+1/n − (Y − z)1+1/n
)

for 0 ≤ z ≤ Y,

(4)

with

A = (̺g sin θ/κ)1/n and S = cot θ. (5)

For z > Y , the velocity is constant and equal to the plug velocity up = u(x, z =

Y, t).

Integration of the continuity equation leads to the bulk mass conservation

equation
∂h

∂t
+

∂hū

∂x
= 0, (6)

with ū the depth-averaged velocity obtained by integration of the velocity field

(4)

ū =
1

h

∫ h

0

u(x, z, t)dz =
A

h

nY 1+1/n

(2n+ 1)(n+ 1)

(

1− S
∂h

∂x

)1/n

(n(h−Y )+(n+1)h).

(7)

2.2. Extension to erodible bottoms

At time t = t0, the flow front is about to enter the erodible domain, where a

layer of fluid is held initially at rest behind a backwards step (see Fig. 1). The

stationary fluid lies between z = 0 and z = b(x) ≤ 0, defining a rigid base below

which entrainment is impossible.
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The problem of basal entrainment can be greatly simplified by considering

that the transmission of stress into the bed occurs very quickly, almost instan-

taneously, and from the outset, the velocity between the overriding avalanche

and the bed is continuous. Velocities ar assumed to extend down to the rigid

base as soon as Y > 0 (for both eroding and non-eroding flows). Analysis of

Stokes’ problems— which study how a fluid layer responds to a sudden solici-

tation [52–54]—shows that fluidisation occurs nearly instantaneously in shallow

viscoplastic layers. Equation (6) can then be extended to varying bottoms (see

Appendix A)

∂h

∂t
+A

∂

∂x

(

n(Y − b)1+1/n

(1 + n)(1 + 2n)

(

1− S
∂h

∂x

)1/n

(n(h− Y ) + (n+ 1)(h− b))

)

= 0.

(8)

2.3. Numerical solution

We consider a viscoplastic dam-break wave eroding a layer of viscoplastic

fluid of thickness δh and length ℓbed (see Fig. 1). We solve Eq. (8), which is

a nonlinear, parabolic, partial differential equation, for determining the front

position xf and the flow depth profile h(x, t). We used the inbuilt MatLab

solver pdepe to do this (the script we used is available from a data reposi-

tory, see acknowledgements). Note that the Galerkin method [55] used in this

solver is unable to cope with shocks. We therefore smoothed the discontinu-

ities in the topography at each end of the step by approximating the step as

b(x) = −δh/2(tanh(a(x − xstep)) − tanh(a(x − xstep − ℓbed))) where a is a free

parameter. In practice, setting a = 103 provided good results (for mesh size

∆x = 0.5 mm, the thickness of the regularised step was 4 mm, i.e. 8∆x). Using

no-flux boundary conditions at each end, we solved the governing equation (8)

for the flow depth.

Figure 2(a) shows the flow depth evolution for a viscoplastic avalanche re-

leased from a reservoir of length ℓres = 30 cm and volume (per unit width)

V0 = 0.05 m2, in the absence of entrainment (δh = 0). Figures 2(a-b) show how

basal entrainment alters the flow depth profile. The depth of the stationary layer
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Figure 2: Viscoplastic avalanche over a stationary layer of length ℓbed = 20 cm. (a–c) Flow

depth profiles at times t = 0, 6 s, 60 s, 600 s and 6,000 s. (a) Bed depth δh = 0 (no

entrainment). (b) δh = 1 cm. (c) δh = 2 cm. (d) Front position with time for different

heights δh of the stationary layer: solid line δh = 0 (no entrainment), dotted line δh = 0.5 cm,

dashed line δh = 1 cm, dot-dash line δh = 2 cm. The grey area indicates the stationary layer.

Computations for a Herschel-Bulkley fluid of index n = 1/3, consistency κ = 50 Pa s1/n, yield

stress τc = 100 Pa. The initial volume (per unit width) is V0 = 0.05 m2 and the slope is

θ = 30◦.

8



is either δh = 1 cm or δh = 2 cm, and its length is the same (ℓbed = 20 cm).

When the material flows over the stationary layer, it accelerates, which is re-

flected by a decrease in the flow depth. The material decelerates as soon as it

reaches the fixed bottom. When the front lies over the erodible bed, the flow

depth profile is blunter. Figure 2(d) shows the front position with time: the

acceleration produced by the stationary layer is clearly visible whereas its de-

celeration is less marked. The deeper the stationary layer, the more vigorously

the front accelerates.

In a previous paper [56] devoted to Newtonian fluids, we investigated the

same problem as that presented here. The main difference between viscoplastic

and Newtonian fluids is that basal entrainment produces a noticeable increase

in the front position in the long run for viscoplastic materials whereas for New-

tonian fluids there is little difference between solutions with and without basal

entrainment. Indeed, as soon as the front has passed the stationary layer, it un-

dergoes a vigorous deceleration and in the end, there is no difference in the front

position between flows with or without basal entrainment. This deceleration is

not seen for viscoplastic materials.

The evolution equation (8) exhibits various flow regimes, depending on the

relative strength of gravitational forces and yield stress. Two limiting flow-

regimes can usually be delineated [27]. The diffusive regime occurs over shallow

slopes. It refers to flows for which the pressure gradient is counterbalanced

by viscous forces (acting in the cross-stream direction). The velocity scale is

U = (̺g cos θ/κ)1/nH1+2/n/L1/n. The slope-dominated regime corresponds to

the limiting flow conditions where the pressure gradient (in the downstream di-

rection) becomes negligible compared to gravitational and viscous forces. The

flow then reaches a near-equilibrium regime, where viscous forces balance grav-

itational forces. The velocity scale is then U = (̺g sin θ/κ)1/nH1+1/n. The

present paper mainly explores the slope-dominated regime.
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Figure 3: Experimental set-up including reservoir, lock-gate, step and bed, as well as the

location of the laser sheet. The flume was tilted at slope angle θ and the bed dimensions were

ℓbed long by δh deep.

