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Abstract: When colossal gravity-driven mass flows enter a body of water, they may generate1

waves whose effects can have destructive consequences on coastal areas. A number of empirical2

equations—in the form of power functions of several dimensionless groups—have been developed3

to predict wave characteristics. However, in some complex cases (for instance, when the mass4

striking the water is made up of varied slide materials), fitting an empirical equation with a fixed5

form to the experimental data may be problematic. In contrast to previous empirical equations6

that specified the mathematical operators in advance, we developed a purely data-driven approach7

which relies on datasets and does not need any assumptions about functional form or physical8

constraints. Experiments were carried out using Carbopol Ultrez 10 (a viscoplastic polymeric gel) and9

polymer–water balls. We selected an artificial neural network model as an example of a data-driven10

approach to predicting wave characteristics. We first validated the model by comparing it with11

best-fit empirical equations. Then, we applied the proposed model to two scenarios which run into12

difficulty when modeled using those empirical equations: (i) predicting wave features from landslide13

parameters at their initial stage (with the mass beginning to move down the slope) rather than from14

the parameters at impact; and (ii) predicting waves generated by different slide materials, specifically,15

viscoplastic slides, granular slides, and viscoplastic–granular mixtures. The method proposed here16

can easily be updated when new parameters or constraints are introduced into the model.17

Keywords: viscoplastic slide; granular slide; landslide-generated waves; data-driven approach;18

artificial neural network approach; empirical equation.19

1. Introduction20

When colossal gravity-driven mass flows enter a body of water, such as a sea, a lake, or a21

reservoir, they sometimes generate waves. These events are particularly relevant in coastal areas and22

mountainous countries. Such waves occurred, for example, in Papua New Guinea in 1998 [1] and23

in Vajont, Italy, in 1963 [2]. Predicting the characteristics of waves induced by landslides is of great24

importance for risk management in coastal areas [3].25

Researchers have conducted experiments using physical models to mimic the physical processes26

of these events. They have simplified water geometry by using 2D or 3D flumes and idealized the27

sliding masses as rigid blocks [4–6], granular solids [7–13], or viscoplastic fluids [14,15]. Based on28

reliable experimental data, a number of empirical or semi-empirical equations has been established,29

either by combining regression techniques with dimensional analysis [16–18] or by a scaling analysis30

of governing equations [19,20]. All the equations to date have expressed wave characteristics as power31

functions of several of the slide parameters on impact.32

One significant issue has emerged from previous research: on many occasions, empirical equations33

have fit well with their own experimental data, but they then exhibited large deviations from the34
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datasets obtained by other teams, especially when different slide materials were involved [15,21–35

23]. Until now, none of the existing equations has been adaptable to experiments conducted with36

different categories of slide materials. Indeed, the performances of the different equations on a given37

dataset remain uncertain—a reflection of the limitations of empirical equations of a given functional38

form. Applying empirical equations is particularly tricky when attempted using a more informative39

experimental dataset. For instance, previous experimental studies merely used a single slide material40

(granular materials, viscoplastic materials, or solid blocks); however, many landslides in the real41

world are made up of mixtures of two or more materials. Taking the viscoplastic–granular mixture42

as an example, the representative parameters of these two materials are the grain diameter and yield43

stress, respectively. Due to the current lack of understanding about how these two materials affect the44

underlying physics of the slide–water interaction, integrating these two parameters into one equation45

might be problematic if we have a presumed functional form for that equation in advance.46

Another key issue is that all the existing empirical equations express wave characteristics from47

the parameters relating to the sliding masses on impact; none uses the parameters related to the48

initial stage (i.e., when the mass is still on the slope and starts moving). Putting the emphasis on the49

parameters on impact makes it easier to control the variables and to provide a quantitative analysis,50

however, for engineering, there is a need to predict wave characteristics before the sliding has occurred.51

For example, in May 2009, a slight slope failure occurred on the Guopu bank of the Laxiwa reservoir,52

in China. Based on monitoring data, a faulted rock mass with an approximate volume of 3× 107 m3
53

showed signs of general displacement [24]. Although there is a very small probability, should the54

mass drop into the reservoir, it would generate surge waves which may well destroy the nearby arch55

dam ([25]). In this situation, estimating the characteristics of the potential waves from information56

on the potential landslide (which is still at rest on the slope) is more than warranted. However, a57

theoretical study describing the whole process (from the initial stage to wave generation) is lacking,58

which increases the difficulty in providing physical constraints on the mathematical operators of59

prediction equations.60

Using an approach that did not assume the functional form of the equation in advance and relied61

