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Abstract: Measuring bathymetry has always been a major scientific and technological challenge. In
this work, we used a deep learning technique for inferring bathymetry from the depth-averaged
velocity field. The training of the neural network is based on 5742 laboratory data using a gravel-bed
flume and reconstructed velocity fields, namely the topographies were obtained from real-world
experiments, and the velocity fields were estimated using a statistical model. To examine the
predictive power of the proposed neural network model for bathymetry inference, we applied the
model to flume experiments, numerical simulations, and field data. The results showed the model
properly estimates topography, leading to a model for riverine bathymetry estimation with a 31.3%
maximum relative error for the case study (confluence of the Kaskaskia River with the Copper Slough
in east-central Illinois state, USA).

Keywords: bathymetry estimation; deep learning; U-net architecture; entropy-based models; inverse
modeling; gravel-bed flume/river

1. Introduction

Imaging riverine bathymetry is fraught with difficulty. Among the available tech-
niques in riverine bathymetry, a typical example is provided by the use of light detection
and ranging (LiDAR) systems [1–3]. This technique is based on the estimation of distance
by recording the time lapse between sending and receiving a signal and having prior knowl-
edge of the signal’s speed. While these techniques do provide direct access to bathymetry,
it is time-consuming and costly. Other examples include the use of indirect bathymetry
techniques [4], which usually involve solving an inverse problem relating bed topography
to surface elevation [5,6], and surface velocity data [7,8].

Inferring variation in riverine bathymetry from surface flow data is predicated on
a potent causal relationship between them [9]. This assumption is true, especially in
shallow and one-dimensional flow conditions when the magnitude of velocity in the
vertical direction is low compared to the streamwise velocity component [10]. Employing
surface velocity data is an alternative to estimating bathymetry, thanks to its affordability
and sensitivity to river depth [10–13]. There are several techniques for estimating surface
velocity, including the use of drifter global positioning system (GPS) recordings [11,14,15].
For example, Landon et al. [11] investigated whether drifters’ trajectories are sensitive
enough to bottom topography to allow for depth determination. They successfully extracted
river bathymetry using velocity field measurements collected from drifter GPS records in an
ensemble-based data assimilation approach. Estimated bathymetry based on this technique
on a shallow braided and deep meandering reach of the Kootenai River in Idaho in the
United States of America (USA) was more accurate than the previous estimations. Wilson
and Özkan-Haller [10] applied this technique to one-dimensional (1D) channels and for
two real-world reaches: the Snohomish River, Washington, and the Kootenai River, Idaho,
in the USA. The main difference with Landon et al. [11] was this: they used depth-averaged
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velocities (based on numerical solutions to the shallow water equations) and a least-square
method to minimize a cost function that combines known information and measured
data. By using a state augmentation technique, the measured variable is connected to the
unknown parameter, providing a model for deep-water bathymetry estimation (with a
depth in the 3–10 m range).

In recent years, deep learning has become one of the most powerful tools for over-
coming some deterministic approaches’ limitations [13,16–18]. It can be used to image bed
topography from surface flow data. Due to their ability to identify patterns or trends in
data, neural networks are becoming increasingly popular in geophysics and hydraulics [19].
For instance, Ghorbanidehno et al. [13] used the neural network technique to obtain bed
topography based on the depth-averaged flow velocity field, using limited labeled data.
In order to reduce network size, the authors combined a fully connected deep neural
network with principal component analysis (PCA). PCA is a widely recognized method for
reducing the dimensionality of data, where it transforms the data onto a new basis with
fewer dimensions [20]. For instance, this could be achieved by calculating the covariance
matrix of the training data and extracting its eigenvalue decomposition.

Usually, training the network needs a huge amount of data to avoid the curse of
dimensionality [21], which implies that the data occupy less and less of the data space as
the data space moves from lower to higher dimensions. The volume of this space grows so
fast that the data cannot keep up and thus become sparse—the sparsity problem is a major
statistical significance issue. To enhance the training dataset’s size, Ghorbanidehno et al.
[13] divided the river’s entire domain into small subdomains. As a result, each river profile
provided several hundred training samples rather than just one.

The training of neural networks for bathymetry estimation can be performed by
solving the shallow water equations and using the resulting solutions. A typical example is
provided by Liu et al. [17], who employed shared encoders and separate decoders, where
bathymetry’s input image is encoded and then decoded to three outputs, namely the flow’s
longitudinal and transverse depth-averaged velocity components and the water surface
elevation. Two-dimensional (2D) simulations using randomly generated input bathymetry
data were used to generate the training data.

Recent advancements in measurement techniques have led to the availability of high-
resolution and low-cost surface velocity fields [8]. These techniques include the use of
Lagrangian drifters [14,22], large-scale particle image velocimetry [23,24], and synthetic
aperture radar [25,26]. This work intends to predict bathymetry by using indirect mea-
surements, i.e., the velocity field through a convolutional neural network. The neural
network training is based on a U-net architecture, used for the first time for segmentation
problems [27], and, to our knowledge, this is the first attempt to use the U-net model for
bathymetry inversion. To this end, we used an experimental dataset made of 5742 data. It
was not realistic to measure the velocity field, but we could estimate it using entropy-based
models. Figure 1 shows the model’s architecture. In this network, the encoder and de-
coder are connected by skip connections—in contrast with regular convolutional networks.
By connecting them in this way, we ensure we actually lose no information during the
feature extraction process [28,29]. In order to develop a well-trained neural network model,
we need to collect a large amount of data. Due to the size of the experimental dataset used
in this study, we had no problems with dataset size. As an alternative, if we were dealing
with a small dataset, we could divide the experiment domain into smaller regions and
thereby increase the amount of data.

In this work, training the convolutional neural network model to infer bathymetry is
based on bed topography scans and velocity field estimates. Solving the governing partial
differential equations will be bypassed and the solutions inferred solely by a convolutional
neural network that is trained based on a huge experimental dataset. Closely related to our
work is Ghorbanidehno et al. [13]’s PCA-DNN framework, which combined the traditional
fully connected deep learning method and principal component analysis. They trained the
deep neural network model based on field data, whereas we focused on a convolutional
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neural network; moreover, our dataset is produced in the laboratory. Our trained model is
suitable for gravel-bed rivers whereas their model is suitable for deep rivers. All training
of the networks in this work has been performed using Colaboratory on GPU: Nvidia
Tesla P100-PCIE-16GB, manufactured by Nvidia Corporation, with headquarters in Santa
Clara, California, United States.

Input
Output
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16x128x32

16x64x16

32x32x8

64x16x4

64x8x2

64x4x1

64x8x2

64x16x4
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16x128x32
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4x4 conv

2x2 conv 1x1 up-conv

3x3 up-conv

Skip connection

Figure 1. A diagram showing the neural network architecture. Convolutional layers are shown in
blue, and skip connections are shown in orange. The numbers in the format of a× b× c close to each
box indicate the number of channels and the image size in the x and z directions, respectively.