3. Experimental procedure

3.1. Flume

We used a 3.5 m long, 10 cm wide, inclinable flume made of a poly(methyl

methacrylate) (PMMA), with a 50 cm-long viewing window on each side (see

Fig. 3). A mobile pneumatic lock-gate was added in order to release the fluid at

the appropriate distance from the viewing window. Two thin sheets of PMMA

were placed along the length of the flume, with a gap between the two pieces

filled with fluid. In this way, the dam-break wave initially flowed over a rigid

base, then over a finite layer of loose material, before continuing over a rigid

base again. The distance from the back wall of the reservoir to the erodible

layer was denoted by xstep. The dimensions of the erodible layer were δh deep

by ℓbed long. The holding reservoir’s length was fixed at 30 cm. The flume was

filmed using three cameras (see Fig. 3 and Sections 3.4 and 3.5).
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3.2. Fluid

We used a viscoplastic gel called Carbopol Ultrez 10 (supplied by Lubrizol),

prepared as follows: first, powder was added to the required amount of deionised

water at 60 ◦C and left until it sank to the bottom, for a few hours or overnight;

then it was stirred for around two hours and left to settle for a few hours

more; finally, an aqueous solution of NaOH was prepared and mixed with the

Carbopol—water solution, in order to neutralise it. It was during this final step

that the mixture took on its viscoplastic gel-like appearance. Once prepared,

bubbles had to be removed by stirring at a constant, low speed for around one

hour.

The Carbopol concentration was set at 0.3% by weight. The rheological

properties were determined using a Bohlin Gemini rotational rheometer. Stri-

ated parallel plates, with diameters of 40 mm and 25 mm, were chosen to reduce

slip due to wall depletion effects; gap size was 1 mm. A Herschel-Bulkley con-

stitutive equation (2) was fitted to the rheometrical data. The fluid was found

to have the rheological parameters κ = 35 Pa sn, n = 0.33 and τc = 58 Pa. The

bulk density was ̺ = 997.45 kg m−3. Analysing the spread of the rheometric

measurements using a 95% confidence interval gave an error of around 5% for

κ and n, and around 3% for τc.

Throughout, care was taken to remove the bubbles from the fluid and to

perform all the experiments as close to 20◦C as possible. Furthermore, pre-

cautions were taken to minimise slip on the PMMA base—any ionic reaction

would increase wall depletion, leading to excess lubrication on the base. Coat-

ing the flume with Carbopol and letting it dry was found to reduce this effect

significantly [57] (at least for non-eroding flows).

3.3. Experimental protocol

The mass released, the Carbopol concentration and the slopes used were

all chosen so that the surge released from the reservoir flowed easily, while

the erodible but stationary layer of fluid in the step stayed still. The bed

location was then chosen in order to guarantee that viscous forces were greater

11



than inertial forces, τL ∼ κLUn/Hn ≫ ̺V L/T 2, where L,H , and U are the

scales for length, height and velocity, respectively: T = L/U and V = LH .

Then, balancing gravity against viscous forces, Un = ̺g sin θHn+1/κ, so that

L ≫ (̺V (g sin θ)1−n/2/κ)2/(3n+2). For this reason, the bed began at least 70 cm

downstream for slopes at 12◦ and 16◦, but at least 90 cm downstream for slopes

at 20◦ and 24◦. In these experiments, the Bingham number, defined as Bi =

τc/(̺gH sin θ) (with H ≈ 0.03m), was never greater than 1. In this regime, the

slope effects dominated yield stress effects and thus the shear layer at the base

of the flow was significant. This was in comparison with yield-stress dominated

flows, in which the pseudo-plug extended almost to the base [27].

Two sets of experiments were carried out. In one set, particle image ve-

locimetry experiments were conducted to identify any internal changes due to

entrainment. Table 1 shows the main features of this set. In the other set, the

fluid was stained with methylene blue so that the flow front could be tracked

down the length of the flume and surface height measurements could be made.

Table 2 shows the main features of this campaign.

Three types of experimental run were performed, denoted as 0, R or C in

Tables 1 and 2. The 0 runs corresponded to cases with no entrainment base,

where the dam-break flowed over a rigid base all the way down the channel.

The R (reservoir) runs involved fluid stained with methylene, or seeded with

rhodamine-tagged particles, and released from the reservoir, whereas the en-

trainable bed was made of clear fluid (unseeded, unstained): this configuration

allowed us to study the surge/bed interface. The C (combined) runs contained

rhodamine-tagged seeds everywhere so that the velocity field could be obtained

in the bed and the surge. Examples of the images obtained in the C and R runs

are shown in Fig. 5. These various runs made it possible to determine the posi-

tions of key points: point F (front position xf at which the flow depth satisfies

h(xf ) = 0) and point K (lying at the intersection between the free surface and

the “contact discontinuity”, which is the interface separating the incoming and

stationary fluids). We refer to dmax as the maximum penetration depth of the

incoming fluid (see Fig. 4).
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Figure 4: A material surface, called the “contact discontinuity”, separates the surge from the

bed material. Experimentally, this interface can be tracked by using fluids of different colours.