strictly on the data alone, would be preferable for dealing with both of the above issues. To the best of62

our knowledge, there are no previous examples of this in the literature. To overcome the limitations63

of empirical equations, the present study presents a data-driven method, known as an artificial64

neural network (ANN) method, which has been successfully employed in other fields to cope with65

complicated parameters in experimental data processing and to develop highly accurate predictive66

models [26–31]. In contrast to previous empirical equations, in which mathematical dependence67

was fixed in advance, the present study provides a new approach in which both the explanatory68

and explained variables in the data ultimately define their internal relationship without any prior69

assumptions about the equation’s functional form or physical constraints. Moreover, the model can be70

easily calibrated when new data or parameters become available, which makes it powerful in solving71

complex problems [32]. Using the ANN method, we (a) estimate the wave characteristics from the72

parameters of a mass at the initial stage, when it is at rest and starts moving down the slope, and (b)73

predict the wave characteristics generated by different slide mass materials (specifically, viscoplastic74

slides, granular slides, and mixtures of them), all within one model.75

2. Experiments76

2.1. Physical model77

Figure 1 illustrates a physical model of a mass flow moving down a slope and intruding into a78

body of water. The whole process can be divided into three stages: in stage I, the slide is at rest, in the79

container box, and then starts moving; in stage II it moves down the slope and reaches the shoreline;80

in stage III, it enters the body of water and generates waves. We consider a slope with an inclination81

of θ entering a horizontal flume filled with water. The still-water depth is denoted by h0, and the82
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water density is denoted by ρw. We defined two coordinate systems. The first coordinate system (x,83

y) is defined with its origin located at the shoreline, with the x-axis proceeding out across the water,84

stream-wise, and the y-axis going directly upward. The second coordinate system (s, l) is defined with85

the l-axis being along the slope and the s-axis being perpendicular to the slope. A slide mass, with a86

volume of VI and density of ρs, is released at a distance ls from the shoreline. The slide’s initial shape87

is idealized as a rectangle with a height of s0 and length of l0. When the sliding mass moves down the88

slope, its thickness s(l, t) and depth average velocity vs(l, t) vary as a function of l and t, respectively.89

The volume of the immersed slide is denoted by Vs. The free water surface η(x, t) depends on the90

horizontal coordinate x and time t. The wave created by the incursion of the sliding mass is evaluated91

quantitatively by its height h and amplitude a. The gravity acceleration is denoted by g.92
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Figure 1. Two dimensional physical model of a landslide generating waves: (a) the slide material is
at rest and then starts moving (stage I), (b) the slide material moves down the slope till it reaches the
shoreline (stage II), and (c) the slide material intrudes into the body of water and generates waves
(stage III).

2.2. Experimental method93

Experiments were conducted in a two-dimensional flume at the Swiss Federal Institute of94

Technology Lausanne (see Figure 2). The experimental facility was devised to mimic snow avalanches95

penetrating mountain lakes (further information see [20]). The scale factor between the real world and96

this facility was approximately r ∼ 100. The flume consisted of two parts. The first part was a 1.5 m97

long and 0.12 m wide chute, and it could be tilted at an angle θ ranging from 30◦ to 50◦. Its bottom98

was lined with sandpaper to provide consistent basal friction and its slide walls were made of PVC.99

The second part was a water-filled, transparent glass flume, 2.5 m long, 0.4 m deep, and 0.12 m wide.100

The slide mass material was initially contained in a box located at the chute entrance, closed off by a101

locked gate 0.4 m high and 0.12 m wide. The gate was pneumatically activated and could be opened in102

less than 0.1 s to release the material from the box. The distance from the gate to the shoreline could103

be varied from 0.5 m to 1.0 m. Once the slide mass material was released, it accelerated energetically,104

under gravity, and reached velocities as high as 2.5 m/s. Each experiment’s initial settings,including105

slide mass volume Vi, initial slide length l0, initial slide height s0, slope length ls, still-water depth h0,106

and slope angle θ, were recorded before the slide mass material was released.107
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Figure 2. The experimental facility.

We selected Carbopol Ultrez 10 viscoplastic material to mimic cohesive landslides, whose108

rheological behavior can be described using the Herschel–Bulkley model:109

τ = τc + Kγ̇n (1)

where τc is the yield stress, γ̇ is the shear rate, K is the slide mass consistency, and n is a power-law110

index that reflects shear thinning (or shear thickening when n > 1). The rheological measurements111

of Carbopol were conducted using a Bohlin Gemini rheometer equipped with striated parallel plates112

(40 mm diameter; 1 mm gap size). The values of τc, K and n in the Herschel–Bulkley equation were113

fitted to the rheological measurements. Table 1 shows how the rheological parameters of Carbopol114

depend on its concentration C and the proportion of NaOH to Ultrez 10 in the composite. See [33] for115

the Carbopol Ultrez 10 preparation procedure.116

Table 1. Rheological characteristics of the Carbopol used in the present study.