This paper is structured as follows: The methodology for generating the dataset based
on experiments and analytical derivation is explained in Section 2. Moreover, the U-net archi-
tecture is described and the basic parameters, regularization, and hyperparameters—such
as dropout, learning rate, weight decay, and training dataset size—are studied in that
section. In Section 3, the model’s performance and accuracy have been studied. In addition,
the neural network model’s predictive power has been studied by applying it to flume
experiments, the numerical simulation of a gravel-bed flume, and field data performed at
the confluence of the Kaskaskia River and Copper Slough in east-central Illinois state, USA.
Sections 4 and 5 discuss and summarize our achievements and future work, respectively.

2. Methodology
2.1. Data Generation

The dataset is based on the experiments conducted at LHE-EPFL [30]. Table 1 repre-
sents the input parameters and each experiment’s duration. It consists of three long-term
experiments. Experiments were carried out in a tilted flume at an angle of S = 1.6% and
1.7%, a length of L = 17 m, and a width of w = 60 cm, as depicted in Figure 2. The useful
length of the flume is 14 m because of technical limitations (1.5 m from each side is ignored).
The flume bed was made of natural gravel with a height of 31.5 cm at the beginning of the
experiments. Sediments’ mean diameter was d = 5.5 mm with a σ = 1.2 mm standard devi-
ation and a density of ρs = 2660 kg/m3. The water discharge and sediment feeding rates at
the flume inlet were set to 15 L/s and 2.5, 5, and 7 g/s, respectively. Each experiment lasted
for hundreds of hours. At the beginning of each experiment, the bed surface was flattened.
These long-term experiments are conducted via a sequence of short-term experiments that
last 8 hours. To prevent the destruction of the bed topography, these short-term experiments
are launched with very low flow discharge. During the experiment, the water discharge
and sediment feeding rates were kept constant [30]. Experiment 1 included 1566 scans, and
experiments 2 and 3 consisted of 741 and 3435 scans, respectively (in total 5742 scans, each
consisting of bed topography and flow depth data). Based on the entropy-based models,
we computed the depth-averaged velocity field using the flow depth data and knowing
the constant flow discharge as a constraint. In the next following sections, the details of
entropy-based models for inferring the velocity fields will be explained.
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Figure 2. Gravel-bed flume illustration in which all of the dataset has been gathered based on the
experiments performed on this channel. It has a 17 m length, but the useful length (removing 1.5 m
from each side) is 14 m.

Table 1. Input parameters of the experiments.

Exp. 1 Exp. 2 Exp. 3

Flow rate (L/s) 15 15 15
Flume slope (%) 1.6 1.7 1.6
Sediment feed rate (g/s) 2.5 7.5 5.0
Duration (hours) 250 556 118

During an experiment, measurements of the bed topography and flow depth are
recorded with a fine resolution. The bed topography is measured by laser-sheet imaging
technique, i.e., using two angled lasers. Those lasers are mounted on an automated
moving cart. Water disturbances, caused by a variety of factors (including turbulent flow
conditions, varying bed topography, sediment transport, and inflow/outflow perturbation)
can interfere with measurements. To overcome this issue, calibration is conducted prior to
the experiments. By calibrating the distance between two angled lasers projected on the
bed, the bed topography can be induced with a resolution of 60 × 281 pixels. Every 10 min,
the cart programmed to scan the bed proceeds using MatLab. Each scan takes about 145 s
and covers 14 m × 60 cm. During each scan, the bed topography is measured by lasers,
and the flow depth is measured by ultrasonic probes. The ultrasonic probes determine flow
height; a sound pulse is emitted and the traveling time between the sensor and the object
can be used to infer flow depth (see Figure 2).

The sediment feeding system operates as follows: It moves sediments from the hopper
to the flume’s inlet via a conveyor belt. Subsequently, these sediments are introduced into
the channel through a pin board, which spreads the gravel along the width with a Gaussian
distribution. The rate at which sediment is fed is regulated by controlling the speed of a
rotating cylinder that clogs up the hopper’s outlet. The most frequent mode happening
in the flume using the aforementioned flow, channel geometry, and sediment character-
istics is alternate bars. In Figure 3, the bed topography and alternate bars’ appearance
are illustrated.

Due to erosion, deposition, and transport processes, the bed topography changes
over time during the experiments. In turn, the hydraulic conditions in the system are
affected by the bed morphology, as a result of a feedback loop driven by the movement of
particles [30,31]. Based on the Froude number, Fr = v/

√
gh (where g is the gravitational

acceleration, v is flow velocity obtained by particle image velocimetry using tracking light
polystyrene balls, and h is flow depth measured by ultrasonic probes), the flow regime
was turbulent and super-critical with a Froude number of more than 1 [30]. Since the flow
depth is uniform at the beginning of each experiment—when there is no bed form— the
streamwise bed shear stress can be measured by τ = ρgRhS where Rh = hw/(2h + w) is
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the hydraulic radius, and ρ is fluid density. The shear stress is estimated by computing
its average value along longitudinal bed profiles [30,32]. The value of shear stress in
our experiments varies from 4.89 to 10.75 kg/m/s2. The Shields number and the shear
velocity can be obtained by τ∗ = RhS/R/d, and u∗ =

√
τ/ρ =

√
gRhS, respectively,

where R = (ρs − ρ)/ρ. The shear velocity varies in a range of 0.07 ≤ u∗(m/s) ≤ 0.10, and
the Shields number changes according to 0.05 ≤ τ∗ ≤ 0.11 among all experimental data.

Figure 3. An example of experimental topography using the gravel-bed flume. The bed and flow
heights are measured from the bottom of the flume. The initial height of the bed is 31.5 cm.

In order to have a suitable input/output image size for training the neural network,
we applied a bicubic interpolation over a 4 × 4-pixel neighborhood to the flow depth and
bathymetry data to change the size of the data, i.e, the bed topography and velocity fields
from 60× 281 pixels to 64× 256 pixels. Subsequently, the dataset was partitioned into three
subsets: the training dataset, the validation dataset, and the test dataset. The distribution of
the total number of samples was as follows: 80% for training data and 20% for validation
data. Moreover, the training data were again divided into 90% as the training and 10%
as the test dataset. Training and validation data will be used to fit the models and to
estimate the prediction error for model selection and hyperparameter tuning, respectively,
and, finally, a test dataset will be used to assess the generalization error of the selected
(best) model. The dataset is composed of 5742 pairwise (bed topography and velocity
field) grayscale images, and, therefore, the training, validation, and test datasets consist of
4133, 1149, and 460 data, respectively. The dataset is published attached to this work on
https://rb.gy/84l4hk, accessed on 19 November 2023. A total of 11,484 fields are included
in the published dataset, including both bed topography and depth-averaged velocity data.

2.2. Entropy-Based Velocity Profile

Entropy is defined as a measure of a system’s randomness or disorder and orig-
inated from thermodynamics [33]. Shannon was one of the pioneers who developed
entropy’s mathematical foundation and connected it to information [33]. To obtain the
one-dimensional and two-dimensional velocity profile, it is necessary to maximize the
entropy of the velocity distribution in order to obtain the least biased velocity probability
density function [34]. It is based on Jaynes’s principle of maximum entropy, which states
that any system in the equilibrium state attempts to maximize its entropy, subject to given
constraints [35]. The entropy of a flume/river must reach its maximum value when it
reaches a dynamic (or quasi-dynamic) equilibrium [36]. At any location where maximum
velocity occurs, the 2D velocity distribution based on entropy theory should be valid [33].