The front (point F) is the point of furthest reach, at which the flow depth drops to zero. The

intersection of the contact discontinuity and free surfaces is represented by point K (where

the flow depth profile displays a kink).

z = 0
step

contact discontinuity
erodible bed

K
F

Figure 5: Images from Camera 1 (side views). These images show the fluid seeded with

rhodamine. The step marking the transition from rigid base to entrainable bed is clearly

visible in the bottom left-hand corner of the images. The dashed line highlights the free

surface (as the image was taken from below as shown in Fig. 8, part of the free surface behind

the laser sheet is visible). Top image: “C”, or combined run, with seeding in both the surge

and the entrainable material. Bottom image: “R”, or reservoir run, in which only the dam-

break was seeded. In this high-contrast image, it is difficult to identify the position of the free

surface, but this is easier in the raw images. Points K and F are also marked.
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Table 1: Experiments performed to obtain internal velocity measurements (Carbopol-seeded

for particle image velocimetry). Slope θ, bed thickness δh, mass released M , position of the

step xstep, length of the step ℓbed, fluid temperature T .

run name θ [◦] δh [mm] M [kg] xstep [cm] ℓbed [cm] T [◦C]

12-0a 12 0 3 70 - 20.0

12-6Ra 12 6 3 70 30 20.35

12-6Ca 12 6 3 70 30 20.25

16-0a 16 0 3 70 - 20.0

16-0b 16 0 3 90 - 19.8

16-6Ra 16 6 3 70 30 19.9

16-6Ca 16 6 3 70 30 19.65

16-6Cb 16 6 3 90 30 19.7

20-0a 20 0 3 90 - 19.7

20-6Ra 20 6 3 90 30 20.15

20-6Ca 20 6 3 90 30 20.0

24-0a 24 0 3 90 - 19.6

24-6Ra 24 6 3 90 30 19.6

24-6Ca 24 6 3 90 30 19.75

3.4. Bulk measurements

To obtain bulk measurements, methylene blue-stained Carbopol was used

against a white background and a back-lit side panel, as shown in Fig. 6. Camera

2 (a Basler A403k) filmed from above to show the progression of the flow front.

Camera 3 (a Basler acA2000-165um) filmed through the observation panel on

the side of the flume to obtain the flow depth profile and front position during

entrainment. An LED panel provided backlighting. Three configurations were

used: 0, R and C, as described above and indicated in Table 2.

Using the calibration grids, the resolutions of cameras 2 and 3 were roughly 2

and 3 pixels per mm, respectively. Thus, measurements from these two cameras

(surface height and flow front position) can be estimated to be accurate to within

0.5 mm, taking into account effects such as shadows on camera 2 and surface

curvature on camera 3.

In the experiments detailed in Table 2, camera 2 filmed a bird’s eye or plan

view of the flows down the length of the flume, and from these images it was
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Figure 6: Images from camera 2 (top) and camera 3 (bottom). Camera 2 took plan views

of the flow during entrainment, whereas camera 3 took side views. Combined experiment

20-6Ca, at 20◦ with entrainable bed dimensions of 6 mm deep by 30 cm long.

possible to isolate the front position xf . Figure 7 shows time–space plots of the

flow, created by sampling a central line of pixels in the image at each time step.

When the front was outside the erodible bed, the front position was deduced

from this time–space plot using image processing techniques in MatLab. Over

the erodible bed, the front position was determined using camera 3’s images.

3.5. Internal measurements

Particle image velocimetry (PIV) was performed on images obtained at a

vertical laser sheet parallel to the flow direction. The images were obtained by

using a 2 W Diode-Pumped Solid State Nd:YAG laser with a 532 nm wavelength

in the optical set-up shown in Fig. 8. This laser created the vertical laser sheet

in the observation zone, which illuminated rhodamine-stained seeds in the flow.

The seeds used in this study were 20 µm PMMA beads tagged with rhodamine

6G, a stain which was fluorescent in green light. In this way, only the particles

in the central laser sheet were illuminated and only they were filmed. The

concentration of these particles was very small, with less than a level teaspoon

of particles for 3 kg Carbopol.

Camera 1 (a Basler A403k) filmed the illuminated internal section of the flow

through an orange filter. This resulted in the images shown in Fig. 5 in which the

seeds glow as bright dots against a black background. The camera was placed

below the flume and filmed through the transparent base and a prism, using

15



step�

x
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Figure 7: Time–space plots from camera 2, showing front progression for experiment 16-3Cc.

A central row of pixels (in yellow) has been sampled at each time step and repeated vertically

to create these plots. The front position was found using a series of image processing functions.

For xstep ≤ x ≤ xstep + ℓbed, this method failed (it could only provide the position of point

K); in this case, front position was determined from images taken using camera 3.

a tilted lens in accordance with the Scheimpflug principle in order to obtain

clear images from a focal plane which was non-parallel to the image plane [58].

Usually, PIV is performed by filming from the side, but the flow front in many

of these experiments was significantly curved in the cross-stream direction, and

so images were acquired through the base in order to avoid distortion at the

flow front. Camera 1 was calibrated for each experiment using a grid immersed

in the fluid in the flume. PIV measurements were taken in a 6.5 cm-long central

stream-wise section in the entrainment zone.

Velocity fields were calculated using PIV between two images set an ap-

propriate time-step apart. The PIV software used was the MatPIV open-source

package [59]. The velocity field was then filtered to remove vectors with a signal-

to-noise ratio below 1.3—this ratio is an output from MatPIV, giving a measure

of signal reliability in each interrogation window. Then, an in-built local filter

was used to remove velocity vectors deviating from their neighbours’ median

velocity vectors by more than the recommended factor of 2.7 times the neigh-

bours’ standard deviation. Finally, all the vectors removed were interpolated

linearly. All measurements were corrected for perspective using a calibration
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Figure 8: Sketch of the measurement system for the velocity profiles within the moving fluid.

Because of the fluid–air interface and the three-dimensional nature of the flows, we were forced

to film the flow from below. When shooting images with a camera whose sensor is not parallel

with the object one can use the Scheimpflug principle, which involves tilting the camera until

the image plane (on the CCD), the lens plane and the object plane (lit by the laser sheet)

have a common line of intersection. Taken from [57].
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grid. Error quantification in PIV remains difficult, but it is known that strong

velocity gradients reduce measurement accuracy [60], so steps were taken to

minimise errors, such as choosing the optimum seeding density and correlation

window size.

