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ABSTRACT: Most materials involved in debris flows are made up of solid particles in water,
covering a large size range. When natural suspensions can be tested with the usual laboratory
rheometers, they exhibit a wide range of bulk rheological properties (time-dependent effects,
viscoplasticity, etc.) and flow effects (particle migration, shear localization). Such properties
are difficult to understand and describe in the framework of continuum mechanics, in which
they are most often expressed. A rheophysical approach is an alternative and fruitful way to
describe the dynamics of geosuspensions. This paper reviews the main notions that are use-
ful for understanding the rheological properties exhibited by natural mud suspensions. For
concentrated suspensions, emphasis is given to the role played by a percolating network of
coarse particles and the nature of contact between particles. Through a series of simple lab-
oratory experiments, it is shown that a wide range of rheological behaviors can be observed
by merely changing the particle size distribution.

1 INTRODUCTION
In engineering applications and zoning, it is of great interest to obtain accurate estimates of
the main features of debris flows (volume, flow depth, impact pressure, etc.). This has mo-
tivated the development of computational tools specifically devoted to this purpose. Among
the various approaches to computing debris-flow features, the fluid-mechanics approach has
been extensively used to obtain a set of equations describing the motion of a debris flow
from initiation to runout. Basically, these equations include mass and momentum balance
equations together with a rheological (or constitutive) equation. Though there are differ-
ent ways of expressing the equations of motion (local equations, depth-integrated equations,
etc.), there is a wide consensus on their reliability and degree of approximation. In contrast,
there is less consensus concerning rheological aspects: a large number of constitutive equa-
tions (Bingham, power-law fluid, Newtonian, etc.) have been proposed and used to describe
debris flow motion but it still is unclear whether this diversity reflects the variety in the rhe-
ological properties of the materials involved in debris flows or merely a disagreement within

1



the scientific community on this point. In the debate around the determination of the rheo-
logical properties, a number of rheometrical experiments on debris flow samples have been
performed to gain insight into their rheological behavior. To date, only partial evidence has
been provided since, even with very large rheometers, only materials with a limited range of
grain size can be tested and thus the question of how the full material behaves remains open.
For instance, in the case of debris flow samples collected from deposits in the Alps, various
rheometrical experiments have shown that the interstitial fluid behaves approximately as a
viscoplastic (Herschel-Bulkley) fluid; extending this result to the material in its entirety has,
however, been challenged.

The objective of this paper is to present the problem of the rheological properties of debris
flow from a different perspective: if the constitutive equation reflects the material’s mechani-
cal behavior on a macroscopic scale, it can also be seen as a result of the interactions between
particles and the interstitial fluid. The objective of this rheophysical approach is not only to
determine the constitutive equation but also to explain and interpret its origin from physical
considerations on the particle scale. I begin with suspensions of particles of approximately
equal size, which is the simplest and more extensively studied type of suspension. Although
Bagnold’s pioneering work may be seen as the first attempt to deduce bulk behavior from lo-
cal behavior in the area of particle suspensions, the theoretical foundations belong to Batch-
elor (1974). In the first part, I will outline the basics of this theoretical approach drawing
from Batchelor’s fundamental work. The key points in this presentation will be the notions
of regime diagram, one- or two-phase flow on the macroscopic scale, and the percolating
network of particles. It is fairly evident that equal-size particle suspensions cannot be seen
as prototypical of natural materials; since the general case of polydisperse suspensions is
overly complicated, a helpful approximation is to consider, in a first approximation, the case
of bimodal suspensions. Applications of this rheophysical analysis to debris flows will be
outlined in the conclusions.

2 AN OVERVIEW ON EQUAL-SIZE PARTICLE SUSPENSIONS

2.1 Local equations of motion
In the rheology of particle suspensions, the starting point in any rheophysical approach is to
examine the behavior on a particle scale, then to infer the bulk rheological behavior by using
an appropriate average process. In order to avoid overly general explanations, we assume that
(i) the interstitial fluid is Newtonian, with viscosityµ and densityρf and (ii) the particles are
rigid, spherical, and of equal size (radiusa, densityρp). Fluid motion is described by the
Navier-Stokes equations:

∂uf

∂t
+ uf · ∇uf = − 1

ρf

∇p +
1

ρf

∇ · σf (1)

∇ · uf = 0 (2)

whereuf is the fluid velocity,p is the generalized pressure (including the fluid pressure and
gravity potential), andσf is the stress tensor (hereσf = 2µd whered denotes the strain-rate
tensor). The equation of motion for the particle can be written in the following Lagrangian
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form:
dup

dt
= g+

1

mp

F(up,uf ) (3)

whereF(up,uf ) is the force field resulting from the interaction between the fluid and the
particle,mp is the particle mass, andup the velocity of the mass center.