C [%] Ultrez 10 [g] NaOH [g] H2O [L] τc [Pa] K [Pa · sn] n [-]
1.5 45 18.0 30 38 10.3 0.289
1.6 50 20.7 30 43 12.3 0.293
1.7 53 22.0 30 49 14.4 0.295
1.8 55 22.8 30 53 16.2 0.315
1.9 58 24.0 30 55 17.1 0.321
2.0 60 24.9 30 58 18.9 0.330
2.2 65 26.9 30 60 19.8 0.333
2.3 68 28.2 30 65 23.2 0.339
2.4 70 29.0 30 68 24.6 0.348
2.5 75 31.0 30 74 29.1 0.364
2.7 80 33.2 30 78 32.1 0.388
2.8 85 35.0 30 80 35.8 0.390
3.0 90 37.3 30 85 42.1 0.392

We used polymer–water balls to represent granular avalanches. These were produced by soaking117

dry, water-absorbent beads in water for 4–5 hours. Both Carbopol and the polymer–water balls have a118

density very close to that of water (1000 kg·m−3), which is also similar to that of the ice (910 kg·m3)119

mobilized in snow or ice avalanches. Taking advantage of the similar densities of Carbopol and120

polymer–water balls, we were able to investigate how mixtures of cohesive and granular materials121

generated waves without having to consider the effects of the densities of the varying proportions122
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of each material in the mixtures. Due to the difficulties in finding materials with matching higher123

densities, the question of how density and mixture proportions interact during wave formation could124

not be investigated in the current study.125

A high-speed camera was placed in front of the shoreline, with its optical axis perpendicular to126

the sidewall. The camera collected images at a frequency of 200 frames per second, acquiring 600127

× 800-pixel images, corresponding to an observation window of 48 × 64 cm. We used a 0.2 × 0.4128

m2 mesh grid to calibrate the raw images and determine the size conversion factor. For each image,129

we measured (a) the free-water surface when the leading wave reached its maximum height, which130

helped to deduce the wave amplitudes am and hm, (b) the velocity vs and thickness s of the sliding131

mass upon impact, and (c) the volume of the underwater part of the sliding mass Vs.132

3. The artificial neural network method133

The ANN method is inspired by how the human brain processes information, and it is constructed134

from interconnected processing elements called neurons [34] (see Figure 3). ANNs are receiving ever135

greater attention because of their ability to express complex functions in a flexible form. A typical ANN136

model consists of three main parts: learning rules, network architecture, and an activation function.137

The network structure is formed of several layers: one input layer, one output layer, and one or several138

hidden layers, with each layer containing several neurons. Each of the neurons in a layer is connected139

to neurons of the adjacent layers via coefficients called weightings.140

From a mathematical perspective, the principle of neural networks involves the composition of141

non-linear functions. Starting with a linear model, considering a dataset z and a vector of inputs x, a142

linear model for the output ẑ(x) can be constructed considering ẑ(x) = Wx + β , where the weighting143

matrix W and the bias vector β are obtained by solving an optimization problem that minimizes the144

overall difference between z and ẑ. This process is called modeltraining. Such a simple model may lack145

the flexibility to represent complex functional mapping and, therefore, intermediate variables (layers)146

y are introduced: y = σ(W(1)x + β(1)) and z = W(2)y + β(2), where σ is a user-specified activation147

function, like the hyperbolic tangent. The composition of several intermediate layers results in a neural148

network capable of efficiently representing arbitrarily complex function forms.149

In this study, we selected a one-hidden-layer network, as an example, and adopted a150

back-propagation algorithm to train the network [35]. Establishing an ANN model consists of three151

steps: (i) preparing the required data for training the network; (ii) evaluating neural networks with152

different structures and choosing the optimal one; and (iii) testing the neural network’s performance153

using data which have not been used previously for training the network.154
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Figure 3. A biological neuron in comparison to an artificial neural network: (a) human neuron; (b)
artificial neuron; (c) biological synapse; and (d) ANN synapses [36].