4. Experiments

We begin by analysing the experiments performed to investigate the bulk

dynamics of entraining viscoplastic surges (see Table 2): the flow front position

xf (t) and the flow depth profile h(x, t) are studied and compared with the

numerical solutions to the evolution equation (8). Then, we present the internal

measurements to understand the mechanisms underlying basal entrainment in

viscoplastic flows.

4.1. Bulk measurements

Figure 9(a) shows the effects of the entrainable bed thickness on front prop-

agation for runs 16-0c, 16-3Cc, 16-6Cc and 16-9Ca. Clearly, the entrainable

layer’s depth is an important controlling parameter as the flow front travels fur-

ther over an entrainable bed than over the rigid base, and this effect increases

significantly with the depth of entrainable material. This contrasts with what

we observed with Newtonian flows in a similar experimental configuration [56].

A longer entrainable bed also causes the flow-front position to be further

advanced compared to non-eroding flows, in a roughly linear way. For example,

in Fig. 9 (b) the flow fronts are approximately 2 cm, 5 cm and 8 cm further

advanced for bed lengths of 10 cm, 20 cm and 30 cm respectively. In some

experiments, the position xstep of the entrainable bed was varied but these

comparisons provided no clear conclusion.

Figure 10 compares measured and computed front positions for runs 12-6Ca

and 16-6Cc. Equation (8) was solved numerically using the built-in Matlab

pdepe function. As described in earlier publications [61, 62], lubrication the-

ory overestimates front position over time. Several processes can explain the
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Figure 9: (a) Front position with time for flows over entrainable beds of increasing depth:

θ = 16◦ slope, ℓbed = 30 cm (the entrainable layer is indicated by the grey area). (b) Front

position with time for flows over entrainable beds of increasing lengths with δh = 6 mm and

θ = 20◦.
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Figure 10: Front position with time for flows for θ = 16◦ (Run 16-6Cd) and θ = 20◦ (Run 20-

6Ca). Parameters: xstep = 90 cm, δh = 6 mm and ℓbed = 30 cm. The black solid lines show

the front position measured experimentally. The dotted-and-dashed line shows the numerical

solution for θ = 16◦, while the dashed line shows the numerical solution θ = 20◦. The inset

shows the numerical and experimental data after shifting the observed front positions by

+25 cm.

systematic deviation between theory and experiment: increased flow resistance

due to sidewalls, lubrication theory’s poor performance at describing the iner-

tial phase when the gate lifts up and the material is released, and the specific

behaviour of the leading edge—theory predicts that the yield surface terminates

at the front (as a first approximation), whereas experiments show that the tip

region is entirely sheared [61, 62]. There is a systematic shift, with the numeri-

cal solution 25 cm ahead of the experimental curve. Apart from this shift, the

numerical data roughly captured the experimental trend, as shown by the inset

of Fig. 10, although it did not capture all the details.

This systematic deviation between theory and experiment—even in the ab-

sence of entrainment—makes it difficult to assess how good lubrication theory is

at describing the effect of basal entrainment. We expected that by making the

flow variables dimensionless, we could compare experimental results more eas-

ily, but this was not the case: the curves of front position against time did not
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Figure 11: (a) Front position for flows over entrainable beds: θ = 16◦ (run 16-6Cd) and

θ = 12◦ (run 12-6Ca). The front position has been plotted as a function of the position

xf,0(t) it occupies with no entrainment. (b) Front position for entraining flows as a function

of xf,0 (front position in the absence of entrainment). Numerical computations done for

θ = 12◦, θ = 16◦, θ = 20◦ and θ = 24◦. The coordinates of point A are (0.94, 1) m.

collapse as the dimensionless flow-front travelled faster on steeper slopes. Thus,

in order to examine the effect of flume inclination on entrainment, we plotted

the flow-front position of an entraining flow as a function of its equivalent non-

entraining flow front denoted by xf,0(t). This gave a direct measurement of the

effects of the entrainable material. Figure 11(a) shows clearly that the effects

of entrainment on the surge are similar at each inclination. For each slope, the

curves show that the flow front has advanced further due to entrainment, and

they all collapse neatly on top of each other.

Figure 11(b) shows how the front position varies as a function of xf,0 in the

numerical solutions to the governing equation (8). Similarly to the experiments,

the curves xf (xf,0) computed for slopes from 12◦ to 24◦ almost collapse on the

same master curve. The agreement between plots 11(a) and 11(b) is surprisingly

good (given the discrepancies shown in Fig. 10). To facilitate comparison, we

report point A (with coordinates (0.94, 1) m) in both figures. This point marks

the end of the entrainable layer. Numerical solutions show that the front position

of eroding flows is 6 cm ahead of the front position in the absence of entrainment,
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Figure 12: Front position for flows over entrainable beds: θ = 16◦ (run 16-6Cd), θ = 20◦ (run

20-6Ca) and θ = 24◦ (run 24-6Ca). The 30 cm-long bed is indicated by the grey area.

and this is in agreement with the value found experimentally. Although this is

not clearly visible in the figures, the curves do not collapse completely on a

single master curve. This reflects the influence of flume inclination, but as this

effect is barely visible we can conclude that slope influence is negligible. Further

experiments confirm this behaviour (see Fig. 12).

The shape of the surge is qualitatively well reproduced by the evolution equa-

tion (8), with a hollowed-out surface above the entrainable bed. Figure 13 shows

an example of this qualitative agreement: there is a large kink in the surface

near the step, the surface height upstream of the bed decreases in agreement

with the modelled profile and the front shape is quite well reproduced, although

the times at which the experimental measurements are plotted do not corre-

spond to those for the model and not all the experimental observations were

reproduced. Indeed, the experimental measurements showed a small, second

surface kink where the contact discontinuity separated surge fluid from uplifted

bed fluid in the leading edge (see also Fig. 4, the kink corresponds to point K).

