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Segregation of large particles in dense granular flows suggests
a granular Saffman effect
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We report on the scaling between the lift force and the velocity lag experienced by a
single particle of different size in a monodisperse dense granular chute flow. The similarity
of this scaling to the Saffman lift force in (micro-) fluids, suggests an inertial origin for the
lift force responsible for segregation of (isolated, large) intruders in dense granular flows.
We also observe an anisotropic pressure field surrounding the particle, which potentially
lies at the origin of the velocity lag. These findings are relevant for modeling and theoretical
predictions of particle-size segregation. At the same time, the suggested interplay between
polydispersity and inertial effects in dense granular flows with stress and strain gradients,
implies striking new parallels between fluids, suspensions, and granular flows with wide
application perspectives.
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I. INTRODUCTION

Size polydispersity is intrinsic to nonequilibrium systems like granular materials [1]. It gives them
the ability to size segregate when agitated, a process which spatially separates different-sized grains
[2–7] but is different from phase separation in classical fluids. Particle-size segregation in dense
granular flows [8,9] has been intensively studied (e.g., Refs. [10–25]), but a fundamental question
remains unanswered: Why do large particles segregate?

It is generally understood that in dense granular flows both small and large particles are pushed
away from high-shear regions [11,12] or pulled by gravity [13,14]. The reason for the separation of
large and small particles is that small particles are more mobile and are therefor more effectively pulled
or pushed. They can carry proportionally more of the kinetic energy [16–19] and are statistically
more likely to move into gaps between larger particles. This process is referred to as kinetic sieving
[13,14]. However, when the large-particle concentration (volume fraction) is very low and there are
no gaps for small particles to move in to, arguably the concept of kinetic sieving breaks down. Thus
a qualitative—let alone a quantitative—understanding of size segregation in this regime is lacking.

Current models for size segregation in dense granular flows perform well when the small and
large-particle concentrations (volume fractions) are nearly equal [12,26–29]. When accounting for
the effect of size-segregation asymmetry [30,31], models have been extended to more unequal
concentrations, but they remain inaccurate in the limit of low large-particle concentrations. Extending
models to this limit is critical because during segregation, and even after reaching a steady state,
regions of low large-particle concentration occur and can persist throughout the flow [23,25,30].
Moreover, current models are either completely or partly phenomenological. Thus, to advance
modeling, we should aim to understand the physical origin of size segregation allowing us to derive
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FIG. 1. Schematic of the simulations: 3D monodisperse granular flow down an incline, with angle θ = 22◦.
Only base (white) and surface (blue) particles are shown, as well as three bulk particles. The flow contains
three intruder particles that are held with springs around three different z positions zI (intruder positions in the
schematic are to scale) but move freely in the x-y plane.

the free state variables from their microscopic quantities. An important related issue is that current
constitutive models for dense granular flows only work with an average particle size [32,33]. If we are
to implement size distributions in these models a better understanding of microscale effects between
large and small particles seems crucial.

In contrast to particle-size segregation, particle migration in suspensions, in the limit of low
concentrations, is generally well understood (e.g., Refs. [34,35]). Arguably this progress has been
aided by the fact that the fluid forces acting on a particle can be calculated, which cannot be said for
granular media. This inspired us to treat the particles that surround an intruder as a continuum and
attempt to understand the forces acting on a segregating particle based on the measured continuum
fields.

Recently, Guillard et al. [36] measured for the first time the segregation lift force on a single
large intruder particle in a monodisperse granular flow by attaching the intruder to a virtual spring
perpendicular to the plane (see Fig. 1). They found scaling laws that linked the total upward force
or net contact force on the intruder to shear and pressure gradients. These scaling laws predict the
direction of segregation of large particles in different flow configurations depending on whether a
shear or pressure gradient has the strongest contribution. However, they do not shed any light on the
origin of the lift force.

In this study we present new physical insights into the origin of the segregation lift force on
large intruders in three-dimensional (3D) monodisperse dense granular flows. We do so, first, by
taking a different approach to Guillard et al. [36] and determine the lift force FL by decomposing
the net contact force on an intruder as Fc = FL + Fb, where Fb is a generalized size-ratio-dependent
buoyancy force for dense granular media that accounts for the local geometry around an intruder.
This approach is inspired by our finding of an anisotropic pressure field that surrounds the intruder
and grows with its size. Second, we report on a velocity lag of the intruder relative to the bulk flow
and demonstrate a scaling between this velocity lag and the lift force. The similarity of this scaling
to the known Saffman lift force in fluids and the presence of the anisotropic pressure field allow us
to propose a physical origin for the segregation lift force.