As aforementioned, during each experiment, bed topography and flow depth are
measured locally with high resolution. Since the flow discharge is fixed to a constant
15 L/s value during all the experiments, the constraint in the entropy-based models is
constant flow discharge. Then, the velocity profile can be obtained locally by maximizing
entropy. Estimating flow velocity can be achieved using a number of techniques. Two

https://rb.gy/84l4hk
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entropic principles are known as Shannon and Tsallis (this entropy is a generalization of
the Shannon entropy), which are often applied to river discharge assessment [33,37]. Both
of these principles connect the maximum flow velocity at a vertical axis of the flow area to
the cross-sectional mean flow velocity.

2.2.1. Shannon Entropy-Based Method

The usage of Shannon entropy to the open-channel flows has been shown by Chiu and
colleagues [38–40]. Entropy-based models have been in use in hydraulics for a number of
years, and we have some hindsight about their validity [34,41]. Building upon Chiu’s work,
Moramarco et al. [42] proposed a version of Chiu’s entropy-based velocity distribution
equation that can calculate the 2D velocity distribution using only the maximum velocity
and bathymetry information [34]. This model does not require parameter calibration or
the isovel equation and only requires knowledge of the maximum velocity and its position.
Generally, the maximum flow velocity occurs at the water’s surface; especially when
w/h > 3.5, the maximum velocity occurs on the flow surface [43], which is true of our
experiments. The velocity equation can be expressed as follows [34,42]

u =
umax

M
log
[

1 +
(

eM − 1
) y

h− D
exp

(
1− y

h− D

)]
(1)

The equation for estimating the longitudinal velocity along the vertical axis (u) includes
several variables, namely the maximum flow velocity, and its depth from the flow surface
are represented by umax and D, respectively. The Shannon entropy parameter is symbolized
as M, whereas the variable y signifies the vertical position of the velocity with respect to the
bed topography. To determine the constant value of the entropy parameter, the following
equation can be used

um

umax
=

eM

eM − 1
− 1

M
(2)

The mean velocity over a cross-section um can be calculated if we know the flow dis-
charge and the section area, while umax is determined iteratively by knowing the maximum
velocity happening at the water’s surface. Water depth and bed topography during the
experiments were measured at a high spatial resolution, as detailed in Section 2.1. Our
measurement system provided matrices with dimensions of 60× 281 elements (width by
length). For each of these 16,860 elements, we computed the velocity field using entropy-
based models and a depth increment of dy = 0.1 mm by employing the algorithm described
below and using a trial-and-error approach. As a consequence, the size of the velocity vector
at each of these 16,860 elements depended on the water depth at that point. The algorithm
is as follows:

• Assume a maximum velocity (e.g., umax = 1 m/s) in the initial iteration;
• Calculate the section flow area A using the measured local flow depth data with the

assistance of the trapz function in MatLab;
• Determine the mean cross-sectional flow velocity um by dividing the flow rate Ql = 15 L/s

by the section area A;
• Compute the entropy parameter M based on Equation (2);
• Iterate over each set of 60 data points along the channel width, and calculate the

velocity profiles for the cross-section using Equation (1);
• Estimate the flow discharge Ql,est based on the calculated velocity profiles;
• Adjust the maximum velocity in the initial step and repeat the process until the error

err = Ql −Ql,est is less than 10−3.

The contour plot of the calculated velocity profile is plotted in Figure 4a. However,
for the sake of comparison, Tsallis’s entropy-based method has been applied to the same
cross-section (the methodology is explained in Appendix B). The velocity profile based
on the Tsallis entropy is plotted in Figure 4b. One can see that the velocity gets close to
1 m/s on the surface flow, which coincides with the measured flow surface velocity in the
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laboratory using the particle image velocimetry (PIV) technique by tracking polystyrene
balls traveling along the entire flume length [30]. By comparing the two velocity fields in
Figure 4a,b, there is no such difference in using each entropy model. We therefore decided
to use the Shannon entropy to calculate the velocity fields in all of our experiments.
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Figure 4. Velocity plot based on (a) Shannon entropy, and (b) Tsallis entropy for a cross-section in the
middle of the channel based on exp. 3 at t = 200 min. The border between the white and blue regions
indicates the bed topography for one cross-section.

2.3. Neural Network

We use the U-net architecture for our neural network model. In the main journal
paper, in which the U-net was introduced by Ronneberger et al. [27], the input and output
images were of different sizes and used to solve the segmentation problem. Since our
input/output is of the same size, we reworked the model by changing the convolution
function parameters and using the model as a regression problem. The U-net has been used
for segmentation [44–46], classification [47–49], and the regression problem [50–52].

It has already been mentioned that the U-net is divided into two parts. Firstly, a stan-
dard convolutional neural network architecture is used to perform the contracting process.
Leaky ReLU activation units are followed by multiple convolutions with padding in the
contracting path. The same structure is repeated several times. One of U-net’s key char-
acteristics lies in the expansive path, i.e., the second path. Using transposed convolution,
the feature map upsampled in each stage of the expansive path [27,53]. Afterward, we
concatenate the upsampled feature map with the corresponding layer from the contracting
path. Therefore, we obtain a U-shaped network, and, perhaps most importantly, contextual
information is propagated along the network, enabling a proper reconstruction of con-
text [27,53]. In this work, an upsampling followed by a convolution rather than a transpose
typical convolution is used instead.

These features allow the model to handle the spatial complexity required for the
pixel-wise regression tasks [54]. Its symmetric structure, combining both downsampling
(reducing the spatial resolution of the feature maps while increasing their depth and detect-
ing the important characteristics in the input image) and upsampling paths (identifying
the features while maintaining the spatial resolution of the input), allows for the effec-
tive capture of multi-scale spatial information, which is essential for accurate regression
predictions [27,55].

The implementation is based on the Pytorch deep learning framework [56]. Table A1
in Appendix A shows the structure of the U-net used in all our tests with details of the
different layers. The schematic of our neural network architecture can be seen in Figure 1,
in which a fully convolutional U-net is used. This is a famous architecture that uses a
number of convolutions at various spatial resolutions. This network differs mainly from
a regular encoder–decoder network in that skip connections are used from the encoder
to the decoder parts. By using skip connections, the network can use fine-grained details
learned in the encoder to reconstruct an image in the decoder [27,57]. No pooling is used,
and, instead, strides and transposed convolutions are used.
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The selection of U-Net’s hyperparameters, such as learning rate, number of epochs,
batch size, number of layers, activation functions, optimizer, dropout rate, and weight
initialization, has a substantial influence on its efficacy. Traditional procedures for hyperpa-
rameter optimization, such as grid search or random search [58], can be used, but they are
computationally costly. To solve this issue, some recent research has proposed methods
for refining the U-Net hyperparameters [59]. In this study, we used a variety of tests to
establish the best hyperparameters explained in Sections 2.3.1 and 2.3.2. However, for some
hyperparameters, such as batch size, the selection method involves trying out several
values and selecting the best one by using a random search strategy.