This is visible in the experimental profiles shown in Fig.13. Lubrication theory

provides smooth profiles with no kinks.
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Figure 13: A comparison of surface height profiles between an experiment and a numerical

simulation. Measurements taken during the flow front’s journey across the bed surface. Ex-

periment shown is run 20-6Ca: θ = 20◦, ℓbed = 30 cm, δh = 6 mm deep. Here, the profiles

are chosen to show the similarity of the surface shape, but the significant lag in the modelled

flow means that this comparison remains qualitative only.

4.2. Internal measurements

Experiments were performed specifically to be able to observe and quantify

the flow’s internal velocities, concentrating precisely on the zone just down-

stream of the step in order to see how the surge interacted with the entrainable

material.

As a first step, we examined the raw images in order to infer a qualitative

impression of the flow’s progression. Figure 14 shows the velocity fields from

run 16-6Ca, where 3 kg of Carbopol was released and entrained a region of

entrainable fluid 6 mm deep by 30 cm long. Velocities were made dimensionless

by scaling them with U = (̺g sin θHn+1/κ)1/n [63], with H kept constant at

0.03 m. The lengths were scaled by L = 1 m. Figure 14 shows the progression

of the viscoplastic surge as it comes into contact with the erodible stationary

layer:

• The surge initially rolls out a short distance onto the entrainable bed with

an immediate, but local effect on the bed material: the bed surface is

deformed slightly, moving downwards and forwards in the vicinity of the

front. There is strong shear at the surface of the entrainable bed, with

almost plug-flow above and low streamwise velocities in the bed.
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• A region of significant downward motion is established next to the step

as the bed moves under the surge’s weight. This displaces bed material

downstream, squeezing it between flowing material upstream and station-

ary material downstream. As a result, a wedge shaped region downstream

of the surge interface (contact discontinuity) begins to move upwards.

• The surge continues to drive forwards across the entrainable bed. Its in-

terface remains pronounced, with an indentation in the flow surface where

it meets the bed (point K). A bump appears in the bed as bed material

moves upwards.

• As time progresses, the bed surface is uplifted almost in line with the surge

interface, but the indentation here is still visible. The bed material is in

motion much further downstream of this point. The flow front xf is much

further downstream than kink point xk due to the bed uplift, and motion

occurs right down to the rigid base.

We did not observe a static-flowing interface (except in the lower-left cor-

ner of the step), but instead saw a continuous velocity field in the entrainable

material with a smooth variation between erodible-but-stationary and mobile

material. In the vertical direction, the material was quickly entrained down to

the rigid base and the entire bed was set into motion. In the streamwise di-

rection, things were less clear-cut: the streamwise velocity component u(x, z, t)

continuously decreased to zero with increasing x, but it was difficult to deter-

mine the exact position at which u = 0, due to the uncertainties in our PIV

measurements. To get around this issue, we determined the velocity contour

lines and sought the point of furthest reach for each contour. Figure 15 shows

how distant this point is from point K for run 20-6Ca. We chose four dimension-

less threshold streamwise velocities: û = u/U = 0.2×10−3, 0.5×10−3, 10−3 and

2×10−3. The bed was progressively put into motion in the streamwise direction,

and the velocity increased very gradually. At steeper slopes, the bed material

was entrained more quickly than the surge interface (point K): the right-hand

plot shows that threshold velocities were breached further downstream than
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Figure 14: Dimensionless velocity fields for streamwise (on the left) and slope-normal (on the

right) velocity components. 16-6Ca: 16◦ slope, 6 mm deep by 30 cm long entrainable bed.

Plotted at times 3.75 s, 10.5 s, 24 s and 30.75 s after the surge’s entry into the entrainable

region. The step is shown in bottom left-hand corner. The arrows point to the points K

(interface of the incoming fluid) and F (front at which h = 0).
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Figure 15: (a) variation in the position of the furthest downstream point xthres. (at which

a velocity threshold is breached) with the kink point’s abscissa xk (point K at which the

contact discontinuity surface connects with the free surface, see Fig. 4) for run 20-6Ca. The

threshold point is computed for four non-dimensional threshold streamwise velocities: 0.2 ×

10−3 (threshold 1), 0.5× 10−3 (threshold 2), 10−3 (threshold 3) and 2× 10−3 (threshold 4).

(b) Variation in the position of the furthest downstream point associated with û = 0.2×10−3,

with the kink point’s abscissa xk for all slopes. Experimental conditions: ℓstep = 0.7 m for

θ = 12◦ and 16◦, whereas ℓstep = 0.9 m for θ = 20◦ and 24◦.

point K at 24◦ and 16◦ than at 20◦ and 12◦, respectively. This supports the

idea that a wave (called an acceleration wave [64]) propagated downstream of

the contact discontinuity and was associated with bed entrainment.

Internal dynamics are likely to vary with slope inclination. In Fig. 16, veloc-

ity fields are compared qualitatively for different slopes. With the surge interface

in a similar place in each plot, even a non-dimensionalisation in line with the

slope-dominated regime is not enough to account for the variation in velocities.

Aside from the magnitude of the velocity, the flows’ viscoplastic behaviours also

differed with the slope. At 12◦, much of the flow was a plug, with a thin region

of strong streamwise shear and likely slip on the rigid base. However, the shear

layers were thicker at steeper slopes. The consequence was that at shallower

slopes, the surge intruded more deeply into the bed, effectively bulldozing a

thick layer of bed material downstream and causing the bed to buckle and slip

along its base. This is perhaps intuitive, as on a steeper slope the streamwise

component of gravity becomes more important and the component directed into
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Figure 16: Dimensionless velocity fields for streamwise (left) and slope-normal (right) velocity

components for run 12-6Ca (θ = 12◦), bed at 70 cm; run 16-6Cb (θ = 16◦), bed at 90 cm;

run 20-6Ca (θ = 20◦), bed at 90 cm; and run 24-6Ca (θ = 16◦), bed at 90 cm. The step is

shown in bottom left-hand corner. In each subplot, we report the velocity scale U (in m/s),

used for making the velocity dimensionless.
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Figure 17: Variation in the maximum interface depth dmax with kink point xk. For θ = 12◦

and 16◦, the entrainable bed was located at xstep = 70 cm, whereas for θ = 20◦ and 24◦, the

bed was located at xstep = 90 cm.

the slope has less effect. At steeper slopes, this bulldozing motion was not seen;

instead, the bed was strongly sheared and was only uplifted very close to the

surge interface.

