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Abstract: When colossal gravity-driven mass flows enter a body of water, they may generate
waves whose effects can have destructive consequences on coastal areas. A number of empirical
equations—in the form of power functions of several dimensionless groups—have been developed
to predict wave characteristics. However, in some complex cases (for instance, when the mass
striking the water is made up of varied slide materials), fitting an empirical equation with a fixed
form to the experimental data may be problematic. In contrast to previous empirical equations
that specified the mathematical operators in advance, we developed a purely data-driven approach
which relies on datasets and does not need any assumptions about functional form or physical
constraints. Experiments were carried out using Carbopol Ultrez 10 (a viscoplastic polymeric gel) and
polymer—-water balls. We selected an artificial neural network model as an example of a data-driven
approach to predicting wave characteristics. We first validated the model by comparing it with
best-fit empirical equations. Then, we applied the proposed model to two scenarios which run into
difficulty when modeled using those empirical equations: (i) predicting wave features from landslide
parameters at their initial stage (with the mass beginning to move down the slope) rather than from
the parameters at impact; and (ii) predicting waves generated by different slide materials, specifically,
viscoplastic slides, granular slides, and viscoplastic-granular mixtures. The method proposed here
can easily be updated when new parameters or constraints are introduced into the model.

Keywords: viscoplastic slide; granular slide; landslide-generated waves; data-driven approach;
artificial neural network approach; empirical equation.

1. Introduction

When colossal gravity-driven mass flows enter a body of water, such as a sea, a lake, or a
reservoir, they sometimes generate waves. These events are particularly relevant in coastal areas and
mountainous countries. Such waves occurred, for example, in Papua New Guinea in 1998 [1] and
in Vajont, Italy, in 1963 [2]. Predicting the characteristics of waves induced by landslides is of great
importance for risk management in coastal areas [3].

Researchers have conducted experiments using physical models to mimic the physical processes
of these events. They have simplified water geometry by using 2D or 3D flumes and idealized the
sliding masses as rigid blocks [4-6], granular solids [7-13], or viscoplastic fluids [14,15]. Based on
reliable experimental data, a number of empirical or semi-empirical equations has been established,
either by combining regression techniques with dimensional analysis [16-18] or by a scaling analysis
of governing equations [19,20]. All the equations to date have expressed wave characteristics as power
functions of several of the slide parameters on impact.

One significant issue has emerged from previous research: on many occasions, empirical equations
have fit well with their own experimental data, but they then exhibited large deviations from the
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datasets obtained by other teams, especially when different slide materials were involved [15,21-
23]. Until now, none of the existing equations has been adaptable to experiments conducted with
different categories of slide materials. Indeed, the performances of the different equations on a given
dataset remain uncertain—a reflection of the limitations of empirical equations of a given functional
form. Applying empirical equations is particularly tricky when attempted using a more informative
experimental dataset. For instance, previous experimental studies merely used a single slide material
(granular materials, viscoplastic materials, or solid blocks); however, many landslides in the real
world are made up of mixtures of two or more materials. Taking the viscoplastic-granular mixture
as an example, the representative parameters of these two materials are the grain diameter and yield
stress, respectively. Due to the current lack of understanding about how these two materials affect the
underlying physics of the slide-water interaction, integrating these two parameters into one equation
might be problematic if we have a presumed functional form for that equation in advance.

Another key issue is that all the existing empirical equations express wave characteristics from
the parameters relating to the sliding masses on impact; none uses the parameters related to the
initial stage (i.e., when the mass is still on the slope and starts moving). Putting the emphasis on the
parameters on impact makes it easier to control the variables and to provide a quantitative analysis,
however, for engineering, there is a need to predict wave characteristics before the sliding has occurred.
For example, in May 2009, a slight slope failure occurred on the Guopu bank of the Laxiwa reservoir,
in China. Based on monitoring data, a faulted rock mass with an approximate volume of 3 x 107 m3
showed signs of general displacement [24]. Although there is a very small probability, should the
mass drop into the reservoir, it would generate surge waves which may well destroy the nearby arch
dam ([25]). In this situation, estimating the characteristics of the potential waves from information
on the potential landslide (which is still at rest on the slope) is more than warranted. However, a
theoretical study describing the whole process (from the initial stage to wave generation) is lacking,
which increases the difficulty in providing physical constraints on the mathematical operators of
prediction equations.