The back-propagation artificial neural network algorithm (BP-ANN) consists of two paths: the155

feed-forwards and the feed-backwards paths. The feed-forwards path is expressed by equations (2)156

and (3).157

yi = F
(
Xj
)
= F

(
Woj +

I

∑
i=1

Wijxi

)
(2)

Zk = F (Yk) = F

(
Wok +

J

∑
j=1

Wjkyi

)
(3)

where xi, yj, and Zk represent the input, hidden, and output layers, respectively, Woj and Wok are158

the bias weights for setting the threshold values, Xj and Yk temporarily represent computing results159

before using the activation function, and F is the activation function applied in the hidden and output160

layers. For the activation function, we chose the sigmoid function, which ranges between 0 and 1 (see161

equation (4)).The activation function is defined on each layer’s neurons and is applied to the sum of162

the weighted inputs and to each neuron’s bias to generate the neuron output.163

F(a) =
ea

ea + 1
(a = Xj, Yk) (4)

Equation (5) displays the residual function for residual back-propagation training.164

E =
1
2

K

∑
k=1

e2
k =

1
2

K

∑
k=1

(tk − zk)
2 (5)

where tk is the predefined target value and ek is the residual of each output node. E is the residual165

between the expected and actual output values. We used a gradient-descent strategy to adjust the166

weightings, aiming to obtain a minimum E. Equations (6) to (9) express the weightings between the167

hidden and output layers.168

∂E
∂wjk

= −ek
∂F(Yk)

Yk
yj = −δkyj (6)
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and hence169

δk = ekF′(Yk) = (tk − zk)F′(Yk) (7)

Therefore, the weighting adjustments in the hidden and output link ∆wjk can be expressed by170

equation (8).171

∆wjk = η × yj × δk (8)

where η is the learning rate ranging between 0 and 1. With a lower learning rate, the network model172

will take longer time to converge. Conversely, a higher learning rate may lead to a widely oscillating173

network. In addition, maintaining a consistent learning rate across the model is preferable. The new174

weighting wjk is updated by the following equation (9), where n is the number of iterations.175

wjk(n + 1) = wjk(n) + ∆wjk(n) (9)

Similarly, the error gradient in the links between the input and hidden layers can be derived from176

the partial derivative with respect to wij.177

∂E
∂wij

=

(
K

∑
k=1

∂E
∂zk

∂z
∂Yk

Yk
yj

)
× ∂yi

∂Xj
×

∂Xj

∂wij
= −∆jxi (10)

where

∆j = F′(Xj)
K

∑
k=1

δkwjk (11)

The new weighting makes (and dominates) the link between the input and hidden layer δwjk can178

be updated as:179

δwij = η × xi × δj (12)

wij(n + 1) = wij(n) + δwij(n) (13)

All the input data were normalized in the range between 0 and 1 using the following equation:180

Y =
X− Xmin

Xmax − Xmin
(14)

where X is the raw data and Y is the normalized data. The initial parameter settings are shown in181

Table (2).182

Table 2. Initial settings for the parameters in the ANN model.

Parameters Initial setting
Initial weightings 0.2–0.5
Learning rate 0.1
Maximum number of epochs 200
Objective mean square error 0.00001
Training function traingdx
Momentum parameters 0.9
Activation function Sigmoid function

4. Results183

In section 4.1, we validated the ANN method by comparing its prediction accuracy against184

empirical equations, using the experimental data generated by the viscoplastic flow. In section 4.2, we185

predicted the wave characteristics from the slide mass features at rest and as it started moving (stage I186
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in Figure 1). In section 4.3, we developed an ANN model which aimed to cope with the parameters187

of a landslide with complex properties, specifically, a mixture of cohesive and granular slide mass188

materials.189

Each model’s performance was evaluated by its coefficient of determination (R2), mean square190

error (MSE), and its sum of squares due to error (SSE), which are expressed as follows:191

R2 = 1−
n

∑
i=1


(

ypred,i − yexp,i

)2

(
ypred,i − yexp,avg

)2

 (15)

MSE =

√√√√∑n
i=1

(
ypred,i − yexp,i

)2

n
(16)

SSE =
n

∑
i=1

(yexp,i − ypre,i) (17)

where n is the number of series of experimental data, ypred,i and yexp,i are the predicted and observed192

data, respectively, and yexp,avg is the average of observed data.193

4.1. Model validation194

Most commonly used empirical equations involve the following common dimensional parameters:195