II. METHODS

We use MercuryDPM, based on discrete particle methods [37–39] and investigate 3D flows
of mixtures of spherical dry frictional particles flowing down an incline of θ = 22◦. We verified
that changing the inclination angle between 22◦ and 26◦ has no significant effect (within the
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fluctuations) on the measured lift force FL (see Appendix B). All simulation parameters are
nondimensionalized such that the particle density is ρp = 6/π and the gravitational acceleration is
g = 1, with vertical component gz = cos θ . The simulations are conducted in a box with dimensions
(x,y,z) = (30,8.9,20), with periodic walls in the x and y directions. The particles that make up
the bulk of the flow have a diameter db = 1. We vary the intruder diameter di between size ratios
S = di/db = 0.5 and 3.2. The rough base of the chute consists of particles of diameter 0.85 and the
flow height is h = 32 ± 0.5.

A linear spring-dashpot model [40,41] with linear elastic and linear dissipative contributions is
used for the normal forces between particles. The restitution coefficient for collisions is chosen
rc = 0.1 and the contact duration is tc = 0.005. This results in a different stiffness depending on the
particle size. We verified that our findings are not the result of this difference in stiffness nor the
dependence on rc and tc. The friction coefficient for contacts between bulk particles μbb and between
bulk and intruder particles μbi equals 0.5, unless otherwise stated.

We place three identical intruders in the flow at vertical positions zI = 5, 15, and 23 (see
Fig. 1). Each intruder is attached to a spring [36], which applies a vertical force Fsp = −k(zi − zI )
proportional to the vertical distance between the intruder position zi and its corresponding zI . Here
k = 20 is the spring stiffness. We also simulate k = ∞ by fixing the intruder at zi = zI . Our findings
are independent of k, so unless stated otherwise all data reported are for k = 20. We do not discuss
the data for zI = 5 because the intruder experiences boundary effects, likely due to layering near the
bed, as reported in Ref. [41].

The net contact force Fc on an intruder can be determined in two ways: (i) through the force
balance −Fc + Fsp − Fgz

= 0, where Fsp is computed from the intruder’s average vertical position,
and Fgz

= ρpgzVi is the positively defined gravity force, with Vi = 4
3π (di/2)3 the intruder volume;

(ii) by using the force balance Fc = Fnz
+ Ftz , with Fnz

and Ftz the vertical normal and tangential
contact forces, respectively. We verified that both methods give the same answer.

Applying coarse graining (CG) [41–43], after a steady state has been reached, we obtain time-
averaged 3D continuum fields for ν the local solids fraction, and σ the stress tensor, which satisfy
the conservation laws. From the stress tensor we calculate the pressure field P = Tr(σ )/3 and the
shear stress field τ = σ − P . The CG width is chosen of the order of the particle diameter w = db to
achieve both rather smooth fields and independence of the fields on w [42]. We approximate the bulk
solids fraction at the position of the intruder ν(xi,yi,zi) = νi = Vi/Ṽi using the ratio of the particle
volume Vi and the Voronoi volume Ṽi , which we obtain through 3D weighted Voronoi tessellation
([44,45]). All error bars (shaded areas) correspond to a 95% confidence interval.

III. RESULTS

A. Velocity lag

Our first and most obvious finding is that intruders that have a size ratio larger than one (S > 1) are
positioned (on average) above zI , thus with a nonzero and negative value of Fsp. Our second finding is
that the downstream velocity vxi of an intruder with S > 1, experiences a lag λx = 〈vxi(t) − vx(zi,t)〉
with respect to the downstream velocity vx(zi) of the bulk at height zi , where 〈. . .〉 corresponds to
a time average. Figure 2(a) shows that a large intruder (S > 1) lags (λx < 0), while a same sized
intruder (S = 1) experience no lag, within the fluctuations. Interestingly, but outside the scope of
this study, for S < 1, when the intruder is smaller than the bulk particles and sinks, λx flips sign
and becomes a velocity rise (increase). Figure 2(b) shows that the lag velocity increases at higher
positions in the flow.