2.3.1. Basic Parameters

In order to tune the training hyperparameters such as learning rate and learning rate
decay, we have studied these hyperparameters, following Thuerey et al. [50], using the
baseline architecture. The learning rate is a tuning parameter of the optimizer function
that determines the step size taken by the optimizer at each iteration while moving toward
a loss function minimum. Figure 5a shows the validation loss using different learning
rates varying in a range of [10−5, 10−1]. The validation loss is computed by employing
the mean absolute error (MAE-L1 loss) as the metric, which measures the disparity be-
tween the bathymetry field ŷ derived from the validation dataset and the bathymetry
field predicted by the neural network model, denoted as y. The MAE is calculated by
summing the absolute differences between the predicted values (y) and the actual values
(ŷ), divided by the total number of validation dataset size, denoted as N being expressed as:
MAE = 1/N ∑N

i=1 |ŷi − yi|. The error bar, which represents result uncertainty, is calculated
by repeating the same configuration four times. As can be seen, it is clear that the lowest
and largest learning rates result in the highest validation loss. Considering our problem,
we have the best learning rate at 10−2.

(a) (b)

Figure 5. (a) Effect of different constant learning rates in terms of validation loss, (b) testing models
based on validation loss with and without learning rate decay versus training dataset size.

With gradient-based optimization algorithms, saddle points can be approached,
and training takes a longer time since the surfaces around such points are flatter and the
gradients are close to zero [60]. Therefore, rather than using a fixed value for the learning
rate, it could be decreased over time. If training no longer improves our loss, the learning
rate is changed; every iteration is based on some cyclic function f . The number of iterations
in each cycle is fixed. By using this method, the learning rate is allowed to vary cyclically
between reasonable boundaries. We can traverse saddle point plateaus more quickly when
we increase our learning rate since we are less likely to become trapped in unfavorable
states such as saddle points. We have performed a test: in it, the learning rate decays by a
gamma factor in every epoch that is set to be γ = 0.99, i.e., lrepoch = γ× lrepoch−1. Figure 5b
compares validation loss based on this strategy—comparing constant and varying learning
rate factors. We found out that the learning rate decay does not help the improvement
of the model based on validation loss comparison; for nearly all training dataset sizes,
the validation loss when using learning rate decay is greater than that with a constant
learning rate, and it helps decrease diversity around the mean value.
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Based on the tests in Figure 5a,b, we used the Adam optimizer [61] with a fixed learning
rate of 0.01 and β1,2 = [0.5, 0.999] for the rest of the training optimizations. In addition to a
nonlinear activation function, each of the network sections contains a convolutional layer,
batch normalization, and dropout layer (refer to Table A1 in Appendix A). In the model,
we included the possibility of normalizing batches. During training, it shifts and rescales
according to the mean and variance estimated on the batch. The literature has proven that
batch normalization makes the training process faster and smoother [62,63]. However, it
requires a sufficiently large batch size, and our choice of batch size is 100. We did not use
any pooling for the training process.

2.3.2. Regularization and Hyperparameters

The idea behind regularization is to reduce the complexity of the neural network
model and inhibit overfitting—that is, the model learns unnecessary details, noises, or
random fluctuations in the training data as main concepts, insofar as it negatively impacts
the model’s performance. It is essential to study this when using deep learning algorithms.
For example, dropout, weight decay, data augmentation, and weight initialization are the
most often used regularization techniques. Following Thuerey et al. [50], these techniques
are studied and discussed in the subsequent analysis.

The choice of initialization is highly influential on deep learning algorithms when
training deep models. Algorithm converge-ability can be determined by the initial point,
with some initial points being so unstable that numerical difficulties arise and the algorithm
fails. The weight initialization of a neural network consists of setting its weights at small
random values, which determine the starting point of the optimization when training.
In order to prevent layer activation outputs from exploding or vanishing gradients during
training, an appropriate initialization of the weights is necessary and manages to achieve
better performance. The following are the most widely used, among others, when dealing
with convolutional layers: the constant initialization, the He normalization [64], and the
Xavier normalization [65]. In deep networks, the performance of the constant initialization
scheme usually is subpar [60]. We chose not to use constant initialization because it sets
all computing units to the same state, resulting in symmetric or identical outputs and
gradients during backward propagation. This symmetry restricts the flexibility of our
network; hence, we chose not to use constant initialization. We experimented with two
other initializations for our networks: the He and Xavier normalizations. The former seems
to lead to slightly better performances than the latter. We therefore stuck to that one. Based
on the He initialization method, initialization is based on a randomly generated number
computed with a Gaussian probability distribution with a mean of zero and a standard
deviation of

√
2/n, where n stands for the number of inputs to the node [64].

We can go one step further by adding mechanisms specifically designed to facilitate
the training, such as dropout [66]. Dropout consists of randomly dropping out neurons in
a layer, with a probability that corresponds to the dropout coefficient. We implemented
the possibility to include it in the model. This technique’s main advantage is that it
prevents overfitting as the neurons of a layer become less dependent on particular inputs.
In Figure 6a, the influence of the dropout is studied, which has a negative effect on the test
error. As the dropout rate decreases, the test error tends to converge to zero. Therefore,
the dropout is not recommended for this study, and it is considered to be zero for the rest
of the training. The reason may be that dropout is usually unnecessary when the network
is small compared to the dataset. Adding this regularization will worsen the performance
if the model’s capacity is already low.

In order to further improve the models’ performance, we can also use the weight decay
technique, which holds greater significance for fully connected neural networks compared
to convolutional neural networks. This approach consists of adding a penalty to the model
based on the amplitude of its weights in order to limit overfitting [67]. The model will be
penalized all the more as the values of the network connections increase. This strategy is
based on the principle that large weights in a neural network can cause more variance at
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the output and prevent the model from generalizing correctly. The penalty forces weights
down and permits a less flexible network that is less specialized in the data used for training.
This penalty is defined as follows: Lweight_decay = λ ∑i ω2

i , where Lweight_decay is the penalty
associated with weight decay, ωi is the i−th weight in the network, and λ is a positive
coefficient that affects the importance of the penalty [68]. This parameter has yet to be
determined, so we carry out training with several values of λ as presented in Figure 6b, in
which the validation and training loss are plotted as a function of the weight decay factor.
Losses for a weight decay factor larger than 10−4 start to increase while losses for a lower
weight decay reach a plateau. The training time using a different weight decay factor does
not change dramatically; therefore, the best weight decay can be chosen by just paying
attention to the losses in which 10−6 is the best for the rest of the training.
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Figure 6. (a) Test error as a function of the dropout rate for a model with 142,689 training parameters,
(b) illustrates the influence of the weight decay factor on the training and validation performance.

Data augmentation is a technique in deep learning methods that increases the amount
of a training dataset by leveraging existing data, often via techniques involving alterations
in position and color, among others. In physical applications, it is also feasible to employ
data augmentation, as presented in Ghorbanidehno et al. [13]. Nevertheless, as evidenced
by the results detailed in the subsequent subsection, when evaluating the adequacy of data
volume relative to the model’s complexity through validation error comparison, it becomes
apparent that the existing data volume suffices. Consequently, in this study, we refrained
from employing any data augmentation techniques.