To obtain a more physical picture of the fluid/particle interplay, we will introduce dimen-
sionless numbers and transform the equations above into dimensionless expressions. Let us
introduce a velocity scaleU for the fluid. The time scale for the fluid motion near the particle
is then:a/U . The characteristic time for the particle is defined as a relaxation time, that is,
the time needed for its velocity to vary substantially as a result of the fluid action. IfF is
the order of magnitude of the fluid-particle interaction, examining Eq. (3) leads to selecting:
tp = mpU/F . The equations of motion can now be written in dimensionless form as follows
(dimensionless variables have a tilde) :

Rep

(
∂ũf

∂t̃
+ ũf · ∇ũf

)
= −Pρfa

µU
∇p̃ + ∆ũf (4)

whereP is the pressure scale [hereP = µU/(ρfa)] and Rep = ρfUa/µ is the particle
Reynolds number. For the particle, one obtains:

St
dũp

dt̃
=

mp

F
g+ F̃(ũp, ũf ) (5)

where St= tp/tf is called the Stokes number. Two asymptotic regimes can be achieved
depending on the value of the Stokes number:

• StÀ 1. The fluid has no time to adjust its velocity to the variations in the particle
velocity and, conversely, the particle is not affected by the rapid variations in the fluid
velocity (but naturally it continues to be affected by the slow variations). In prac-
tice, this means that the fluid and the particle evolve in a quasi-autonomous way and,
therefore, their motion can be considered separately. On a macroscopic scale, such
suspensions retain a genuinely two-phase character and the equations of motion take
the form of two interrelated equations (one for each phase).

• St→ 0. The particle has time to adjust its velocity to any change in the fluid velocity
field. As an illustration, one says that the particle is the slave of the fluid phase. On a
macroscopic scale, this means that the suspension behaves as a one-phase medium.

From this discussion, one must keep in mind that, if in essence any particle suspension is a
two-phase material on a particle scale, the suspension can also behave as a one-phase fluid
on a macroscopic scale as. In addition the only asymptotic regimes for which it is possible to
deduce the fluid-particle interaction in a completely theoretical way are the regimes St→ 0
and Rep → 0 and St→ ∞ and Rep → ∞. More information can be found in the review
papers by Buyevich & Shchelchkova (1978), Herczynski & Pienkowska (1980), Koch &
Hill (2001), the book by Kim & Karrila (1991), and the article by Ancey et al. (1999).
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2.2 Bulk equations of motion
We now turn to the problem of a collection of particles in a Newtonian fluid, and more
specifically, we will try to build the bulk constitutive equation from the local equations of
motion (1) and (2). To this end, we consider a homogeneous suspension whose density
number in particles isn [n is related to the volume solid concentrationφ byn = φ/(4πa3/3)].
The basic idea is to average the local equations to obtain mean equations. To do this, we use
a “volume averaging” process, which involves taking the volume average (over a sufficiently
large volumeV) of any quantityf(x, t):

f̄(x, t) =
1

V
∫

V
f(x, t)dV (6)

Since we integrate fields that are defined only on either phase while the integration volumeV
includes both phases indistinctly, we define a characteristic functionH, which is zero in fluid
and unity in particle. By definition, we have:̄H = φ. Multiplying the equation of motion
(1) by1−H, then integrating, using basic relationships (e.g.,∇H = k), and after algebraic
manipulations, we find that the averaged equation of motion for the fluid phase is:

ρf

(
∂ūf

∂t
+∇ · ūf ūf

)
= −∇p̄ +

1

V
∫

Ap

(σf − p1) · kdA+∇ · 1

V
∫

Vf

(σf − ρfu′fu′f )dV (7)

whereVf (resp.Vp) is the sub-volume ofV including the fluid phase (resp. particle phase);
Ap is the frontier surface surroundingVp; k is a vector normal toAp; uf = ūf + u′f is the
Reynolds decomposition of the fluid velocity into a mean valueūf and a fluctuating termu′f .
Similarly, for the particle phase, we obtain:

ρp

(
∂ūp

∂t
+∇ · ūpūp

)
= φρpg+∇ · (σ̄p − ρpu′pu′p)− 1

V
∫

Ap

σp · kdA (8)

We should note that, at the particle boundaries, we have equality of the stress state, that
is: σp · k = (σf − p1) · k. In both equations above, a term

∫
Ap

σp · kdA has appeared: it
represents the momentum transfer between the two phases and plays a fundamental role in
the rheology of two-phase flows.