Based on the derivation in Appendix A we propose the following expression for the lag:

λx = 1

πdb

1

η


F (S)

c(S)S
, (1)

where c(S) is a coefficient that potentially depends on S, η is the granular viscosity, and 
F is the
unknown upslope-directed—in the negative x direction—and size-ratio-dependent force responsible
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FIG. 2. (a) The velocity lag λx of the intruder particle as a function of size ratio S, for zI = 15 and zI = 23.
(b) Velocity lag as a function of the average vertical position 〈zi〉 of an intruder for S = 2.4. The dashed lines
in (a) and (b) are fits of Eq. (2), with a = 0.24. The circles indicate the outliers. (c) The data from (a) and (b)
are plotted here as ηλx versus S. The yellow circles are the data from (b), with the black circles indicating the
outliers. (d) The data from (a) and (b) are plotted here as ηλx versus a(1/S − 1). The solid black line has a slope
of 1.0. The yellow circles are again the data from (b), with the black circles indicating the outliers.

for the lag. The data in Fig. 2 provide us with the S dependency of λx and confirm the 1/η dependency
predicted by Eq. (1). Namely, we find a good fit of the data using

λx = a(1/S − 1)/η. (2)

We calulate the viscosity via η = |τ |/γ̇ , where γ̇ = ∂zvx(zi) is the shear rate, and τ is the shear stress.
The dimensional fit parameter a accounts for the 1/πdb in Eq. (A6), as well as for 
F , which has
dependencies that cannot be straightforwardly extracted from the data in our chute-flow geometry.
If certain assumptions are made, which we cannot verify in this geometry, a full expression of λx as
a function of the fluid and particle properties can be obtained, as described in Appendix A.

Importantly, both the S-dependent data and the zi-dependent data in Fig. 2 can be fitted with
the same value for a. This fit also demonstrates that 
F (S)/c(S) ∝ 1 − S. Further support for the
correct scaling of λx is provided in Fig. 2(c), where a collapse of the data—except for outliers—is
shown when plotting ηλx as a function of S, while Fig. 2(d) shows that all data fall on a line with
slope 1.0 when plotting ηλx as a function of a(1/S − 1).

B. Pressure

We look for the origin of the lag in the pressure field P around the intruder. Figure 3(a) shows the
cross section P (x,0,z) for different size ratios. For S � 1 the pressure is (almost) hydrostatic, i.e.,
P ≈ PH = νρpgz(h − z), with a measured ν ≈ 0.577. A hydrostatic pressure PH , with very little
variation in the solids fraction as a function of height, is characteristic for the bulk of this type of flow
[46]. For S > 1, P deviates from PH , and a strong anisotropy manifests itself with a high-pressure
region at the bottom-front side of the intruder. Pressure variations of lower magnitude also appear
around the intruder. This demonstrates that the presence of a large particle modifies the local pressure
around it. Although it is known that pulling an object through a granular medium affects the local
pressure [47,48], the situation here is different as the intruder is not pulled but instead is fixed by a
spring in the z direction, while it can freely flow in the x-y plane.

In order to isolate the nonhydrostatic effects in the pressure we study PL = P − PH . Figure 3(b)
shows that for S � 1 PL is zero, within the fluctuations, while PL increases for S > 1 and is
characterized by positive regions (over-pressure) in the lower right and upper left quadrants, and
negative regions in the lower left and upper right quadrants. It seems reasonable now to correlate the
lift force and the velocity lag to this nonhydrostatic pressure.
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FIG. 3. (a) Cross sections P (x,0,z) around the intruder, centered at the origin, for an intruder at zI = 15. The
blue circle (diameter di) corresponds to the intruder. The edge of the white circle (diameter di + db) corresponds
to the position of the first layer of bulk particles. (b) Cross sections PL(x,0,z), where PL = P − PH , around
the intruder at zI = 15.