3. Results and Performance
3.1. Model Performance

To investigate the impact of a neural network model’s complexity on the accuracy of its
predictions, in the following training runs, the total amount of weights is modified by vary-
ing the number of feature maps. For instance, the total weights will quadruple by duplicat-
ing the number of input channels [50]; hence, by manipulating the number of input/output
channels, we can investigate diverse model complexities. Figure 7 shows the accuracy re-
sults for five distinct network sizes, namely networks with {9.3, 36, 143, 567, 2300}k training
parameters, as a function of various dataset sizes including {0.25, 0.5, 1, 2, 4}k data.

A network with 9.3k training parameters is relatively small for a generative neural net-
work with 1× 64× 256 = 16k outputs, but it allows for a faster training time and prevents
overfitting in view of the relatively small dataset with which we are working. Nevertheless,
a network comprising 2.3 m training parameters faces challenges concerning time con-
straints and lacks generalization capabilities due to its relatively small training dataset. The
number of training parameters is a crucial number to keep in mind when training neural
networks. It is easy to change and increase it and end up with a network with millions of
parameters; then it is highly probable that we will be faced with all kinds of convergence
and overfitting issues. To avoid the dimensionality curse, the number of parameters must
match the amount of training data, as well as scale with the network’s depth [69]. The exact
relationship between these three depends on the problem under consideration.
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(a) (b)

Figure 7. (a) Validation loss and (b) relative error for various model complexity and training
dataset size.

In Figure 7a, various models with different complexities—the number of training
parameters—perform differently when applied to 1149 velocity fields from the test dataset.
As depicted in Figure 7a, both the error and error bar tend to be larger when training
occurs on a small dataset size. Conversely, as the dataset size increases, the error and
error bar decrease. Furthermore, for a large dataset size, increasing the number of training
parameters leads to a decrease in the validation error. However, for a small dataset size,
augmenting the number of training parameters results in an increase in the validation error
due to overfitting to the data.

In Figure 7b, the relative error (RE) is computed using the formula: RE = 1/N ∑N
i=1

|yi − ŷi|/ŷi, where ŷ refers to the ground-truth bed elevation, y represents the estimated
bed elevation calculated based on the neural network model, and i counts the sample
data. The curves in Figure 7b show the relative errors for various model sizes and training
dataset sizes. For a given number of training samples, there exists a slight variation among
the relative errors of different model sizes. However, the decrease in error is comparable
when larger amounts of training data are utilized. Once again, the error bar reduces as the
dataset size increases. When dealing with the smallest dataset size, an increase in training
parameters leads to a corresponding increase in relative error. However, this behavior
reverses for larger dataset sizes. Based on the findings in Figure 7, the most optimal model
seems to be the one with 2.3 m training parameters, achieving an L1 loss of 0.16 cm and
a relative error of 0.5% when trained on a 4k dataset size. However, this model requires
a considerable training time of approximately 2 h. In comparison, smaller models show
faster training times, taking {0.31, 0.39, 0.59, 0.97, and1.8} hours—from the smallest to the
largest model for 600 epochs-, when applied to a 4k dataset size.

Considering both the execution time for training and the performance metrics, we
have ultimately chosen the model with 143k trainable parameters as the best model. This
model exhibits a relative error of 0.85% and a validation loss of 0.26 cm when trained on
the 4k dataset size. These results demonstrate that the model has been effectively trained
and can generate accurate predictions within a reasonable timeframe.

Figure 8a shows the best neural network is trained properly without overfitting—given
that the training and validation loss plots did not exhibit divergence. After 600 epochs,
the validation and training losses should have decreased from an initial value of around
8.9 cm to 0.02 cm based on the standard settings. It is visually easy to see the loss curves
trend downward for 100 epochs, and, afterward, the curve flattens out. As we move
toward the end by increasing the number of epochs, the validation loss is still decreasing
slowly, and, most importantly, it is not increasing. Nevertheless, achieving a training loss
reduction of more than 0.02 cm will come at the expense of increased training time without
a significant improvement in the loss compared to previous epochs. A divergent validation
loss from the training loss would indicate overfitting, which is something we should avoid.
The graph illustrates that the models do not exhibit overfitting over time and reach stable
levels of validation and training losses after 600 epochs.
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Figure 8. (a) Training and validation losses for learning rate 0.01; (b) histogram plot of the L1 norms
of prediction errors (applied to 460 test samples).

To study the neural network model performances, in which we have tuned the pa-
rameters in the previous parts on a larger number of training and validation datasets, we
perform an error measurement for all the test datasets. The best model is applied to the
test dataset, and the L1 error is calculated. Figure 8b shows the distribution of the L1 error
varying in a range of [−0.32, 0.24] cm. The 50th (or median) and the 95th (meaning that
only 5% of the samples exhibit a greater L1 error) percentiles are −0.041 cm and 0.058 cm,
respectively, with a mean of -0.045 cm. This means that the L1 error of the examples in
the test dataset predicted by the neural network model lies close to zero. The maximum
error is 3.2 cm, and the bed topography changes at an interval from 18.19 cm to 37.02 cm,
meaning in an 18.83 cm range.

3.2. Model’s Predictions

In this section, the best-trained network’s prediction capability may be investigated
further. By selecting the best model, namely the one with 143k training parameters, no
dropout, and a learning rate of 10−2, and by choosing 10−6 as the weight decay factor
and using the whole dataset, i.e., 4133 data points for the training, the final neural network
is established and used for studying accuracy and performance in different case scenarios,
i.e., the test dataset, a numerical simulation, and real-world case scenarios.

3.2.1. Model’s Predictions Based on Experiments

A part of the dataset (460 data points) is kept for testing the neural network model’s
prediction power. The velocity fields in the test dataset feed into the neural network
and the prediction is examined by comparing them with the ground truth (experiments).
The accuracy of the model is shown in Figure 9 so that each column represents one of the
bathymetry in the test dataset. The first row is the ground truth of the bed topography,
and the second row shows the predicted bathymetry using the neural network model.
The differences between the aforementioned topography fields (ground truth—prediction)
are presented in the third row. The mean error among all of the test datasets is 0.045 cm,
while the topography varies in a range of 18.8 cm.

To quantify the model’s prediction further, the topography over a longitudinal axis
along the flow direction is compared in Figure 10 with the neural network model’s pre-
dictions. The data presented from the first to third columns of Figure 10 correspond to
the respective data from the first to third columns of Figure 9. The longitudinal axes are
located z = 5, 30, and 55 cm from the down wall. The black and red solid lines represent
the prediction and the ground truth (experimental data), respectively. As can be seen,
the curves’ variations are finely reproduced, and the values coincide very well. This allows
us to conclude that hyperparameters related to the training and the architecture of the
neural network model are chosen properly and provide sufficient accuracy. In addition to
the validation of the model based on the test dataset, the numerical simulation performed



Water 2023, 15, 4055 13 of 23

and field data measurements are used for comparison with the model’s prediction in
Sections 3.2.2 and 3.2.3, respectively.