We now introduce a bulk velocity as the volume average velocity:ū(x, t) = ūp(x, t) +
ūf (x, t). A density average velocity can be built as well:ρ̄ūm = ρpūp + ρf ūf , with ρ̄ =
φρp + (1− φ)ρf . The two velocities do coincide exactly when the phase densities match
(ρp = ρf ) or approximately when one density is much larger than the other (ρp À ρf or
ρp ¿ ρf ). Adding Eqs. (7) and (8) provides the bulk equation of motion:

ρ̄

(
∂ūm

∂t
+∇ · ūmū

)
= −∇p̄? +∇ · 1

V
∫

V
(σ− (ρu)′u′)dV (9)

wherep̄? = Φ̄ + p̄f (with ∇Φ̄ = −ρ̄g). This form is very interesting provided it takes the
classic form of a momentum balance in a continuum, that is, only whenūm ≈ ū so that the
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terms in the right-hand side can be approximated by a material derivative. If so, the bulk
stress tensor is then:

σ̄ =
1

V
∫

V
(σ− ρu′u′)dV (10)

which is nothing more than the definition of the bulk stress given by Batchelor (1974). By
construction, this tensor can be broken into a fluid contribution and a particle contribution.
The latter takes the form (Ancey et al. 1999):

σ̄(p) =
1

V
∫

Ap

σ · xkdA− 1

V
∫

Vp

ρpu′u′dV + G(ωp) (11)

whereG(ωp) is an antisymmetric function of the particle rotational velocityωp (G vanishes
in most cases of interest). The second term in the right-hand side of Eq. (11) represents the
stress due to the flux of fluctuating momentum, a key ingredient in kinetic theory. The first
term represents the bulk stress generated by particle interactions. An alternative expression
of this term can be achieved by replacing volume average by ensemble average. In doing
so, one obtains:na < fk >, in which the brackets stand for the ensemble average andf =
σp · kdA = (σf − 1) · kdA+ fc is the total force acting on the particle boundary (fc is the
contact force exerted by a near particle).

2.3 Diagram of flow regimes
The treatment presented here has the great advantage of providing a comprehensive frame-
work for describing (and understanding) the bulk behavior of particle suspensions. The
results are consistent with those used in kinetic theories of granular materials (Reynolds
stress tensor), soil mechanics (Terzaghi’s principle, bulk stress in granular materials), and
two-phase flow theories [for more information, see the papers by Campbell (1990), and
Marchioro et al. (1999), and the book by Cambou (1998)]. To complete this framework,
how to compute the different terms in the bulk stress tensor equation must be specified [Eqs.
(10–11)]. There is no general theory for this purpose. Rigorous analytical results have been
obtained only for certain flow conditions (e.g. when Rep and St are much less than unity).
To progress in determining the rheological properties of particle suspensions, the basic idea
is to look for prevailing terms in Eqs. (10–11) according to the flow conditions. This is
done typically by dimensional analysis. For an interaction to be predominant, it must have
(i) a sufficient strength relative to others and (ii) time for its effects to influence the system.
In practice, most of the dimensionless numbers we use can be interpreted in this way. For
instance, the Stokes number can be seen as the ratio of particle/fluid relaxation times or the
ratio of inertia/viscous effects. Using a limited number of dimensionless numbers makes it
possible to outline the flow regimes in a single diagram(γ̇, φ) whereγ̇ is the shear rate (see.
Fig. 1) as suggested by Coussot & Ancey (1999). At low and moderate solid concentra-
tions, most of these regimes are well identified and there is an abundant literature that can be
consulted (see the review papers given in the references).