These differences due to slope were supported by the examination of the “R”

experiments. Here, due to the differential seeding of the surge and the entrain-

able bed, the interface between the surge and the mobile bed as it deformed

were clear to see. The curvature of this interface was much more pronounced at

shallower slopes, showing a deeper surge intrusion into the bed that was consis-

tent with a stronger slope-normal gravity component. In Fig. 17, the maximum

depth of the interface dmax is plotted against the maximum downstream extent

of the overriding surge xk, showing this difference clearly. At shallower slopes

the surge intruded more deeply, and the same happened when the entrainable

bed was further downstream (thus reducing the velocity of the overriding flow).

As shown by Fig. 15, the front (point F) moved slower than the contact

discontinuity (point K), and F’s motion has been interpreted as a wave propa-

gating downward as a result of the impulse imparted by the incoming flow. To

take a closer look at this behaviour, we computed the volume averaged velocity

〈u〉 =
1

S

∫ xstep+ℓstep

xstep

∫ h

−δh

u(x, z, t)dzdx, (9)
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where S is the surface of the observation window. We computed the volume-

averaged velocity from the time at which the surge entered the observation

window until the moment when the surge (i.e. point K) left this window. The

procedure was repeated for eroding and non-eroding flows. Figure 18 shows

that except for shallowest slopes (12◦), entrainment caused a reduction in the

mean velocity. This figure compares the combined run (in blue) in which both

the bed and the flow were seeded, with the no-entrainment case (in red). At

the beginning of entrainment, the surge entered the observation zone and came

into contact with the entrainable bed. At this time, the mean velocity was very

low, as the average is taken over the entire fluid shown, including the stationary

material downstream. As the avalanche put this material into motion, the mean

velocity rose, and nearly all the bed material was entrained by the end of the

measurements. At steeper slopes, the internal streamwise velocity was clearly

slower than the non-entraining case. This was likely due to momentum being

imparted to the entrainable bed. At shallower slopes this was not the case:

at θ = 12◦, the mean velocity due to entrainment exceeded that of the non-

entraining case. This suggests that some slip occurred at the base, which seems

possible given the velocity field in figure 16.

5. Concluding remarks

The present paper describes an experimental analysis of basal entrainment in

shallow viscoplastic flows. Viscoplastic surges were created by releasing a fixed

volume of a Herschel-Bulkley fluid onto a sloping bed. After travelling a certain

distance from the reservoir, the surge encountered an erodible stationary layer

made of the same fluid. The material and flume walls being transparent, we were

able to study the internal velocity field inside the flow and the entrainable layer.

The experimental results were compared with the predictions from lubrication

theory. Within this theory, the momentum balance equations can be simplified

by neglecting inertia terms and making use of the flow’s shallowness [23–30].

An evolution equation (8) for the flow depth can then be inferred from the mass
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Figure 18: Variation in the dimensionless volume-averaged velocity 〈u〉 over time, for eroding

(blue) and non-eroding (red) flows at slopes θ = 12◦ (run 12-6Ca), 16◦ (runs 16-6Ca and

16-6Cb), 20◦ (run 20-6Ca) and 24◦ (run 24-6Ca). For θ = 12◦ and 16◦(a), the entrainable

bed was located at xstep = 70 cm, whereas for θ = 16◦(b), 20◦ and 24◦, the bed was located

at xstep = 90 cm (see Table 1). To give an idea of the uncertainties associated with these

measurements, we have plotted the confidence interval corresponding to ±σ, with σ2, the data

variance.
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conservation equation.

Comparing theory with experiment was not straightforward, as lubrication

theory overestimates front velocity at the earliest time periods, just after the

surge release. This resulted in computed front positions about 25 cm ahead

of the positions measured in our experiments. This problem was not new. In

earlier publications, we reported that this might arise because of increased flow-

resistance due to flume sidewalls, the influence of inertia or the nontrivial evo-

lution of the yield surface within the leading edge [61, 62]. To get around this

problem, we used the following expedient: we compared the front position xf (t)

of an entraining flow with the position xf,0(t) that a non-entraining flow would

reach at the same time t. In so doing, we found surprisingly good agreement

between theory and experiment (see Fig. 11). A remarkable property of the dia-

gram for xf (xf,0) is that it highlighted the irreversible increase in front position

due to basal entrainment. This differed from the Newtonian case, for which

basal entrainment caused front acceleration as long as the front was moving

over the erodible stationary layer, but once the front reached the rigid base, it

experienced such significant deceleration that all the influences of basal entrain-

ment were quickly dissipated. For viscoplastic flows, basal entrainment caused

front acceleration, but that gain was not lost when the front moved past the en-

trainable layer and onto the rigid bottom again. Another noticeable feature was

the weak influence of flume inclination on front propagation over the entrain-

able layer: when the initial volume of fluid and the entrainable layer’s depth

were kept the same, altering the flume inclination did not cause any significant

change in front position. This led us to think that mass was the key factor

driving front motion.