η(x, t) = η(h0, s, vs, g, Vs, θ, t, ρw, ρs) (18)

where η(x, t) is the free water surface, with x denoting the horizontal coordinate and t denoting time,196

h0 is the still-water depth, s is the slide mass thickness, vs denotes the slide mass velocity on impact, Vs197

denotes the immersed slide mass volume, θ is the slope angle, and ρw and ρs are the densities of the198

water and the slide mass, respectively.199

Based on a dimensional analysis or a scale analysis, the scaled wave characteristics can be200

expressed as a function of several dimensionless groups:201

Xn = δ
N

∏
i=1

Πβi
i (19)

where X represents the scaled wave characteristics (e.g., the scaled maximum wave amplitude, wave202

height, wave length, impact radius, wave period); Πi indicates the explanatory variables selected, and203

where N is the number of explanatory variables.204

The predicting equations developed by Zitti etal. [20] were the best fit with our experimental data205

(see equation (20)).206

X1,2 = δΠβ1
1 Πβ2

2 Πβ3
3 (20)

where X1,2 = Hm, Am, and Π1 =
vs√
gh0

is the slide mass Froude number, Π2 =
s

h0
is the scaled slide207

mass thickness, and Π3 =
ρsVs

Bh2
0

is the scaled impacted slide mass.208

The coefficients of explanatory variables δ and β1,2,3 were acquired by fitting the experimental209

data based on a linear regression technique. The empirical equations of Am and Hm for the present210

study were:211

Am = 1.2973Π0.6170
1 Π0.1626

2 Π0.6406
3 (21)

Hm = 1.4368Π0.9700
1 Π0.0768

2 Π0.6076
3 (22)
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Using the same database and explanatory variables as Equation (21), we modeled the experimental212

data using our ANN method. Thus, the three neurons in the input layer and the two neurons in the213

output layer were:214

• 3 inputs: Π1, Π2, and Π3215

• 2 outputs: Am and Hm216

Of the 291 samples of Carbopol mass slides in the experimental database, 80 % (233 samples)217

were selected as training data for model construction and 20 % (58 samples) were saved as test data for218

model validation, providing an independent measure of ANN performance after training. Samples for219

each group were selected randomly.220

We used a basic three-layer network structure, namely, one input layer, one hidden layer, and one221

output layer. To select the optimal number of neurons in the hidden layer, we set a random number of222

neurons and ran the program, determining their performance by the coefficient of determination R2.223

Each run was repeated 5 times and R2 was calculated by eliminating the maximum and minimum224

coefficients of determination and averaging the results of the remaining three tests. As shown in Figure225

4, the R2 of both Hm and Am reached their maximum values when the hidden layer contained 5 neurons.226

Thus, the optimum network for the present study was a 3–5–2 structure (input–hidden–output).227

Figure 4. Variation of R2 versus the number of neurons in the hidden layer.

Model training was constrained by the following indicators: the maximum epoch number was228

initially set to 100; the objective MSE was set to 1× 10−4; the minimum gradient was set to 1× 10−5;229

the maximum number of validation fails, which represents the number of successive iterations that230

the validation performance fails to decrease, was initially set to 6. Training would stop once one of231

the indicators mentioned above reached its initial value; for instance, in the present study, training232

stopped when the number of validation fails reached 6. Figure 5 illustrates the evolution of these233

indicators (i.e., gradient, validation fails, and MSE) at each epoch until the training is stopped.234
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(a)

(b)

(c)

Figure 5. Variations in (a) the gradient, (b) the number of validation fails, and (c) MSE, against epochs.

In Figure 5 (c), the MSEs of the training data and the test data were counted separately. The curves235

of the evolution of the MSE for these three data series were very close, indicating the model’s high236

level of adaptability. The best validation performance was an MSE = 0.00025337 at epoch 43, and the237

training terminated at epoch 48 as the number of validation fails reached 6. The gradient = 0.0011736238

at epoch 48. Figure 6 displays a histogram of the residuals between the predicted Am and the observed239

Am. The probability density of the residuals approximately follows a Gaussian distribution.240

Figure 6. Error histogram of Am with 20 bins. Red part denotes test data and grey part denotes training
data.

Figure 7 displays the observed Am and Hm versus the predicted data modeled using the ANN241

model and the empirical equations. The R2 of Am and Hm in the ANN model were 0.9682 and242

0.9479, respectively; the R2 of Am and Hm predicted by the empirical equations were 0.9214 and243

0.9062, respectively. In view of this prediction accuracy, the ANN model outperformed the best-fitting244

empirical equation. In addition, the R2 of Am was always slightly higher than that of Hm, in both245

models, which may result from measurement errors in the experiments.246
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Figure 7. Q-Q plot of observed and predicted (a) Am and (b) Hm, for the empirical equations and the
ANN model. Training data and test data in the ANN model are displayed separately.