C. Granular buoyancy and lift force

Now that we have found indications that the velocity lag is linked to the local non-hydrostatic
pressure field PL, we proceed to calculate the lift force FL similar to the way we obtained PL, i.e., by
subtracting the granular buoyancy force Fb, that originates from PH , from the net contact force on the
intruder: FL = Fc − Fb. Various definitions for granular buoyancy forces exist (e.g., Refs. [36,49]),
but none account for a dependency on the size ratio. Here we introduce a more general definition
that does depend on the size ratio. Taking inspiration from Ref. [49] and using our approximation
ν(xi,yi,zi) = νi for the solids fraction at the intruder position, we integrate PH over the surface Ãi

of Ṽi . With the divergence theorem we find

Fb =
∫

Ãi

PH n · ez dÃi = νρpgz

∫
Ṽi

dṼi = νρpgzṼi . (3)

Here n is the normal outward vector to Ãi and ez is the upward unit vector. Substituting Ṽi = Vi/νi

we obtain

Fb = ν

νi

ρpgzVi. (4)

Effectively this is a generalized Archimedes principle at the particle level defined through an effective
density that is equal to mass of the particle divided by its Voronoi volume. Figure 4(a) shows that
the measured νi strongly depends on S and is bigger than the bulk solids fraction ν for S > 1. This
means that a larger intruder occupies a larger fraction of its Voronoi volume. The data for νi can be
fitted by

ν(xi,yi,zi) = νi = (ν − 1)Sc + 1, (5)

with c = −1.2 and ν = 0.577.
The ratio ν/νi in Fb in Eq. (4) has a crucial consequence, namely, that for S > 1 the buoyancy

force will be less than the gravity force Fgz
= ρpgzVi acting on the particle. This can be seen in

Fig. 4(b) where Fb/Fgz
< 1 for S > 1. When S = 1, ν equals νi , and the buoyancy force balances

Fgz
. In the limit of S → ∞, we have that νi → 1 and thus Fb corresponds to the buoyancy force in a

fluid with density ρ = νρp. This generalized buoyancy force differs from the classical Archimedean
buoyancy definition Fb = νρpgzVi in a granular fluid, which has two problems: it is independent of
S and, more critically, predicts that Fb < Fgz

if S = 1.
Using the new definition forFb we can determine the lift forceFL = Fc − Fb, withFc = Fnz

+ Ftz .
Figure 4(b) shows that FL/Fgz

is approximately zero for S = 1, increases rapidly for S > 1, and
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FIG. 4. (a) Local intruder solids fraction νi versus S. Different (almost collapsing) symbols correspond to
intruders with μbi = 0.5, μbi = 0, zI = 15, zI = 23, θ = 22◦, 23◦, 24◦, 25◦, and 26◦, k = 20 and k = ∞. Solid
line corresponds to Eq. (5) with c = −1.2 and ν = 0.577. The schematic depicts the Voronoi volume Ṽi (dotted
octagon) of the intruder (dashed circle). (b) The measured forces Fb, FL, and FL + Fb, normalized by Fgz

, for
zI = 23, as well as a fit of FL with Eq. (8) (solid red line), with a = 0.24 and b = 130.0. The value of a is
obtained from the fit in Fig. 2(a). The buoyancy force Fb (blue circles) corresponds to Eq. (4) with νi from (a).
(c) The measured forces Fb, FL, Fnz

, and Ftz , normalized by Fgz
, for S = 2.4, μbi = 0 and 0.5, at zI = 15.

tends to a finite value above S = 2. The plot of (Fb + FL)/Fgz
in Fig. 4(b) shows that there is an

optimal size ratio for segregation, in agreement with experimental findings [10], simulations [50],
and theoretical predictions [51].

D. Saffman lift force

Here we investigate the relation between the velocity lag of the intruder and the lift force it
experiences. Such a relation is known to exist for suspended particles in a fluid: The Saffman lift
force on a particle with diameter di suspended in a fluid of density ρf and viscosity ηf is found to
scale with the velocity lag with respect to the surrounding fluid [52,53]:

FSaffman = −1.615
√

ηf |γ̇ |ρf λxd
2
i sgn(γ̇ ), (6)

where γ̇ = ∂zvx(zi) is the shear rate. Saffman [52] derived this relation taking the fluid properties in
the absence of the particle and considered the limit:

ρf λxdi

2ηf

	
(

ρf |γ̇ |d2
i

4ηf

)0.5

	 1, (7)

where the first term is the Reynolds number for the velocity lag Rλx
and the second term is the

square root of the shear-rate Reynolds number Rγ̇ . Note that for a granular fluid we can write R0.5
γ̇ =