If we leave aside the systematic difference between computed and measured

front positions, lubrication theory can be considered to be a fairly good predic-

tor of the effects of basal entrainment on the dynamics of shallow viscoplastic

flows. However, observations from the present experiments told a different story

about the mechanisms at work when a viscoplastic surge entrained an erodible

layer. The surge was observed to sink into the entrainable bed, which forced
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Figure 19: Diagram showing the bed deformation caused by the incoming surge. Point K

corresponds to the intersection between the contact discontinuity and the free surface: the

furthest downstream point with fluid from the reservoir at that moment. Point F corre-

sponds to the flow front, i.e. the furthest point downstream with h(x, t) > 0. The maximum

excavation depth dmax is also shown.

downstream bed material to be uplifted into the flow front. The viscoplastic

nature of the fluid meant that this happened locally. The former front of the

original surge was still visible upstream in the form of an indentation or kink

point (point K). The surge appeared to lose momentum to the bed, with a

decrease in internal velocities compared to the non-entraining surge, except in

the few cases where significant apparent basal slip occurred (see Fig. 18). Bed

excavation was studied by examining the surge–bed interface, and it was found

that the surge intruded into the bed much more deeply at shallower slopes.

The diagram in Fig. 19 summarises how basal entrainment occurred. It differs

significantly from the theoretical picture in Fig. 1. This diagram also explains

why flume inclination had little influence on front motion: the surge scoured

out the entrainable material, closely following the rigid geometry of the flume

and leading to a concave surface over the cavity. The entrainable material was

eventually pushed downstream as part of the flow front. This mass transfer was

weakly affected by gravitational forces.

Other experimental observations were also insightful. First, we did not ob-

serve any formation of a static–flowing interface when the surge scoured the

erodible stationary layer. If we looked at what was happening in the direction

normal to the flume bottom, we noted that all the bed material in contact with
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the surge was quickly mobilised. In the streamwise direction, all the entrainable

layer was slowly deformed over its entire length. Far ahead of the front, bed

material velocities were low, but detectable using PIV. This suggests that the

disturbance induced by the surge entering into contact with the erodible layer

propagated quickly across that layer. Similarly to what was observed with New-

tonian fluids [56], basal entrainment did not involve the propagation of a shock

wave separating moving and stationary material, but rather involved an accel-

eration wave (if we adopt the terminology used in continuum mechanics [64]).

Second, basal entrainment associated several processes (i.e. wave propagation,

material uplift, buckling and possibly slip) and thus cannot be considered a

unique local process. The situation differed significantly from the theoretically

ideal model depicted in Fig. 1 (also see [18] for the Saint-Venant approach).

Third, whereas the mechanisms observed were more complicated than initially

believed, lubrication theory successfully captured the key features of eroding

flows. This suggests that the errors balanced out. Our results substantiated the

use of lubrication theory to model eroding viscoplastic flows. The assumption

used here—the sudden incorporation of the entrainable layer into the flow—can

also be applied to the Saint-Venant approach.

How the present results might be transposed to real processes is beyond

the scope of this paper. Nevertheless, we would like to highlight that the

basal entrainment scenario that emerges from our observations is consistent

with the ploughing mechanism proposed by Gauer and Issler [65] for dense-snow

avalanches. Whereas basal entrainment is difficult to monitor in real avalanches,

field evidence shows that a wet-snow avalanche can “plough” the snow cover and

push bed material ahead of the front. Figure 20 shows a small-scale example of

an avalanche deposit (larger scale deposits are similar to this picture, but it is

more difficult to capture the entire scene in a single picture). The snow tongue’s

front sank into the snow cover, pushing snow ahead of it. Snow compression led

to a buckling instability, reproduced here by the numerous wrinkles on top of

the snowpack surface and the lateral cracks.
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Figure 20: View of a wet-snow avalanche deposit. The avalanche mass eroded the snow cover

before it came to a halt. The wrinkles seen on the snowpack cover suggest the occurrence of

buckling, as in our experiments. The width of each snow tongue is approximately 50 cm, and

its thickness does not exceed 20 cm.
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Appendix A. Derivation of the extended evolution equation

In this appendix, we derive the evolution equation (8).

In the shear-layer velocities will have the subscript S, and in the plug

layer they will have the subscript P . Applying the no-slip boundary condition
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uS(x, z = b(x), t) = 0 on the rigid surface b(x) and solving
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. (A.1)

gives an equation for the velocity below the yield surface, in the shear layer:

uS(x, z, t) =
nA

n+ 1

(

1− S
∂h

∂x

)1/n
(

(Y (x, t)− b(x))1/n − (Y (x, t)− z)1+1/n
)

.

(A.2)

In this arbitrary geometry the yield surface is now

Y (x, t) = max









h−
τc

̺g

∣

∣

∣

∣

1− S
∂h

∂x

∣

∣

∣

∣

, b(x)









. (A.3)

Then, in the plug layer,

uP (x, t) =
n

n+ 1
A

(

1− S
∂h

∂x

)1/n
(

(Y (x, t) − b(x))1+1/n
)

. (A.4)

The mass conservation equation is then used to obtain expressions for ∂wS/∂z

and ∂wP /∂z. These can be integrated using the no-slip condition uS · n = 0

fixing the constant of integration below the yield surface, and the continuity

of the velocity across the yield surface fixing the constant in the pseudo-plug

region. Thus:

wS(x, z, t) =
S ∂2h

∂x2

n+ 1

(

1− S
∂h

∂x

)1/n−1

A

(

n

2n+ 1

(

(Y − z)
2n+1

n − (Y − b)2+1/n
)

+ (Y − b)1+1/n(z − b)
)

−

(

1− S
∂h

∂x

)1/n

A

((

∂Y

∂x
−

∂b

∂x

)

(Y − b)1/n(z − b)

+
n∂Y

∂x

n+ 1

(

(Y − z)
1+1/n

− (Y − b)1+1/n
)

)

,

wP (x, z, t) =
S ∂2h

∂x2

n+ 1

(

1− S
∂h

∂x

)1/n−1

A

(

(Y − b)1+1/n(z − b)−
n(Y − b)2+1/n

2n+ 1

)

−

(

1− S
∂h

∂x

)1/n

A

((

∂Y

∂x
−

∂b

∂x

)

(Y − b)1/n(z − b)

−
n∂Y

∂x (Y − b)1+1/n

n+ 1

)

. (A.5)
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Finally, equations (A.2), (A.4) and (A.5) can be linked by solving for the

kinematic boundary condition on the surface z = h(x, t), so that

∂h

∂t
+ uP

∂h

∂x
= wP ,

giving

∂h

∂t
+A

∂

∂x

(

n(Y − b)1+1/n

(1 + n)(1 + 2n)

(

1− S
∂h

∂x

)1/n

(n(h− Y ) + (n+ 1)(h− b))

)

= 0.