4.2. Prediction of wave characteristics from initial mass slide parameters247

Previously, empirical or semi-empirical equations determined wave characteristics from the mass248

slide features on impact (illustrated as stage II in Figure 1), and these equations were established in the249

form of the power-law equations of several dimensionless groups (see Equation (21)). None predicted250

the wave characteristics from the slide mass features at the initial stage (illustrated as stage I in Figure251

1).252

A theoretical study focusing on a description of the whole process is still lacking, which makes it253

difficult to provide physical constraints on the mathematical operator of the prediction equation. In254

this case, assuming a functional form for the prediction equation in advance might be problematic.255

Therefore, a data-driven approach that relies strictly on the data rather than on a fixed form equation256

is preferable, and the ANN method thus fits this requirement. The process involves the following257

parameters:258

η(x, t) = η(τc, K, n, l0, s0, ls, VI , h0, θ, ρw, ρs, t, g) (23)

where τc is the yield stress, K is the consistency, n is the power-law index, l0 and s0 are the length and259

height of the slide mass in its container box, ls is the slope length, VI is the initial slide mass volume, h0260

is the still-water depth, θ is the slope angle, ρw is the water density, ρs is the slide mass density, t is261

time, and g is the gravity acceleration.262

The slide mass’s rheological parameters include τc, K, and n. Although they have little effect263

on the slide mass–water interaction and wave formation [15], they have great effects on the slide264

mass flowing down the slope. The Pearson correlation coefficients between each pair of these three265

parameters were all above 0.9 (see Table 3), indicating that all three parameters correlated highly.266

We therefore selected the yield stress τc, namely the stress at which the material starts yielding, to267

represent the rheological parameters.268

Table 3. The Pearson correlation coefficients between τc, K, and n.

τc K n
τc 1 0.9739 0.9604
K 0.9739 1 0.9633
n 0.9604 0.9633 1

Figure 8 provides a first insight into how the wave characteristics depend on the rheological269

properties of the slide mass and on its parameters at the initial stage. It shows experimental data with270

the yield stress set at τc = 41 Pa, 62 Pa, and 80 Pa. Overall, the maximum wave amplitude am increased271

with rises in the yield stress τc and the initial slide mass mI , and with decreases in the slope length ls.272
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Figure 8. Variations in wave amplitude am against mI l−1
s , with the water depth h0 = 0.2 m and slope

angle θ = 45◦.

ε =
l∗
h∗

and ς =
s∗
h∗

are aspect ratios for the l-axis to the y-axis, and for the s-axis to the y-axis,273

respectively. The natural choice for defining the typical scale introduced by these ratios was to take274

the dimensions of the reservoir: l∗ = l0, h∗ = h0, and s∗ = s0. The Bingham number can be expressed275

as Bi =
τc

K(v∗/s∗)
, which is a dimensionless yield stress (relative to the viscous forces). We assumed276

that the viscoplastic flow reached a near-equilibrium regime, where viscous forces balanced gravity277

acceleration, and the velocity scale was then v∗ = (ρg sin θ/K)1/ns1+1/n
∗ . The Bingham number then278

became Bi =
τc

ρgs0 sin θ
.279

The dimensions involved in equation (23) are length [L], mass [M], and time [T]. We chose three280

scaling parameters: water density ρw, still-water depth h0, and gravitational acceleration g. Thus, the281

dimensionless form could be expressed as:282

η′ =
η(x, t)

h0
= η′

(
τc

ρgs0 sin θ
,

l0
h0

,
s0

h0
,

ls
l0

, θ,
ρs

ρw

)
(24)

where the η′ is the scaled free-water surface elevation. As with Section 4.1, we selected the scaled283

maximum wave amplitude Am and height Hm to represent the water surface elevation. As the slide284

mass density ρs and water density ρw were constant throughout our experiments,
ρs

ρw
can be eliminated.285

There were therefore five neurons in the input layer and two neurons in the output layer:286

• 5 inputs: Bi, ε, ς,
ls
l0

, and θ287

• 2 outputs: Am and Hm288

The modeling method used was the same as in Section 4.1. First, based on the optimal number of289

hidden neurons determined, a 5–10–2 network structure was developed; then, the experimental data290

were divided into training data and test data; finally, the ANN model was trained using the training291

data and validated using the test data. The R2, MSE, and SSE of Am were 0.8983, 0.00089, and 0.2591,292

respectively. The H2, MSE, and SSE of Am were 0.8497, 0.00295, and 0.8483, respectively. Because293

the R2 > 0.8, the present model is validated. Yet compared with the scenario that predicted wave294

characteristics from the slide mass parameters on impact, the prediction accuracy of the ANN method295

in the present scenario was lower. The more complicated the physical process is, the more information296