Figure 9. Qualitative result of the U-net: the first row is the normalized bed topography fields from
the test dataset (ground truth). The second row contains the images that are predicted by the U-net.
The third row contains the error images (ground truth—prediction).

Figure 10. Each column belongs to one experiment. The first row is the profile of the bed topography
along the channel length at z = 5 cm from the down wall, the second row is the profile at z = 30 cm,
and the last row is the bed topography at z = 55 cm. Ground truth is shown by red, and prediction
by black color.

3.2.2. Model’s Predictions Based on Numerical Simulation

In Section 3.2, the model was applied to the test dataset derived from experiments
conducted at LHE-EPFL [30], and it yielded precise predictions. Since the model is trained
on the same experimental dataset (the training part of the dataset), the model prediction
using the test dataset in Section 3.2.1 just shows us the model is well trained and that,
if someone applied the model to the gravel-bed laboratory channel, they could obtain very
accurate results. An important question would be about the model’s accuracy in the other
applications. In order to further study the model’s prediction power, the model will be
compared with the simulation performed based on Iber 2.5.1–hydraulic software for the
simulation of free surface flows [70].
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A gravel-bed flume is simulated based on Iber. A flume with a Q = 15 L/s flow
discharge, 1% slope, 10 m length, and 0.5 m width, using a uniform structured mesh grid
with 100 elements in the flow direction and with 10 elements in the transversal direction,
has been simulated with a final time of t f = 7200 min. The virtual flume dimensions
differ from the dimensions of the flume on which the model is trained (0.6 m by 14.0 m).
In spite of the difference in size, the trained model can be applied to the simulation flume.
Additionally, using the resize function from the OpenCV library with bicubic interpolation,
the image size is increased to 256× 64 elements, allowing it to be fed into the ML models.
The mean particle diameter is considered 7 mm in addition to using a Manning coefficient
of 0.025 and choosing Meyer-Peter and Müller (MP-M) as the bedload model on the
software. The simulation input parameters are intentionally selected to be close to the input
parameters of the experiments upon which the neural network is trained.

The inlet boundary condition is set to a constant flow discharge, and an open boundary
condition for the output has been chosen. Afterward, the velocity field and the topography
at the end of simulation time, namely t f = 7200 min, are extracted from Iber. The trained
neural network model has been applied to the depth-averaged velocity field extracted from
Iber, and the topography prediction from the neural network model has been compared
with the topography of Iber.

The top plot in Figure 11 is the channel bathymetry based on numerical simulation,
and the down plots are a comparison of the neural network prediction versus the bed
profile based on Iber on a cross-section at x = 1.0 m (left plot) and x = 5.5 m (right plot)
from the flume inlet. Figure 11 shows the neural network model’s prediction in comparison
with the ground truth (bathymetry from Iber), in which the prediction has a 25% maximum
relative error. The mean absolute error in the cross-section x = 1.0 m is 0.75 cm, while, at
the cross-section x = 5.5 m, it is 0.14 cm. However, gaining such a mean absolute error
is small in comparison to the range in which the bathymetry changes. This validation
shows that, as long as the flow and bed satisfy the mass and momentum conservation laws,
the trained model is robust and accurate predicts bathymetry for gravel-bed and shallow
flows. Despite finding out about the neural network model’s performance in laboratory
experiments and simulation, inquiring about model performance on the field data is a
natural question and an intriguing subject to examine. It will be answered in the next part.

Figure 11. (Up): bed topography based on simulation using Iber, (down): bathymetry comparison
of the Iber and neural network model. The red line is the Iber topography for a cross-section at
x = 1.0 m (down-left) and x = 5.5 m (down-right) from the flume inlet, and the black line represents
the neural network model’s prediction.
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3.2.3. Model’s Predictions Based on Field Data

Predicting the trained neural network model on the field data would be interesting
to investigate. Thus, we performed model predictions on a river located in east-central
Illinois state in the USA. The work of Lewis and Rhoads [71,72] on the confluence stream
provides the velocity measurements using the acoustic Doppler velocimeter (ADV—Nortek
Vectrino+) in addition to bed topography for three cross-sections. The experiments were
conducted at the confluence of the Kaskaskia River and Copper Slough (KRCS), positioned
at 40°04′34.1′′ N, 88°20′53.9′′ W, as can be seen in Figure 12. The width is about 20 m at
the confluence center and approximately 10 m downstream. ADVs mounted on a top-
set wading rod and placed at predetermined cross-sections within the flow were used
to determine the vertical velocity field. Three cross-sections, denoted as A, C, and E
(refer to Figure 12), were measured, and these measurements were utilized in our neural
network model for the purpose of inferring bathymetry. The sample volume for the
ADV is 0.125 cm3, and the sampling frequency is 25 Hz; it is configured in laboratory
mode [72]. ADV sampling was carried out with a downward-looking probe, 6 cm below
the surface, to position the sampling volume as close to the surface as possible [71]. A total
of 60–80 samples of 60 seconds in length were collected at three cross-sections during one
measurement campaign. Cross-sectional ADV measurements were obtained on the same
day. All field campaigns resulted in only a few centimeters of change in the water surface
elevation between the beginning and the end of the measurements, which is far less than
the average flow depth [72].

Figure 12. Left: Google Maps (2023). Modified map of the confluence of the Kaskaskia River with
the Copper Slough in east-central Illinois, USA. Retrieved from https://maps.google.com/, accessed
on 19 November 2023. The arrows show the flow direction. The red lines represent the cross-sections
where these measurements have been conducted. Right: comparison of the neural network prediction
vs. the field data measurements. The red and black lines represent the field measurements and neural
network model’s prediction, respectively.

Cross-sectional velocity fields are fed into the neural network model. Given the
disparities between real-world and experimental data, our approach involves model cal-
ibration [73,74]. The neural network model, trained on an experimental dataset, estab-
lishes a mapping function denoted as fm that connects the bathymetry and velocity fields:
yb = fm(v f ), where v f represents the velocity field, and yb represents the bathymetry field.
Due to differences between the real-world data distribution and the laboratory dataset, this
mapping function is adjusted to yb = α fm(v f ), with α as a constant calibration parame-

https://maps.google.com/
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ter [75–77]. After analyzing one of the cross-sectional datum, we determine the optimal
value for α to be 14.5, and this value is subsequently applied to the other two cross-sectional
data. The bathymetry predictions for the aforementioned cross-sections based on the cali-
brated neural network model are compared with the field data in Figure 12’s right-hand
side. The ground truth (field data) is shown with a red solid line, while the prediction of
the trained neural network model has been shown in black color.

The predictions’ absolute errors in comparison with the measurements in cross-
sections A, C, and E are 15.0, 15.6, and 6.6 cm, respectively, and the maximum relative
errors are 31.3%, 18.5%, and 8.3%, respectively. However, the maximum relative error and
the absolute error are still small compared to the approximately 100 cm depth of the river,
and these errors could be decreased by adding a part of the field data to the training dataset,
enhancing the number of training data, or using a more complicated model with more
layers and training parameters.