(A.6)
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[21] X. Huang, M. H. Garćıa, A Herschel-Bulkley model for mud flow down a

slope, J. Fluid Mech. 374 (1998) 305–333.

[22] A. Siviglia, A. Cantelli, Effect of bottom curvature on mudflow dynamics:

Theory and experiments, Water Resour. Res. 41 (2005) W11423.

[23] K. F. Liu, C. C. Mei, Slow spreading of a sheet of Bingham fluid on an

inclined plane, J. Fluid Mech. 207 (1990) 505–529.

[24] C. C. Mei, M. Yuhi, Slow flow of a Bingham fluid in a shallow channel of

finite width, J. Fluid Mech. 431 (2001) 135–159.

[25] G. P. Matson, A. J. Hogg, Two-dimensional dam break flows of Herschel-

Bulkley fluids: the approach to the arrested state, J. Non-Newtonian Fluid

Mech. 142 (2007) 79–94.

[26] N. J. Balmforth, R. V. Craster, P. Perona, A. C. Rust, R. Sassi, Viscoplastic

dam breaks and the Bostwick consistometer, J. Non-Newtonian Fluid Mech.

142 (2007) 63–78.

[27] C. Ancey, S. Cochard, The dam-break problem for Herschel-Bulkley fluids

down steep flumes, J. Non-Newtonian Fluid Mech. 158 (2009) 18–35.

[28] A. J. Hogg, G. P. Matson, Slumps of viscoplastic fluids on slopes, J. Non-

Newtonian Fluid Mech. 158 (2009) 101–112.

[29] P. Saramito, C. Smutek, B. Cordonnier, Numerical modeling of shallow

non-Newtonian flows: Part I. The 1D horizontal dam break problem revis-

38



ited, International Journal of Numerical Analysis & Modeling, Series B 4

(2013) 283–298.

[30] L. Fusi, A. Farina, F. Rosso, Ill posedness of Bingham-type models for the

downhill flow of a thin film on an inclined plane, Quarter. J. App. Math.

73 (2015) 615–627.

[31] R. B. Bird, G. C. Dai, B. J. Yarusso, The rheology and flow of viscoplastic

materials, Rev. Chem. Eng. 1 (1983) 1–70.

[32] C. Ancey, Plasticity and geophysical flows: A review, J. Non-Newtonian

Fluid Mech. 142 (2007) 4–35.

[33] N. J. Balmforth, I. A. Frigaard, G. Ovarlez, Yielding to Stress: Recent

Developments in Viscoplastic Fluid Mechanics, Annu. Rev. Fluid Mech. 46

(2014) 121–146.

[34] P. Coussot, Yield stress fluid flows: A review of experimental data, J. Non-

Newtonian Fluid Mech. 211 (2014) 31–49.

[35] M. A. Kern, F. Tiefenbacher, J. N. McElwaine, The rheology of snow in

large chute flows, Cold Reg. Sci. Technol. 39 (2004) 181–192.

[36] P. Coussot, D. Laigle, M. Arratano, A. Deganutti, L. Marchi, Direct deter-

mination of rheological characteristics of debris flow, J. Hydraul. Eng. 124

(1998) 865–868.

[37] M. Schatzmann, P. F. Fischer, G. R. Bezzola, Rheological behavior of fine

and large particle suspensions, J. Hydraul. Eng. 129 (2003) 796–803.
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Table 2: Bulk experiments performed (Carbopol dyed with methylene blue).

run name slope, ◦ d, mm M , kg lstep, cm lbed, cm temp, ◦C

12-0a 12 - 3 70 - 19.2

12-6Ra 12 6 3 70 30 19.2

12-6Ca 12 6 3 70 30 19.3

16-0c 16 0 3 70 - 19.5

16-3Rd 16 3 3 70 30 19.9

16-3Cc 16 3 3 70 30 19.85

16-3Re 16 3 3 80 20 19.9

16-3Cd 16 3 3 80 20 19.9

16-6Rc 16 6 3 70 30 19.7

16-6Cc 16 6 3 70 30 19.5

16-9Ra 16 9 3 70 30 20

16-9Ca 16 9 3 70 30 20

16-6Rd 16 6 3 90 30 19.9

16-6Cd 16 6 3 90 30 19.65

16-6Cf 16 6 3 90 20 19.9

16-6Cg 16 6 3 90 15 19.5

16-0e 16 0 3 90 - 19.6

20-0a 20 0 3 90 - 19.45

20-6Ra 20 6 3 90 30 19.95

20-6Ca 20 6 3 90 30 20.1

20-6Rb 20 6 3 90 20 20

20-6Cb 20 6 3 90 20 19.8

20-6Rc 20 6 3 90 10 19.5

20-6Cc 20 6 3 90 10 19.65

20-6Cd 20 6 3 110 10 19.65

20-6Rd 20 6 3 110 10 19.9

20-6Ce 20 6 3 100 20 19.95

20-6Re 20 6 3 100 20 19.6

20-3Ra 20 3 3 90 30 19.55

20-3Ca 20 3 3 90 30 19.95

24-0a 24 - 3 90 - 19.45

24-3Ra 24 3 3 90 30 19.5

24-3Ca 24 3 3 90 30 19.4

24-6Ra 24 6 3 90 30 19.2

24-6Ca 24 6 3 90 30 19.2
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