could be lost in prediction.297

4.3. Waves generated by viscoplastic–granular mixtures298

Recent studies have mimicked landslides in the real world by using a single slide mass material,299

including granular slides, viscoplastic materials, or solid blocks. However, many landslides in300
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the natural world are mixtures of granular and viscoplastic materials, and these have not been301

studied either experimentally or theoretically. In the present study, we conducted experiments using302

mixtures of polymer–water balls and Carbopol, with the percentage of Carbopol in volume varying303

symmetrically (0 %, 20 %, 50 %, 80 % and 100 %). Figure 9 shows raw images, captured by a high-speed304

camera, of Carbopol, polymer–water balls, and mixtures of them, entering the body of water. These305

represented landslides with different degrees of cohesion.306

(a) (b) (c)

Figure 9. Raw images of landslides intruding into a body of water, as recorded by a high-speed camera:
(a) Carbopol, (b) mixture of 50 % Carbopol and 50 % polymer–water balls, and (c) polymer–water balls.

As shown in Figure 10, higher waves could be generated with higher proportions of Carbopol in307

the mixture, which implies that the slide mass material’s composition influenced wave generation.308

Here, to provide identical criteria for all slide mass materials, we quantified the slide mass properties309

using a universal dimensionless group named the Impulse product parameter P, which was proposed by310

[9]:311

P = Π1Π1/2
2 Π1/4

3 cos(6/7θ)1/2 (25)

where Π1, Π2, and Π3 denote the same parameters as Equation (20).312

One issue which should be noted is that the properties of granular slides are usually represented313

by their grain diameters, whereas the rheological behavior of viscoplastic materials is commonly314

described using yield stress. It is difficult to integrate these two parameters into one equation in the315

form of a power-law equation. To overcome this limitation and provide a compatible model for these316

parameters, we applied the ANN method so as to avoid assuming the functional form of a prediction317

equation.318

Figure 10. Effects of slide mass material composition on the scaled maximum wave amplitude Am.

As underlined above, the dimensionless parameters in modeling experiments with a single319

material commonly involve the slide Froude number Π1, relative slide mass Π2, and the relative slide320

thickness Π3. To quantify the properties of mixed viscoplastic and granular slides, we introduced321

the following dimensionless groups: the Bingham number Bi=
τc

ρsgs0 sin θ
, which represents the322
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rheological properties of a cohesive material; the scaled diameter of the granular slide mass Ds =
dg

h0
,323

where dg is the diameter of a granular particle and h0 is the still-water depth; the volume ratio of the324

viscoplastic material in the mixture RV =
Vs

Vg + Vs
, where Vs is the volume of the viscoplastic slide325

mass and Vg is the volume of the granular slides; and the density ratio between the two materials326

Rρ =
ρs

ρg
, which is a constant in present study.327

Hence, the input layer contained 6 neurons {Π1, Π2, Π3, Bi, Ds, and RV}, and the output layer, as328

in the above sections, contained {Am and Hm}. Using the same method presented in Section 4.1, the329

number of hidden neurons was determined, and the network’s optimum structure was 6–8–2. The330

R2, MSE, and SSE of Am were 0.9325, 0.0072, and 0.2172, respectively. The R2, MSE, and SSE of Hm331

were 0.9173, 0.00178, and 0.6154, respectively. The prediction performance for waves generated by332

viscoplastic–granular mixtures was quite good.333

5. Discussion334

5.1. Model adaptability335

In Sections 4.2 and 4.3, we presented two applications which were difficult to model using336

empirical equations with a fixed functional form:337

• One application was predicting wave characteristics from slide mass features at the initial stage I.338

As a theoretical study analyzing this whole process is still lacking, it is difficult to provide physical339

constraints for the mathematical operator of the empirical equation. In this case, assuming a340

functional form for the predictive equation in advance might be problematic.341

• Another application was predicting waves generated by viscoplastic–granular mixtures. Previous342

studies had mimicked real-world landslides by using single slide mass materials, however,343

many landslides in the natural world are mixtures of granular and viscoplastic materials, and344

these have not been studied either experimentally or theoretically. The properties of granular345

slides are usually represented by their grain diameters, whereas the rheological behaviors of346

viscoplastic materials are commonly described using yield stress. It is difficult to integrate these347

two parameters into one equation in the form of a power-law equation.348

Both these scenarios can easily be adapted using the ANN method’s high prediction accuracy349