Lagging behind, the study of very concentrated suspensions dates back to the pioneering
work of Bagnold. Though today challenged in his theoretical and experimental developments
[see the paper by Hunt et al. (2002)], Bagnold’s work contains, however, important elements
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Figure 1: Simplified diagram of flow regimes. The transitions between regimes are described using
dimensionless numbers: The Péclet Pe= 6πµa3γ̇/(kT ) (T the temperature,k la Boltzmann constant)
for the transition between Brownian (thermal agitation of particles) and viscous regimes; the repulsion
number Nr= Ψ/(kT ) (with Ψ the van der Waals interaction potential) for the transition between the
colloidal and Brownian regimes;Γ = 6πµa3γ̇/Ψ is a number reflecting the ratio between viscous
and colloidal interactions; the particle or flow Reynolds number is used for the transition towards
turbulence; the Leighton number Le= µγ̇a/(εσn) (with εa the mean distance between the surfaces
of two close particles) for the transition between the viscous and frictional regimes; the Bagnold
number Ba= ρpγ̇εa/µ is used for the transition between the viscous and collisional regimes.φm

denotes the maximum random solid concentration (φm ≈ 0.635 for spherical particles of equal size)
andφc is the minimum concentration for a network of particles in close contact to form (φc ≈ 0.5 for
spherical particles of equal size).
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Figure 2: Simulation of force network within a granular flow. Lines represent the normal forces
transmitted by the network of particles (cylinder of various size); the line thickness is related to the
force strength. The channel slope is18◦. Courtesy of M. Prochnow and F. Chevoir.

for understanding concentrated suspensions and has been the springboard for subsequent
theories on granular suspensions, notably kinetic theories. At approximately the same time,
a French engineer, Dantu, used photoelastic PVC cylinders to demonstrate that in granular
assemblies, contact forces were transmitted through a network of particles in close contact.
The formation of such a network of particles in contact (here contact is taken very broadly)
has important implications in terms of bulk rheological behavior and may be associated with
a number of striking phenomena (dilatancy, jamming, shear localization, etc.). Figure 2
shows a typical network obtained by Prochnow and Chevoir using a Contact-Dynamics nu-
merical model. At the base of the flow, it can be seen that there is a significant increase in the
normal force experienced by particles belonging to the network while, for particle clusters
surrounding the percolating network, the force chains are much weaker (vault effect). This
statistically heterogenous distribution of forces implies that very different types of particle
interaction can occur, depending on whether the particles belong to a percolating network or
not [see typical examples in the case of the frictional-collisional regime for granular flows
given in the articles by Ancey & Evesque (2000) and Ancey (2002)].

Another striking property of concentrated particles is that contact is a strongly nonlin-
ear process involving a great variety of physical phenomena (lubrication, elastoplastic de-
formation, etc.). For instance, two near-contact particles can be separated by a very thin
film, which prevents particles from making contact(lubricated contact) or conversely from
separating(stuck particles). To determine the prevailing particle interaction(s), a number of
dimensionless numbers turn out to be helpful (see caption of Fig. 1). Taking the example
of lubricated contact once again, we find that its effect on bulk dynamics can be evaluated
by computing the so-called Leighton number Le, defined as the ratio of the lubrication force
3πµac/(2ε) (wherec andεa denote the relative particle velocity and the surface-to-surface
distance) and the buoyant normal stressρ′gh [whereρ′ = φ(ρp − ρf ) andh are the buoyant
density and the depth at which the particle locates with respect to the free surface]. Note
that, in this definition, we use the buoyant stress (i.e., the weight of the column above the test
particle minus the fluid pressure) and not the buoyant mass of the particle since it can belong
to a percolating network. In the regime diagram (see Fig. 1), we consider that there are three
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Figure 3: Variation in the dimensionless shear stress as a function of the dimensionless numberΓ.
The line slope is unity and indicates a linear variation ofS with Γ

possible regimes depending on the predominant contact type between particles (frictional,
lubricated, collisional).

2.4 Experimental evidence
In order to study the influence of lubricated contact on bulk dynamics and provide evidence
of the key role played by the particle network in the rheological properties of highly concen-
trated suspensions, we studied a number of suspensions made up of glass beads and various
interstitial fluids: air (µ = 1.8× 10−5 Pa.s), water (µ = 10−3 Pa.s), water-glycerol solution
(µ = 0.96 Pa.s,ρf = 1260 kg/m3), and water-kaolin dispersion. The particle diameter was
either 0.3 mm, 0.8 mm, 1 mm, 2 mm, or 3 mm.