Using an approach that did not assume the functional form of the equation in advance and relied
strictly on the data alone, would be preferable for dealing with both of the above issues. To the best of
our knowledge, there are no previous examples of this in the literature. To overcome the limitations
of empirical equations, the present study presents a data-driven method, known as an artificial
neural network (ANN) method, which has been successfully employed in other fields to cope with
complicated parameters in experimental data processing and to develop highly accurate predictive
models [26-31]. In contrast to previous empirical equations, in which mathematical dependence
was fixed in advance, the present study provides a new approach in which both the explanatory
and explained variables in the data ultimately define their internal relationship without any prior
assumptions about the equation’s functional form or physical constraints. Moreover, the model can be
easily calibrated when new data or parameters become available, which makes it powerful in solving
complex problems [32]. Using the ANN method, we (a) estimate the wave characteristics from the
parameters of a mass at the initial stage, when it is at rest and starts moving down the slope, and (b)
predict the wave characteristics generated by different slide mass materials (specifically, viscoplastic
slides, granular slides, and mixtures of them), all within one model.

2. Experiments

2.1. Physical model

Figure 1 illustrates a physical model of a mass flow moving down a slope and intruding into a
body of water. The whole process can be divided into three stages: in stage I, the slide is at rest, in the
container box, and then starts moving; in stage II it moves down the slope and reaches the shoreline;
in stage III, it enters the body of water and generates waves. We consider a slope with an inclination
of 6 entering a horizontal flume filled with water. The still-water depth is denoted by kg, and the
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water density is denoted by p,,. We defined two coordinate systems. The first coordinate system (x,
y) is defined with its origin located at the shoreline, with the x-axis proceeding out across the water,
stream-wise, and the y-axis going directly upward. The second coordinate system (s, /) is defined with
the [-axis being along the slope and the s-axis being perpendicular to the slope. A slide mass, with a
volume of V and density of ps, is released at a distance I; from the shoreline. The slide’s initial shape
is idealized as a rectangle with a height of sy and length of ly. When the sliding mass moves down the
slope, its thickness s(/, t) and depth average velocity vs(!, t) vary as a function of I and ¢, respectively.
The volume of the immersed slide is denoted by V. The free water surface #(x, t) depends on the
horizontal coordinate x and time ¢. The wave created by the incursion of the sliding mass is evaluated
quantitatively by its height & and amplitude a. The gravity acceleration is denoted by g.

Stage 11

Stage 111

Figure 1. Two dimensional physical model of a landslide generating waves: (a) the slide material is
at rest and then starts moving (stage I), (b) the slide material moves down the slope till it reaches the
shoreline (stage II), and (c) the slide material intrudes into the body of water and generates waves
(stage III).

2.2. Experimental method

Experiments were conducted in a two-dimensional flume at the Swiss Federal Institute of
Technology Lausanne (see Figure 2). The experimental facility was devised to mimic snow avalanches
penetrating mountain lakes (further information see [20]). The scale factor between the real world and
this facility was approximately r ~ 100. The flume consisted of two parts. The first part wasa 1.5 m
long and 0.12 m wide chute, and it could be tilted at an angle 6 ranging from 30° to 50°. Its bottom
was lined with sandpaper to provide consistent basal friction and its slide walls were made of PVC.
The second part was a water-filled, transparent glass flume, 2.5 m long, 0.4 m deep, and 0.12 m wide.
The slide mass material was initially contained in a box located at the chute entrance, closed off by a
locked gate 0.4 m high and 0.12 m wide. The gate was pneumatically activated and could be opened in
less than 0.1 s to release the material from the box. The distance from the gate to the shoreline could
be varied from 0.5 m to 1.0 m. Once the slide mass material was released, it accelerated energetically,
under gravity, and reached velocities as high as 2.5 m/s. Each experiment’s initial settings,including
slide mass volume Vj, initial slide length [y, initial slide height s, slope length [, still-water depth hy,
and slope angle 6, were recorded before the slide mass material was released.
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Figure 2. The experimental facility.

We selected Carbopol Ultrez 10 viscoplastic material to mimic cohesive landslides, whose
rheological behavior can be described using the Herschel-Bulkley model:

T = 1.+ Ky" (1)

where T, is the yield stress, 7 is the shear rate, K is the slide mass consistency, and n is a power-law
index that reflects shear thinning (or shear thickening when n > 1). The rheological measurements
of Carbopol were conducted using a Bohlin Gemini rheometer equipped with striated parallel plates
(40 mm diameter; 1 mm gap size). The values of 7, K and 7 in the Herschel-Bulkley equation were
fitted to the rheological measurements. Table 1 shows how the rheological parameters of Carbopol
depend on its concentration C and the proportion of NaOH to Ultrez 10 in the composite. See [33] for
the Carbopol Ultrez 10 preparation procedure.