(see Table 4). This clearly demonstrates the advantage of using a purely data-driven method in terms350

of model adaptability (and this is not limited to an ANN method). In contrast to equations with fixed351

formulae, the ANN method has no external constraints, making it a scalable open system. In addition,352

it has the ability to self-update and is highly adaptable when new parameters become available or353

fresh constraints appear (they are not limited to the two scenarios presented in this study). With more354

informative, richer datasets, stronger correlations can be built from the input layer to the output layer.355

Table 4. The R2, MSE, and SSE values of the models described.

empirical equations ANN model (3–6–2) ANN model (5–10–2) ANN model (6–8–2)
Am Hm Am Hm Am Hm Am Hm

R2 0.9214 0.9062 0.9682 0.9479 0.8983 0.8497 0.9325 0.9173
MSE 0.00081 0.00197 0.00025 0.00107 0.00089 0.00295 0.00072 0.00178
SSE 0.2571 0.6266 0.0865 0.3088 0.2591 0.8483 0.2172 0.6154

5.2. Prediction accuracy356

Table 4 displays the coefficient of determination R2, mean square error (MSE), and sum of squares357

due to error (SSE) values for each of the models presented in Section 4. The following features are358

worth noting:359
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• Compared with the empirical equations based on regression techniques, the ANN model gave360

more precise predictions. Using the same explanatory variables, the coefficient of determination361

R2 improved from 0.9214 to 0.9682 for Am, and from 0.9062 to 0.9479 for Hm. Of course, the362

improvement in prediction accuracy is not large.363

• The prediction precision for Am was greater than for Hm in predictions made with empirical364

equations and with the ANN models. This may be because the experimental measurement errors365

of wave height hm were larger than those for wave amplitude am. Prediction precision not only366

depends on the prediction performance of the model selected, but it also relies on experimental367

accuracy.368

• The predictions of wave features from the parameters at impact were better than the predictions369

from the parameters at the initial stage. Also, prediction precision decreased when the dataset370

involved combinations of different slide mass materials. Thus, prediction precision decreased as371

experimental complexity increased and more parameters were involved.372

5.3. Multicollinearity373

Multicollinearity is a phenomenon where one explanatory variable in a multiple regression model374

can be linearly predicted from the others with a substantial degree of accuracy. This may lead to the375

problem that the multiple regression’s coefficient estimates change erratically in response to small376

changes in the model. The natural logarithmic form of empirical equation (Equation (20)) can be377

written as:378

ln X = ln δ + α ln Π1 + β ln Π2 + γ ln Π3 (26)

The coefficients ln δ, α, β, and γ were estimated using the least squares (linear regression) method379

based on experimental data. As length [L] was scaled by the still-water depth h0, h0 appears in the380

three aggregated parameters Π1, Π2 ,and Π3, and specifically, they are correlated with h−1/2
0 , h−1

0 , and381

h−2
0 , respectively. The high correlations among explanatory variables may result in multicollinearity382

during the linear regression. However, to date, none of the studies using empirical equations has383

discussed multicollinearity.384

Figure 11. Correlation matrix of explanatory variables Π1, Π2, and Π3 in Equation (20).
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To estimate the correlations between each pair of explanatory variables, we calculated their385

Pearson correlation coefficients. As illustrated in Figure 11, the r between Π1 and Π2 is relatively386

high (r = 0.69), however, it is still under the upper limit of 0.8. We may therefore consider that the387

multicollinearity lies within an acceptable range.388

5.4. Limitations389

The present study explored the possibility of extracting models purely from data, however,390

data-driven models may suffer from a lack of interpretability, e.g., the difficulty in explaining causal391

relationships between the data, the discrepancy, and the corresponding prediction. The use of deep392

learning strategies and vast amounts of data in the inference process exacerbate this issue.393

6. Conclusion394

This study applied an artificial neural network (ANN) method—one of the most commonly used395

machine learning methods—to predict the characteristics of waves generated by gravity-driven slide396

masses. Laboratory experiments were conducted using a viscoplastic material (Carbopol), a granular397

material (polymer–water balls), and mixtures of them. After validating the ANN model by comparing398

its prediction accuracy with that of empirical equations, we applied the model to two scenarios: (i)399

predicting wave characteristics from the parameters of landslides initially at rest on the slope and (ii)400

integrating the parameters of different categories of slide mass material into one model, i.e., a Bingham401

number for the viscoplastic material and the grain diameter for the granular material. In the first402

scenario, the R2 for Hm and Am were 0.8983 and 0.8497, respectively, and in the second scenario, the403

R2 for Hm and Am were 0.9325 and 0.9173, respectively. As a purely data-driven method, this ANN404

method was easy to adapt when new parameters were included or fresh constraints occurred.405
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