IθS/(2
√

μ), if we substitute the granular viscosity η = μP |γ̇ |−1 and shear rate |γ̇ | = Iθd
−1
b

√
P/ρp,

with Iθ the inertial number [9], and μ = tan θ the bulk friction.
Equation (7) physically corresponds to a flow around an intruder that is locally governed by viscous

effects (Rλx
	 1), but away from the intruder by inertial effects (Rλx

	 R0.5
γ̇ ). The derivation of

the Saffman lift force is not valid when the inertia starts to dominate the local flow around the
intruder, and hence the validity is constrained to R0.5

γ̇ 	 1. Whether Eq. (7) is valid for dense
granular flows in general remains to be seen, nonetheless it is valid for our current system; we find
Rλx

= O(10−4) using ρf = νρp and measuring η from CG fields in absence of the intruder, while
R0.5

γ̇ = I22◦S/(2
√

μ) = O(10−1) using I22◦ = 0.050.

E. Granular Saffman lift force

In order to test if a Saffman-like relation exists between FL and λx we define

FL = −b
√

η|γ̇ |ρλxd
2
i sgn(γ̇ ) (8)
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analogous to Eq. (6). Here b a dimensionless coefficient that accounts for unknown dependencies,
λx = a(1/S − 1)/η corresponding to Eq. (2), and ρ = νρp. Using η−1√η|γ̇ |ρ = Iθ (db

√
μ)−1,

Eq. (8) can be written as

FL = −abIθμ
−0.5(1/S − 1)d2

i d−1
b sgn(γ̇ ), (9)

demonstrating that the lift force is independent of the flow depth, since Iθ and μ are constant in a
chute flow. We verify that FL is indeed independent of depth (see Appendix C), in agreement with
the findings of Guillard et al. [36].

We fit Eq. (8) to the data of FL in Fig. 4(b), using the value for a obtained from the fit in Fig. 2,
and find that it captures the data well. Subsequently, using the same value for a, and the value for
b obtained from the fit to FL in Fig. 4(b), we fit Eq. (8) to the lift force measured as a function of
depth in Appendix C. This demonstrates that Eq. (8) is the correct scaling between the lift force,
size ratio, viscosity, and velocity lag at constant inclination angle in a chute flow. The fact that this
scaling is Saffman-like suggests that inertial effects could lie at the origin of the segregation of large
particles in dense granular flows with pressure and velocity gradients in the limit of low large-particle
concentrations.

To provide further support for our finding that the generalized buoyancy force does not support
the weight of a large intruder (S > 1) we set the intruder-bulk friction μbi to zero and find that FL is
reduced, as shown in Fig. 4(c). Critically, this leads to a large none-frictional intruder sinking instead
of rising, as found recently also experimentally: lower-friction particles sink below higher-friction
particles in monodisperse granular flows [54]. Since the net contact force Fc = Fnz

+ Ftz on the
intruder is lower than Fgz

, the buoyancy Fb must also be less than Fgz
. Note that in Fig. 4(c) the

spring force brings the force balance back to zero: Fsp − Fgz
+ Fc = Fsp − Fgz

+ Fb + FL = 0.
Interestingly, the lift force does not completely disappear, indicating it should have both a geometric
and frictional component. We verified that PL is reduced but does not disappear for frictionless
particles.

IV. CONCLUSIONS

We report that a single large particle in a dense granular flow is surrounded by an anisotropic,
nonhydrostatic pressure field. This coincides with our observations of a velocity lag and a lift
force, coupled through a Saffman-like relation [Eq. (8)] causing the particle to rise against gravity.
These findings suggest that the mechanism of squeeze expulsion [14]—which is often invoked
to qualitatively explain the segregation of large particles in dense granular flows—is the granular
equivalent of the Saffman effect; an inertial lift force in an otherwise strongly viscous bulk flow
[52,53].

A possible physical interpretation of the Saffman effect for a granular fluid could be that in our
mostly viscous and slow flow, but with a finite, considerable inertial number, a large intruder disturbs
the local (Bagnold) flow profile. Because the bulk inertial effects, which are proportional to the strain
rate, are not negligible, the rheology driven by the velocity gradient—associated with the inertially
generated, but perturbed velocity field—produces an anisotropy of the pressure field, which creates
both the lift force and the drag force responsible for the velocity lag.