Table 1. Rheological characteristics of the Carbopol used in the present study.

C[%] Ultrez10[g] NaOH[g] H)OI[L] 7. [Pa] K[Pa-s"] n]-]

1.5 45 18.0 30 38 10.3 0.289
1.6 50 20.7 30 43 12.3 0.293
1.7 53 22.0 30 49 14.4 0.295
1.8 55 22.8 30 53 16.2 0.315
1.9 58 24.0 30 55 17.1 0.321
2.0 60 249 30 58 18.9 0.330
22 65 26.9 30 60 19.8 0.333
2.3 68 28.2 30 65 23.2 0.339
24 70 29.0 30 68 24.6 0.348
2.5 75 31.0 30 74 29.1 0.364
2.7 80 33.2 30 78 32.1 0.388
2.8 85 35.0 30 80 35.8 0.390
3.0 90 37.3 30 85 421 0.392

We used polymer—water balls to represent granular avalanches. These were produced by soaking
dry, water-absorbent beads in water for 4-5 hours. Both Carbopol and the polymer-water balls have a
density very close to that of water (1000 kg-m~3), which is also similar to that of the ice (910 kg-m?)
mobilized in snow or ice avalanches. Taking advantage of the similar densities of Carbopol and
polymer—water balls, we were able to investigate how mixtures of cohesive and granular materials
generated waves without having to consider the effects of the densities of the varying proportions
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of each material in the mixtures. Due to the difficulties in finding materials with matching higher
densities, the question of how density and mixture proportions interact during wave formation could
not be investigated in the current study.

A high-speed camera was placed in front of the shoreline, with its optical axis perpendicular to
the sidewall. The camera collected images at a frequency of 200 frames per second, acquiring 600
x 800-pixel images, corresponding to an observation window of 48 x 64 cm. We used a 0.2 x 0.4
2 mesh grid to calibrate the raw images and determine the size conversion factor. For each image,
we measured (a) the free-water surface when the leading wave reached its maximum height, which
helped to deduce the wave amplitudes a,, and hy,, (b) the velocity vs and thickness s of the sliding

m

mass upon impact, and (c) the volume of the underwater part of the sliding mass V.

3. The artificial neural network method

The ANN method is inspired by how the human brain processes information, and it is constructed
from interconnected processing elements called neurons [34] (see Figure 3). ANNSs are receiving ever
greater attention because of their ability to express complex functions in a flexible form. A typical ANN
model consists of three main parts: learning rules, network architecture, and an activation function.
The network structure is formed of several layers: one input layer, one output layer, and one or several
hidden layers, with each layer containing several neurons. Each of the neurons in a layer is connected
to neurons of the adjacent layers via coefficients called weightings.

From a mathematical perspective, the principle of neural networks involves the composition of
non-linear functions. Starting with a linear model, considering a dataset z and a vector of inputs x, a
linear model for the output Z(x) can be constructed considering Z(x) = Wx + B, where the weighting
matrix W and the bias vector § are obtained by solving an optimization problem that minimizes the
overall difference between z and £. This process is called modeltraining. Such a simple model may lack
the flexibility to represent complex functional mapping and, therefore, intermediate variables (layers)
y are introduced: y = c(WWx 4+ V) and z = Wy + B2), where ¢ is a user-specified activation
function, like the hyperbolic tangent. The composition of several intermediate layers results in a neural
network capable of efficiently representing arbitrarily complex function forms.

In this study, we selected a one-hidden-layer network, as an example, and adopted a
back-propagation algorithm to train the network [35]. Establishing an ANN model consists of three
steps: (i) preparing the required data for training the network; (ii) evaluating neural networks with
different structures and choosing the optimal one; and (iii) testing the neural network’s performance
using data which have not been used previously for training the network.



Version December 22, 2019 submitted to Water 6 of 18

(a) (b)
‘ X1 w,
dendrites axon
W, z
X2 f(ZXiWiJ :> y]
cell body P '
g {k. X W,
terminal axon (d)
Input 15t hidden 2nd hidden Output
layer layer layer layer

(c)
. , \&{Q,
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Figure 3. A biological neuron in comparison to an artificial neural network: (a) human neuron; (b)
artificial neuron; (c) biological synapse; and (d) ANN synapses [36].