4. Discussion

This work is concerned with imaging topography from the depth-averaged velocity
field, which can be obtained more easily with a lower cost rate than the bed topography
direct measurement. The network connects the velocity field and bathymetry. The U-Net
is chosen for this purpose. The U-Net architecture is unique. It was first introduced for
image segmentation to overcome the problem of limited training samples in the medical
field—where image capturing may be expensive [45]. Its main strength is its capacity to
deliver good results even with a limited amount of data, thanks to its structure. Indeed, it
is able to keep traces of global and local information by analyzing the image at different
scales and preserve detailed features through skip connections [27]. Skip connections from
the contracting path help to retain the pieces of spatial information that were lost in the
contracting path, allowing the decoder layers to more accurately detect features.

According to our tests (refer to Figure 7), error reduction requires an increase in the
training dataset; use of a more complicated convolutional neural network model, such as
increasing the number of feature extractions; and network layers at the cost of an increased
training time. In addition, the relationship between model size and relative errors for a
fixed number of training samples can be seen in Figure 7. Notably, even with the same
number of training samples, different model sizes exhibit slight variations in relative errors.
However, as the volume of the training data increases, the overall decrease in error remains
comparable across various model sizes. When considering the smallest dataset size in
Figure 7, augmenting the number of training parameters results in a corresponding increase
in the relative error. However, this trend reverses when dealing with larger dataset sizes.
Intriguingly, the model containing 2.3 m training parameters achieves the best relative
error of 0.5% when trained on a 4k dataset. Nevertheless, it demands substantial training
time, making it less practical for certain applications. On the other hand, smaller models
exhibit faster training times while still delivering reasonably accurate results, which may
be sufficient for the given requirements.

In Figure 9, the lower row displays the magnitudes of errors produced by the model
when applied to flume experiments. These errors are relatively small in size, and their
distribution across the test dataset is depicted in Figure 8b, revealing that the mean value
of the errors is very close to zero. The reason for this favorable performance and relatively
small error in Figure 9 can be attributed to the model’s application on the test dataset.
Notably, the test dataset represents a portion of the same dataset on which the model was
originally trained. Consequently, this effective performance on the test data indicates that
the model has been well trained and that the hyperparameters have been appropriately
selected, allowing it to generalize well and produce accurate predictions when applied to
the flume experiments.

The trained convolutional neural network model used the depth-averaged velocity
fields, while field scientists usually measure surface velocities, for instance, by using the
particle image velocimetry method. Therefore, it was worth asking how much the error
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propagates when a field scientist feeds the surface velocity fields into the trained model in
this work. The experiments (which we have used in this work to train the neural network)
have been performed in a straight channel (no cross-stream secondary current), near the
steady state, with weak sediment transport. In these conditions, the velocity profile has
been obtained by Song et al. [78]. Figure 13 shows the flow velocity profile for a uniform
flow at various bed slopes 0.25 < S(%) < 1.5, and the discharge 30 < Q(L/s) < 130 is
measured by acoustic Doppler current profilers (ADVP). The log-law for the inner region
(y/h < 0.2) is presented with a red dashed line, and the Coles wake law could represent
the velocity profile in the outer region (y/h > 0.2) with a blue dot-dashed line. The black
solid line is the depth-averaged velocity profile.

As one can see, by increasing the flow depth, the depth-averaged velocity deviates
from the velocity profile, and the maximum relative error happens on the surface flow,
with a 16.8% magnitude. In order to know how this error was propagated in the model
prediction, we applied the trained convolutional neural network model to the surface
velocity of the field data and gained a 31.3% maximum relative error based on Figure 12.
Therefore, however, the training of the neural network model is based on the depth-
averaged velocity fields, but it is possible to use the surface velocity to infer bathymetry
while accepting several dozen percentages of relative error. A potential source of error
originates from the lateral velocity: in the trained model, the lateral velocity is virtually
zero compared to what we observed in real-world scenarios. However, we believe that this
issue does not prevent us from applying the model to real-world rivers.
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Figure 13. The red dashed line represents the log-law velocity profile in the inner region (y/h < 0.2)
where ū is the point velocity averaged for different experiments; u∗ is the shear velocity; y is the
distance from the top of the sediments; y0 = 0.2ks is the viscous sublayer; ks is the roughness height,
which is equal to d50; and Br=8.44 is the integration constant. The blue dot-dashed line is the velocity
profile in the outer region (y/h > 0.2), where κ is the Von Karman’s constant, Π = 0.108 is the wake
strength parameter, and δ is the distance between the bed and the point at which the maximum
velocity occurs; here, it is equal to h.

Another concern about this work was about the amount of data needed to suffice for
training the neural network. A test on the dataset size in Figure 5b shows that 4133 data
points were enough for this work’s purpose, since the error does not significantly decrease
after a 2500 dataset size However, having a 31.3% maximum relative error when the model
is applied to real rivers is good enough for real-world applications. Further accuracy
is possible using a more complicated model (which increases training time and needs
more datapoints in order to avoid overfitting), but whether it is necessary depends on the
application of the model. The proposed neural network model, trained on an experimental
dataset with 4133 data, was applied to the flume experiments in Figures 9 and 10, to the
numerical simulation in Figure 11, and to field measurements on a river in Illinois state,
USA, in Figure 12. All comparisons show an acceptable prediction of the model, meaning
that the model is trained properly and can be used for academic/industrial applications.
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The closer the conditions are to those under which the dataset was collected, the more
precise the predictions become. For instance, when deep learning models are applied
to a subset of the experimental data in Section 3.2.1, the accuracy of predictions is no-
ticeably higher. Conversely, if the flow conditions diverge from the conditions in which
the dataset was collected, such as when applied to real-world river data in Section 3.2.3,
the predictions become less accurate. In this section, the model is applied to the following
range of hydraulic values (where the model’s prediction relative error reached several
dozen percentages): the average depth of the upstream tributaries measured 51 cm, while
their average speed measured 0.31 m/s. Consequently, the model usage is recommended
for the aforementioned flow conditions, e.g., shallow flows over gravel-bed conditions.
This empirical observation explains why the simulation input parameters presented in
Section 3.2.2 were chosen to closely match the experimental conditions used to train the
neural network.

5. Conclusions

We applied the U-net with alternating convolutional layers to encode the velocity
field (which was estimated here using a statistical method), followed by alternating con-
volutional and upsampling layers to decode them and a final convolutional layer with
Leaky ReLU activation to infer the bed topography. The model contains skip connections,
which improves training efficiency. This network has a skipping layer, which allows the
decoding part of the network to have additional information about the encoding without
losing any information. The final neural network has been established according to the
tests performed in order to find out the best parameters: 143k trainable parameters with
no dropout, learning rate of 10−2, choosing 10−6 as the weight decay factor, and using
the whole dataset, i.e., 4133 data points for the training. The network is summarized in
Table A1.