The decomposition of the contact force on the intruder into a lift force and generalized buoyancy
force is essential to the preceding analysis. Moreover, it provides a physical explanation for the
sinking of very large intruders [55,56], as well as for the optimal size ratio for segregation [10,51]
and the unexplained trend of the total contact force Fc(S) in Fig. 6 of Ref. [36]. Namely, if we
consider the limit of Eq. (8) at large size ratios, we see that the lag approaches a constant value, while
the buoyancy force approaches a fluid buoyancy with density ρ = νρp. Gravity will then outgrow
the total upward force and the particle will sink.

Further studies could address the following questions: If inertial effects indeed lie at the origin of
size segregation of large intruders at low large-particle concentration, they could potentially also play
a role in slow, dense, polydisperse granular flows with more than one intruder. Thus, the variation

074303-7



K. VAN DER VAART et al.

of the lift force when the large-particle concentration increases could be investigated. Furthermore,
in order to validate the Saffman relation for granular flows changing the stress gradient in the flow
would be necessary. This can be done by using other geometries, for example, the one used by
Guillard et al. [36]. Last but not least, the reported sinking of a large intruder with zero intruder-bulk
friction μbi hints at the importance of particle properties.

Drag forces on a free-flowing object in granular media, in contrast to a dragged object, have
received little attention [49]. Our findings suggest that the Stokesian drag, found by Tripathi and
Khakhar [49] for a heavy sinking monodisperse intruder, plays an important role in the rising of large
intruders (see Appendix A). A continued effort to determine all drag forces acting on free-flowing
particles is important for the rheology of granular flows in general, but foremost because drag is a
cornerstone of models for particle-size segregation in dense granular flows.

In order to unify Eq. (8) with the scaling laws found by Guillard et al. [36] and develop a multiscale
model for the segregation of large intruders in dense granular flows the lag will have to be expressed in
terms of λx = f (∂P/∂z,∂|τ |/∂z,γ̇ ,∂γ̇ /∂z), where τ is the shear stress. This is far from trivial: The
dependency of all variables on z and θ is very weak, and the range of accessible pressure gradients,
inertial numbers, etc., is very limited in steady state chute flows (inclination angles that are too
large lead to accelerating flows, whereas too small angles lead to stopping of the flow [17,46]). To
demonstrate the dependencies more convincingly, one should disentangle pressure and tangential
stress and show that the Saffman-like relation still holds. In order to do so, a completely different flow
geometry needs to be considered, which, however, goes beyond the scope of the present study. Finally,
for a formal proof that a Saffman-like relation holds in granular fluids, the analytical derivation by
Saffman could be repeated for a granular rheology.
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APPENDIX A: HORIZONTAL FORCE BALANCE AND VELOCITY LAG

Here we introduce a scaling for the lag velocity λx based on the horizontal force balance. Note
that by our definition the lag velocity is negative, i.e., the intruder is moving slower than the bulk
material at its height. The aim is to show what parameter dependencies are present in the fitting
parameter a in Eq. (2), which we show here again for convenience:

λx = a(1/S − 1)/η, (A1)

where η = μP/γ̇ is the granular viscosity, with μ the bulk friction, P the pressure, and γ̇ = ∂zvx

the shear rate.
When the size ratio equals one (S = 1) we have the following horizontal force balance on the

intruder:

Fr (S) + Fgx
(S) = 0, (A2)

where Fgx
= ρpgxVi is the horizontal component of the gravitational force (with gx = sin θ ), and

Fr is the (negative) net horizontal contact force, resembling a “frictional” buoyancy force caused by
the shear stress, that cancels gravity.
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When the size ratio becomes larger than one (S > 1) and the intruder starts to experience a velocity
lag λx , we propose that the horizontal force balance can be written as

Fd (S,λx) + Fr (S) + Fgx
(S) = 0, (A3)

where the “frictional” buoyancy force Fr becomes bigger than the downslope gravity force Fgx
,

which causes a lag that is damped by Fd , a Stokesian-like drag working in the same direction as Fgx

with a dependence on the lag velocity. Note that combined Fd and Fr form the contact force, in the
x direction, experienced by the intruder,

Fcx
= Fd + Fr. (A4)