155 The back-propagation artificial neural network algorithm (BP-ANN) consists of two paths: the
s feed-forwards and the feed-backwards paths. The feed-forwards path is expressed by equations (2)
z and (3).
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10 before using the activation function, and F is the activation function applied in the hidden and output
+ layers. For the activation function, we chose the sigmoid function, which ranges between 0 and 1 (see
> equation (4)).The activation function is defined on each layer’s neurons and is applied to the sum of
s the weighted inputs and to each neuron’s bias to generate the neuron output.
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1s  Where ty is the predefined target value and ¢ is the residual of each output node. E is the residual
16 between the expected and actual output values. We used a gradient-descent strategy to adjust the
» weightings, aiming to obtain a minimum E. Equations (6) to (9) express the weightings between the
e hidden and output layers.
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and hence

O = exF' (Vi) = (b — ze) F' (V) )

Therefore, the weighting adjustments in the hidden and output link Awj, can be expressed by
equation (8).

Awjie = 11 X yj X J 8

where 7 is the learning rate ranging between 0 and 1. With a lower learning rate, the network model
will take longer time to converge. Conversely, a higher learning rate may lead to a widely oscillating
network. In addition, maintaining a consistent learning rate across the model is preferable. The new
weighting wj, is updated by the following equation (9), where 1 is the number of iterations.

w]-k(n + 1) = ZUjk(l’l) + ij'k(ﬂ) (9)

Similarly, the error gradient in the links between the input and hidden layers can be derived from
the partial derivative with respect to w;.

oE K 9E 9z Y, ay;  9X; .
= — = — | X 35 X = —Ajx; 10
awi]‘ (k—l azk aYk ]/] ) aX] awl] JXi ( )
where P
Aj=F (X)) ) dwjk 11)
k=1

The new weighting makes (and dominates) the link between the input and hidden layer dwj; can
be updated as:

57,{],']' =1 XXx;X (Sj (12)

wl-]-(n + 1) = wi]-(n) + §wl~]~(n) (13)
All the input data were normalized in the range between 0 and 1 using the following equation:
_ X = Xonin
Xmax — Xinin

where X is the raw data and Y is the normalized data. The initial parameter settings are shown in
Table (2).

Y (14)

Table 2. Initial settings for the parameters in the ANN model.

Parameters Initial setting
Initial weightings 0.2-0.5
Learning rate 0.1

Maximum number of epochs 200
Objective mean square error  0.00001

Training function traingdx
Momentum parameters 0.9
Activation function Sigmoid function

4. Results

In section 4.1, we validated the ANN method by comparing its prediction accuracy against
empirical equations, using the experimental data generated by the viscoplastic flow. In section 4.2, we
predicted the wave characteristics from the slide mass features at rest and as it started moving (stage I
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in Figure 1). In section 4.3, we developed an ANN model which aimed to cope with the parameters
of a landslide with complex properties, specifically, a mixture of cohesive and granular slide mass
materials.

Each model’s performance was evaluated by its coefficient of determination (R?), mean square
error (MSE), and its sum of squares due to error (SSE), which are expressed as follows:

2
n (}/pred,i - yexp,i)

R=1-% ; (15)
=1 (ypred,i - yexp,uvg)
2
Z?:l (yPred,i - Yexp,i)
n
n
SSE = Z(Yexp,i - Ypre,i) (17)
i=1

where 7 is the number of series of experimental data, yeq, and Yeyp,; are the predicted and observed
data, respectively, and Yexpavg is the average of observed data.

4.1. Model validation

Most commonly used empirical equations involve the following common dimensional parameters:

T](x/ t) = U(h()/s/ Us/g/ VS/ 9/ t/Pwrps) (18)

where 7(x, t) is the free water surface, with x denoting the horizontal coordinate and ¢ denoting time,
hy is the still-water depth, s is the slide mass thickness, vs; denotes the slide mass velocity on impact, Vs
denotes the immersed slide mass volume, 6 is the slope angle, and p,, and ps are the densities of the
water and the slide mass, respectively.

Based on a dimensional analysis or a scale analysis, the scaled wave characteristics can be
expressed as a function of several dimensionless groups:

N .
X, =[P (19)
i=1
where X represents the scaled wave characteristics (e.g., the scaled maximum wave amplitude, wave
height, wave length, impact radius, wave period); I'l; indicates the explanatory variables selected, and
where N is the number of explanatory variables.
The predicting equations developed by Zitti etal. [20] were the best fit with our experimental data
(see equation (20)).