The trained model does not require solving the shallow water equations numerically.
It constructs the solution (bathymetry) by just looking at the input data (velocity fields).
Overall, after studying the basic parameters and hyperparameters, and training a neural
network model, we have found the best model yields a good accuracy (less than a 1%
relative error for estimated bathymetry) when working on the test dataset (laboratory
experiments), less than a 20% maximum relative error when applying the model to the
numerical simulations (using Iber), and with a maximum 31.3% relative error by applying
the model to field data (the confluence of Kaskaskia River with the Copper Slough).

This work shows the possibility of using the U-net architecture for predicting the
bathymetry from the velocity field and provides a user-friendly tool for whoever has the
velocity field and is interested in deducing the bed topography. The user needs to be
aware that this is not a general model for every kind of flume or river. This work is based
on gravel-bed flume/river, and, therefore, the model provides accurate bathymetry for
gravel-bed rivers. The strength of the proposed model lies in its trained on experimental
data, and the neural network model avoids solving the partial differential equations that
govern the flow and bed, providing quick access to bed topography.
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Appendix A. Model Architecture

The neural network consists of a total of 12 layers, with each layer including activation,
upsampling, convolution, batch normalization, and dropout operations. Table A1 shows
the structure of the U-net used in all of our tests. The network weights were initialized
following He et al. [64]. After conducting some tests, we found out that dropout does not
aid learning by the model, so we do not use it. Instead, we utilize batch normalization.
Training was performed using Adam [61] with β1,2 = [0.5, 0.999] and ε = 10−8 parameter
values. The learning rate was kept at a constant value during training. A 0.01 learning rate
and a 100 minibatch size were used in all tests.

Table A1. Model summary.

Layer (Type) Output Shape Function Parameters

InputLayer [1, 256, 64]
Conv2-D-1 [16, 128, 32] nout/nin = 2, kernel size 4 × 4, stride = 2, pad = 1
BatchNorm2-D-2 [16, 128, 32]
Dropout2-D-3 [16, 128, 32] p = 0, inplace = True
LeakyReLU-4 [16, 128, 32] negative slope = 0.2, inplace = True
Conv2-D-5 [16, 64, 16] nout/nin = 2, kernel size 4 × 4, stride = 2, pad = 1
BatchNorm2-D-6 [16, 64, 16]
Dropout2-D-7 [16, 64, 16] p = 0, inplace = True
LeakyReLU-8 [16, 64, 16] negative slope = 0.2, inplace = True
Conv2-D-9 [32, 32, 8] nout/nin = 4, kernel size 4 × 4, stride = 2, pad = 1
BatchNorm2-D-10 [32, 32, 8]
Dropout2-D-11 [32, 32, 8] p = 0, inplace = True
LeakyReLU-12 [32, 32, 8] negative slope = 0.2, inplace = True
Conv2-D-13 [64, 16, 4] nout/nin = 8, kernel size 4 × 4, stride = 2, pad = 1
BatchNorm2-D-14 [64, 16, 4]
Dropout2-D-15 [64, 16, 4] p = 0, inplace = True
LeakyReLU-16 [64, 16, 4] negative slope = 0.2, inplace = True
Conv2-D-17 [64, 8, 2] nout/nin = 8, kernel size 2 × 2, stride = 2, pad = 0
BatchNorm2-D-18 [64, 8, 2]
Dropout2-D-19 [64, 8, 2] p = 0, inplace = True
LeakyReLU-20 [64, 8, 2] negative slope = 0.2, inplace = True
Conv2-D-21 [64, 4, 1] nout/nin = 8, kernel size 2 × 2, stride = 2, pad = 0
BatchNorm2-D-22 [64, 4, 1]
Dropout2-D-23 [64, 4, 1] p = 0, inplace = True
LeakyReLU-24 [64, 4, 1] negative slope = 0.2, inplace = True
Upsample-25 [64, 8, 2] scale factor = 2, mode = ’bilinear’
Conv2-D-26 [64, 8, 2] nout/nin = 8, kernel size 1 × 1, stride = 1, pad = 0
BatchNorm2-D-27 [64, 8, 2]
Dropout2-D-28 [64, 8, 2] p = 0, inplace = True
ReLU-29 [64, 8, 2] inplace = True
Upsample-30 [128, 16, 4] scale factor = 2, mode = ’bilinear’
Conv2-D-31 [64, 16, 4] nout/nin = 8, kernel size 1 × 1, stride = 1, pad = 0
BatchNorm2-D-32 [64, 16, 4]
Dropout2-D-33 [64, 16, 4] p = 0, inplace = True
ReLU-34 [64, 16, 4] inplace = True
Upsample-35 [128, 32, 8] scale factor = 2, mode = ’bilinear’
Conv2-D-36 [32, 32, 8] nout/nin = 4, kernel size 3 × 3, stride = 1, pad = 1
BatchNorm2-D-37 [32, 32, 8]
Dropout2-D-38 [32, 32, 8] p = 0, inplace = True
ReLU-39 [32, 32, 8] inplace = True
Upsample-40 [64, 64, 16] scale factor = 2, mode = ’bilinear’
Conv2-D-41 [16, 64, 16] nout/nin = 2, kernel size 3 × 3, stride = 1, pad = 1
BatchNorm2-D-42 [16, 64, 16]
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Table A1. Cont.

Layer (Type) Output Shape Function Parameters

Dropout2-D-43 [16, 64, 16] p = 0, inplace = True
ReLU-44 [16, 64, 16] inplace = True
Upsample-45 [32, 128, 32] scale factor = 2, mode = ’bilinear’
Conv2-D-46 [16, 128, 32] nout/nin = 2, kernel size 3 × 3, stride = 1, pad = 1
BatchNorm2-D-47 [16, 128, 32]
Dropout2-D-48 [16, 128, 32] p = 0, inplace = True
ReLU-49 [16, 128, 32] inplace = True
Upsample-50 [32, 256, 64] scale factor = 2, mode = ’bilinear’
Conv2-D-51 [1, 256, 64] nout/nin = 1, kernel size 3 × 3, stride = 1, pad = 1
Dropout2-D-52 [1, 256, 64] p = 0, inplace = True

Appendix B. Tsallis Entropy-Based Method

Tsallis introduced the generalization of Boltzmann–Gibbs–Shannon (known as Shan-
non) statistics [79]. According to the Tsallis entropy theory, the 2D velocity equation is
expressed as follows [33,34]

u
umax

=
2
G

[
G

y
h + D

exp
(

1− y
h + D

)
+

(4− G)2

16

]1/2

−
(

4− G
2G

)
(A1)

where the entropic parameter is denoted as G. Here, D = 0 (meaning that the maximum
velocity happens on the surface flow) because the flume is considered wide w/h > 3.5,
and, on the other hand, Song’s experiments emphasize this hypothesis [43]. The definition
of G is

um

umax
=

12 + G
24

(A2)

The mean velocity in a cross-section um is known based on reckoning the flow dis-
charge and the section area, while the umax is determined iteratively by the algorithm
expressed in Section 2.2.1, by knowing the maximum velocity happening on the flow
surface, assuming the maximum velocity in the first iteration, and correcting the maximum
velocity iteratively via calculation of the flow discharge—using the estimated velocity
profile and comparing it with the ground truth.
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