In steady state, when the lag is constant in time, there is likely a drag force proportional to the lag
velocity, acting in the opposite direction to it, to prevent the intruder from accelerating. The granular
Stokes drag introduced by Tripathi and Khakhar [49] is a good candidate for this role:

Fd = −c(S)πηλxdi. (A5)

Here c(S) is a coefficient, and di is the diameter of the intruder. Tripathi and Khakhar [49] obtained this
drag force for a heavy (higher density) monodisperse intruder in a chute flow, where they measured
the vertical velocity of the sinking intruder. Note that a dependence of Fd on S is a possibility, because
the drag force appears to be a function of the volume fraction [49] and locally the experienced volume
fraction by the intruder changes as function of S [see Fig. 4(a)].

The sum of Fr and Fgx
in Eq. (A3), which we denote as 
F (S) = Fr (S) + Fgx

(S) (analogous to
FL in the main text), can be understood as the upslope directed—in the negative x direction—force
causing the intruder to lag. Swapping Fd for −
F (S) in Eq. (A5) and using di = Sdb we obtain an
expression for the lag

λx = 1

πdb

1

η


F (S)

c(S)S
, (A6)

where the first factor is constant, the inverse viscosity represents the second factor, and the S

dependence is condensed into the third factor. Hence, the dimensional fitting parameter a in Eq. (2)
and Eq. (A1) accounts for the dependency on the bulk particle diameter and unknown dependencies
of c(S) and 
F (S).

In order to fully determine λx an assumption needs to be made about the functional form of

F (S). If we would assume that 
F (S) is proportional to the shear gradient ∂τ

∂z
and the volume of

the particle Vi we can write


F (S) = f (S)
∂τ

∂z
Vi, (A7)

where f (S) is some S-dependent function. This would yield for the lag velocity:

λx = Vi

πdb

∂τ

∂z

1

η

f (S)

c(S)S
= vbn(S), (A8)

where vb = ∂τ
∂z

d2
i

η
and n(S) = f (S)

6c(S) . This would render the S-dependent term n(S) dimensionless,
while the factor vb is a situation-dependent constant with units of velocity, proportional to the
viscosity, the gradient in shear stress and the particle diameter. The connection between vb and the
constant coefficient a in Eq. (2) can be found by writing vb = aS2. This reveals that a ∝ ∂τ

∂z
d2

b . We
could proceed in this matter; however, Eq. (A7) is an assumption that we are not willing to make, so
that we use instead Eq. (A6) in the main text.
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FIG. 5. (a) The measured lift force FL (red triangles) and the buoyancy force Fb (blue squares) as a function
of the chute inclination angle θ , for S = 2.4. The data are normalized by the vertical component of the gravity
force on the intruder Fgz

. (b) The measured net contact force Fc (blue circles) and the lift force FL (red triangles)
on an intruder, as a function of depth, for S = 2.4, normalized by the gravity force. The solid black line is a
fit of Eq. (8) using the functional form for the lag Eq. (2), with a = 0.24 and b = 130.0, while the dashed line
uses the raw velocity lag data from Fig. 2(a). Near the bed (zi < 8) a boundary effect occurs, likely due to
layering [41].

APPENDIX B: INCLINATION ANGLE DEPENDENCE OF THE LIFT FORCE

Here we show the dependence of the lift force FL, as well as the buoyancy force Fb, on the
inclination angle θ of the chute, for S = 2.4. These data are plotted in Fig. 5(a) where we see that the
lift force and the buoyancy force are independent of the inclination angle, within the fluctuations.

APPENDIX C: DEPTH DEPENDENCE OF THE LIFT FORCE

Here we show the dependence of the lift force FL, as well as the net contact force Fc = FL + Fb

on the depth of the intruder. These data are plotted in Fig. 5(b) where we see that the lift force and
the contact force are independent of the depth. This is in agreement with the findings reported by
Guillard et al. [36]. There is an increase of both forces close to the bed, but we attribute this to a
boundary effect where the intruder particle experiences a greater force due to layering of particles
near the bed, as reported by Weinhart et al. [41]. Two fits of the lift force model [Eq. (8)] are shown
in Fig. 5(b), one using the functional form of the lag λx = a(1/S − 1)/η and a second using the raw
velocity lag data from Fig. 2(b).
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