X1, = ST TR T (20)
where X5 = Hyy, Ay, and 11 = \/UST is the slide mass Froude number, I'T, = hi is the scaled slide
8ho 0
mass thickness, and I3 = F;; ;/25 is the scaled impacted slide mass.
0

The coefficients of explanatory variables J and 1 ;3 were acquired by fitting the experimental
data based on a linear regression technique. The empirical equations of A, and Hy, for the present
study were:

Ay = 1.2973H(1)'6170Hg‘1626ng'6406 (21)

H,, = 1_43681—[(1).9700Hg.0768ng.6076 (22)
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Using the same database and explanatory variables as Equation (21), we modeled the experimental
data using our ANN method. Thus, the three neurons in the input layer and the two neurons in the
output layer were:

e 3inputs: 11, I, and I13
e 2 outputs: A, and Hy,

Of the 291 samples of Carbopol mass slides in the experimental database, 80 % (233 samples)
were selected as training data for model construction and 20 % (58 samples) were saved as test data for
model validation, providing an independent measure of ANN performance after training. Samples for
each group were selected randomly.

We used a basic three-layer network structure, namely, one input layer, one hidden layer, and one
output layer. To select the optimal number of neurons in the hidden layer, we set a random number of
neurons and ran the program, determining their performance by the coefficient of determination R.
Each run was repeated 5 times and R? was calculated by eliminating the maximum and minimum
coefficients of determination and averaging the results of the remaining three tests. As shown in Figure
4, the R? of both H,, and A,, reached their maximum values when the hidden layer contained 5 neurons.
Thus, the optimum network for the present study was a 3-5-2 structure (input-hidden—-output).

BH A, + average

0.8
2 3 4 5 6 7 8 9 10 11 12 13

numbers of hidden neurons

Figure 4. Variation of R? versus the number of neurons in the hidden layer.

Model training was constrained by the following indicators: the maximum epoch number was
initially set to 100; the objective MSE was set to 1 x 10~%; the minimum gradient was set to 1 x 10~5;
the maximum number of validation fails, which represents the number of successive iterations that
the validation performance fails to decrease, was initially set to 6. Training would stop once one of
the indicators mentioned above reached its initial value; for instance, in the present study, training
stopped when the number of validation fails reached 6. Figure 5 illustrates the evolution of these
indicators (i.e., gradient, validation fails, and MSE) at each epoch until the training is stopped.
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Figure 5. Variations in (a) the gradient, (b) the number of validation fails, and (c) MSE, against epochs.

In Figure 5 (c), the MSEs of the training data and the test data were counted separately. The curves
of the evolution of the MSE for these three data series were very close, indicating the model’s high
level of adaptability. The best validation performance was an MSE = 0.00025337 at epoch 43, and the
training terminated at epoch 48 as the number of validation fails reached 6. The gradient = 0.0011736
at epoch 48. Figure 6 displays a histogram of the residuals between the predicted A;, and the observed
Ap. The probability density of the residuals approximately follows a Gaussian distribution.

Instances

0 9] — an o [=2] [ <t ~ [ 0 [\ = © <t (=2 o) Pl o]
~ 0 fF N O o m Hd O 4o m O 0 S = M a0

Errors = Targets - Outputs

Figure 6. Error histogram of A,; with 20 bins. Red part denotes test data and grey part denotes training
data.

Figure 7 displays the observed A;, and H,, versus the predicted data modeled using the ANN
model and the empirical equations. The R? of A, and Hy, in the ANN model were 0.9682 and
0.9479, respectively; the R? of Ay, and H,, predicted by the empirical equations were 0.9214 and
0.9062, respectively. In view of this prediction accuracy, the ANN model outperformed the best-fitting
empirical equation. In addition, the R? of A,, was always slightly higher than that of H,,, in both
models, which may result from measurement errors in the experiments.
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Figure 7. Q-Q plot of observed and predicted (a) A;; and (b) Hy,, for the empirical equations and the
ANN model. Training data and test data in the ANN model are displayed separately.

4.2. Prediction of wave characteristics from initial mass slide parameters

Previously, empirical or semi-empirical equations determined wave characteristics from the mass
slide features on impact (illustrated as stage II in Figure 1), and these equations were established in the
form of the power-law equations of several dimensionless groups (see Equation (21)). None predicted
the wave characteristics from the slide mass features at the initial stage (illustrated as stage I in Figure
1).

A theoretical study focusing on a description of the whole process is still lacking, which makes it
difficult to provide physical constraints on the mathematical operator of the prediction equation. In
this case, assuming a functional form for the prediction equation in advance might be problematic.
Therefore, a data-driven approach that relies strictly on the data rather than on a fixed form equation
is preferable, and the ANN method thus fits this requirement. The process involves the following
parameters:

U(x/ t) - ;7 (TC/ K/ n/ lO/ SO, lS/ VI/ hO/ 9/ Pw/ Ps/ t/ g) (23)

where T is the yield stress, K is the consistency, 7 is the power-law index, [y and sg are the length and
height of the slide mass in its container box, [, is the slope length, V] is the initial slide mass volume, kg
is the still-water depth, 6 is the slope angle, p;, is the water density, ps is the slide mass density, ¢ is
time, and g is the gravity acceleration.

The slide mass’s rheological parameters include 7., K, and n. Although they have little effect
on the slide mass-water interaction and wave formation [15], they have great effects on the slide
mass flowing down the slope. The Pearson correlation coefficients between each pair of these three
parameters were all above 0.9 (see Table 3), indicating that all three parameters correlated highly.
We therefore selected the yield stress 7., namely the stress at which the material starts yielding, to
represent the rheological parameters.

Table 3. The Pearson correlation coefficients between 1, K, and n.

T K n
T 1 0.9739 | 0.9604
K | 0.9739 1 0.9633
n | 09604 | 0.9633 1

Figure 8 provides a first insight into how the wave characteristics depend on the rheological
properties of the slide mass and on its parameters at the initial stage. It shows experimental data with
the yield stress set at 7. = 41 Pa, 62 Pa, and 80 Pa. Overall, the maximum wave amplitude a,, increased
with rises in the yield stress 7, and the initial slide mass m], and with decreases in the slope length I;.
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Figure 8. Variations in wave amplitude a,, against m;l; !, with the water depth /iy = 0.2 m and slope

angle 0 = 45°.

I s

h—* and ¢ = h—* are aspect ratios for the [-axis to the y-axis, and for the s-axis to the y-axis,
* *

respectively. The natural choice for defining the typical scale introduced by these ratios was to take

the dimensions of the reservoir: I, = Iy, i« = hy, and s, = sg. The Bingham number can be expressed

Tc
K(vs/5+)

that the viscoplastic flow reached a near-equilibrium regime, where viscous forces balanced gravity

€ =

as Bi = , which is a dimensionless yield stress (relative to the viscous forces). We assumed

acceleration, and the velocity scale was then v, = (pgsinf/K)!/ nglt1/n The Bingham number then
became Bi = L
0gso sin 0

The dimensions involved in equation (23) are length [L], mass [M], and time [T]. We chose three
scaling parameters: water density py, still-water depth h, and gravitational acceleration g. Thus, the
dimensionless form could be expressed as:

/777(x/t)7 / Tc ljsﬁli Ps
T="h (pgsOsine’ho’ho’lo’e’pw @

where the 7’ is the scaled free-water surface elevation. As with Section 4.1, we selected the scaled
maximum wave amplitude A;, and height H,, to represent the water surface elevation. As the slide

P

mass density ps and water density p,, were constant throughout our experiments, p—s can be eliminated.
w

There were therefore five neurons in the input layer and two neurons in the output layer:

e 5inputs: Bi, €, ¢, 5—5, and 6
e 2 outputs: Ay, andOHm
The modeling method used was the same as in Section 4.1. First, based on the optimal number of

hidden neurons determined, a 5-10-2 network structure was developed; then, the experimental data
were divided into training data and test data; finally, the ANN model was trained using the training
data and validated using the test data. The R%, MSE, and SSE of A,, were 0.8983, 0.00089, and 0.2591,
respectively. The H?, MSE, and SSE of A,, were 0.8497, 0.00295, and 0.8483, respectively. Because
the R? > 0.8, the present model is validated. Yet compared with the scenario that predicted wave
characteristics from the slide mass parameters on impact, the prediction accuracy of the ANN method
in the present scenario was lower. The more complicated the physical process is, the more information
could be lost in prediction.

4.3. Waves generated by viscoplastic—granular mixtures

Recent studies have mimicked landslides in the real world by using a single slide mass material,
including granular slides, viscoplastic materials, or solid blocks. However, many landslides in



304

305

306

308

309

310

312

313

314

316

317

318

319

320

322

Version December 22, 2019 submitted to Water 13 of 18

the natural world are mixtures of granular and viscoplastic materials, and these have not been
studied either experimentally or theoretically. In the present study, we conducted experiments using
mixtures of polymer—water balls and Carbopol, with the percentage of Carbopol in volume varying
symmetrically (0 %, 20 %, 50 %, 80 % and 100 %). Figure 9 shows raw images, captured by a high-speed
camera, of Carbopol, polymer-water balls, and mixtures of them, entering the body of water. These
represented landslides with different degrees of cohesion.

(a) (c)

(b)

Figure 9. Raw images of landslides intruding into a body of water, as recorded by a high-speed camera:
(a) Carbopol, (b) mixture of 50 % Carbopol and 50 % polymer-water balls, and (c) polymer-water balls.

As shown in Figure 10, higher waves could be generated with higher proportions of Carbopol in
the mixture, which implies that the slide mass material’s composition influenced wave generation.
Here, to provide identical criteria for all slide mass materials, we quantified the slide mass properties
using a universal dimensionless group named the Impulse product parameter P, which was proposed by

[9]:

P = I IT/T1L/% cos(6/70) /2 (25)

where I3, I'l,, and I3 denote the same parameters as Equation (20).

One issue which should be noted is that the properties of granular slides are usually represented
by their grain diameters, whereas the rheological behavior of viscoplastic materials is commonly
described using yield stress. It is difficult to integrate these two parameters into one equation in the
form of a power-law equation. To overcome this limitation and provide a compatible model for these
parameters, we applied the ANN method so as to avoid assuming the functional form of a prediction
equation.

0.4 w
= Carbopol -
m 80% Carbopol +20% Water balls L
B 50% Carbopol + 50% Water balls -
0.3 ®m 20% Carbopol + 80% Water balls = 1
B Water balls i "
[
= 02r a [ |
= =
[
n
0.1 i
0 L L L L
0 0.2 0.4 0.6 0.8 1

P

Figure 10. Effects of slide mass material composition on the scaled maximum wave amplitude A;,.

As underlined above, the dimensionless parameters in modeling experiments with a single
material commonly involve the slide Froude number I1;, relative slide mass I, and the relative slide
thickness Il3. To quantify the properties of mixed viscoplastic and granular slides, we introduced
T

the following dimensionless groups: the Bingham number Bi= ———,
05850 sin 0

which represents the
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rheological properties of a cohesive material; the scaled diameter of the granular slide mass Ds = h—g,
0
where d, is the diameter of a granular particle and h is the still-water depth; the volume ratio of the

viscoplastic material in the mixture Ry = , Where V; is the volume of the viscoplastic slide

Vs
Ve + Vs
mass and Vy is the volume of the granular slides; and the density ratio between the two materials

Ry = &, which is a constant in present study.

Pg
Hence, the input layer contained 6 neurons {I1;, Iy, I3, Bi, Ds, and Ry }, and the output layer, as

in the above sections, contained {A,, and H, }. Using the same method presented in Section 4.1, the
number of hidden neurons was determined, and the network’s optimum structure was 6-8-2. The
R2, MSE, and SSE of A,, were 0.9325, 0.0072, and 0.2172, respectively. The R2, MSE, and SSE of H,,
were 0.9173, 0.00178, and 0.6154, respectively. The prediction performance for waves generated by
viscoplastic—granular mixtures was quite good.

5. Discussion

5.1. Model adaptability

In Sections 4.2 and 4.3, we presented two applications which were difficult to model using
empirical equations with a fixed functional form:

e One application was predicting wave characteristics from slide mass features at the initial stage I.
As a theoretical study analyzing this whole process is still lacking, it is difficult to provide physical
constraints for the mathematical operator of the empirical equation. In this case, assuming a

functional form for the predictive equation in advance might be problematic.
o Another application was predicting waves generated by viscoplastic-granular mixtures. Previous

studies had mimicked real-world landslides by using single slide mass materials, however,
many landslides in the natural world are mixtures of granular and viscoplastic materials, and
these have not been studied either experimentally or theoretically. The properties of granular
slides are usually represented by their grain diameters, whereas the rheological behaviors of
viscoplastic materials are commonly described using yield stress. It is difficult to integrate these
two parameters into one equation in the form of a power-law equation.

Both these scenarios can easily be adapted using the ANN method’s high prediction accuracy
(see Table 4). This clearly demonstrates the advantage of using a purely data-driven method in terms
of model adaptability (and this is not limited to an ANN method). In contrast to equations with fixed
formulae, the ANN method has no external constraints, making it a scalable open system. In addition,
it has the ability to self-update and is highly adaptable when new parameters become available or
fresh constraints appear (they are not limited to the two scenarios presented in this study). With more
informative, richer datasets, stronger correlations can be built from the input layer to the output layer.

Table 4. The R%, MSE, and SSE values of the models described.

empirical equations | ANN model (3-6-2) | ANN model (5-10-2) | ANN model (6-8-2)
A?ﬂ Hm Am Hm Am Hﬂl Am Hm

R? 0.9214 0.9062 0.9682 0.9479 0.8983 0.8497 0.9325 0.9173

MSE | 0.00081  0.00197 | 0.00025  0.00107 | 0.00089 0.00295 0.00072  0.00178

SSE 0.2571 0.6266 0.0865 0.3088 0.2591 0.8483 0.2172 0.6154

5.2. Prediction accuracy

Table 4 displays the coefficient of determination R?, mean square error (MSE), and sum of squares
due to error (SSE) values for each of the models presented in Section 4. The following features are
worth noting:
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o Compared with the empirical equations based on regression techniques, the ANN model gave
more precise predictions. Using the same explanatory variables, the coefficient of determination
R? improved from 0.9214 to 0.9682 for A;;, and from 0.9062 to 0.9479 for H,. Of course, the
improvement in prediction accuracy is not large.

o The prediction precision for A,; was greater than for Hy, in predictions made with empirical
equations and with the ANN models. This may be because the experimental measurement errors
of wave height I, were larger than those for wave amplitude a,,. Prediction precision not only
depends on the prediction performance of the model selected, but it also relies on experimental
accuracy.

o The predictions of wave features from the parameters at impact were better than the predictions
from the parameters at the initial stage. Also, prediction precision decreased when the dataset
involved combinations of different slide mass materials. Thus, prediction precision decreased as
experimental complexity increased and more parameters were involved.

5.3. Multicollinearity

Multicollinearity is a phenomenon where one explanatory variable in a multiple regression model
can be linearly predicted from the others with a substantial degree of accuracy. This may lead to the
problem that the multiple regression’s coefficient estimates change erratically in response to small
changes in the model. The natural logarithmic form of empirical equation (Equation (20)) can be
written as:

InX=Ind+alnll; + BInIl, + yInIls (26)

The coefficients In J, «, B, and y were estimated using the least squares (linear regression) method
based on experimental data. As length [L] was scaled by the still-water depth kg, hy appears in the
three aggregated parameters I'ly, I, ,and I3, and specifically, they are correlated with & 172 hy ! and
hy 2, respectively. The high correlations among explanatory variables may result in multicollinearity
during the linear regression. However, to date, none of the studies using empirical equations has
discussed multicollinearity.

0 0.5 1 1.5 -1 0 1 2 3 0.1 0.2 0.3 0.4
0 I, 113

Figure 11. Correlation matrix of explanatory variables Iy, I, and IT3 in Equation (20).
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To estimate the correlations between each pair of explanatory variables, we calculated their
Pearson correlation coefficients. As illustrated in Figure 11, the r between I1; and IT; is relatively
high (r = 0.69), however, it is still under the upper limit of 0.8. We may therefore consider that the
multicollinearity lies within an acceptable range.

5.4. Limitations

The present study explored the possibility of extracting models purely from data, however,
data-driven models may suffer from a lack of interpretability, e.g., the difficulty in explaining causal
relationships between the data, the discrepancy, and the corresponding prediction. The use of deep
learning strategies and vast amounts of data in the inference process exacerbate this issue.

6. Conclusion

This study applied an artificial neural network (ANN) method—one of the most commonly used
machine learning methods—to predict the characteristics of waves generated by gravity-driven slide
masses. Laboratory experiments were conducted using a viscoplastic material (Carbopol), a granular
material (polymer—water balls), and mixtures of them. After validating the ANN model by comparing
its prediction accuracy with that of empirical equations, we applied the model to two scenarios: (i)
predicting wave characteristics from the parameters of landslides initially at rest on the slope and (ii)
integrating the parameters of different categories of slide mass material into one model, i.e., a Bingham
number for the viscoplastic material and the grain diameter for the granular material. In the first
scenario, the R? for H,, and A,, were 0.8983 and 0.8497, respectively, and in the second scenario, the
R? for H,, and A, were 0.9325 and 0.9173, respectively. As a purely data-driven method, this ANN
method was easy to adapt when new parameters were included or fresh constraints occurred.
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