Determining the rheological properties of particle suspensions is somewhat difficult due
to the presence of the coarse fraction. We therefore used a vane-shear cell. This involved
equipping the Haake Rotovisco MV5 rheometer with a four-blade vane centered around a
vertical shaft. The blade was 30 mm in radius (R1) and 60 mm in height. The cell was
55 mm in radius (R2) and 90 mm in depth, with smooth walls. This technique from soil
mechanics is now increasingly used in rheometry of suspensions [Barnes & Nguyen (2001)].
More information on the experimental procedure and results can be found in the papers by
Ancey & Jorrot (2001a) and Ancey (2001b).

Figure 3 shows the variation of the dimensionless shear stressS = τ/(ρgh) (whereτ de-
notes the shear stress andh is the thickness of material sheared by the vane) as a function
of a dimensionless numberΓ = µΩ/(ρ′gh) (whereΩ is the rotational speed of the vane),
akin to a dimensionless shear rate (we replace the shear rate by the rotational speed because
determining the actual shear rate for a large-gap rheometer and a material with varying rheo-
logical properties is very delicate). Let us note that this number is very close to the Leighton
number introduced above (if we takec = O(Ωa)). Though the experimental curve reported
in Fig. 3 does not provide the proper flow curve (i.e., theτ − γ̇ relationship) it can provide
an approximate idea of this flow curve.

At low shear velocities (Γ ¿ 1), shear was localized within a narrow cylindrical band
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around the vane, with a typical thickness of approximately 10 bead diameters independently
of Γ. We found thatS is independent ofΓ which implies, when we return to dimensional
variables, that: (i)τ ∝ σzz (whereσzz denotes the vertical normal stress) and (ii)τ does not
depend on the shear rate. These are two features of the frictional regime.

At high rotational speed, all the material was sheared in the gap. We observed thatS ∝ Γ,
that is, in terms of dimensional variables,τ ∝ γ̇. The bulk behavior is similar to a Newtonian
fluid for these flow conditions.

A striking result of this experiment is that it is possible to observe very different bulk
rheological behavior by merely increasing the shear rate and keeping the solid concentration
fairly constant.

3 BIMODAL SUSPENSIONS
Natural suspensions usually involve broad particle-size distributions and particles of different
chemical compositions. Thus, the approximation of equal-size particle suspension is most
often useless. A first step in modeling polydisperse suspensions is to consider as many size
grades as there are different types of particle interaction. However, there are many different
types of particle interaction depending on the particle size, shear rate, solid concentration,
ion concentration, and temperature: Brownian effects, colloidal surface forces (electrostatic
attractive forces and van der Waals attractive forces), viscous forces, and contact forces (lu-
brication, solid friction, collision). Therefore, in the general case, determining the chief
interactions within a suspension with a wide size distribution is difficult. Here we examine
a limiting case of very concentrated suspensions with a bimodal size distribution, which is
much easier to understand. The fine fraction is made up of colloidal particles whereas the
coarse fraction includes large non-colloidal non-Brownian particles. As shown by Sengun
and Probstein (1989 a,b), when the concentration in coarse particles is low to moderate, it
is still possible to return to the equal-size particle suspension approximation. For very con-
centrated suspensions of coarse particles, interactions between particles are generally the
key process in bulk stress generation and I will provide some experimental evidence for the
diversity in the rheological properties of these materials.

3.1 An overview of moderately concentrated suspensions
Sengun and Probstein (1989a) have suggested that it is possible to consider polydisperse
suspensions made up of fine (colloidal) and coarse (noncolloidal) particles as bimodal sus-
pensions. Their explanation consists of two approximations. First, as it is the interstitial
phase, the dispersion resulting from the mixing of fine colloidal particles and water imparts
most of its rheological properties to the entire suspension. Secondly, the coarse fraction is
assumed to act independently of the fine fraction and to enhance the bulk viscosity. They
introduced anet viscosityµnr of a bimodal slurry as the product of the fine relative viscosity
µfr and the coarse relative viscosityµcr. The fine relative viscosity is defined as the ratio of
the apparent viscosity of the fine-particle suspension to the viscosity of the interstitial fluid:
µfr = µf/µ0. The coarse relative viscosity is defined as the ratio of the apparent viscosity
of the coarse-particle slurry to the viscosity of the fine-particle suspension:µcr = µc/µf .
The two relative viscosities depend on the solid concentrations and a series of generalized
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Figure 4: Variation of the bulk viscosity of coal slurry as a function of the shear rate. The bulk
viscosity curve is parallel to the curve obtained with the fine fraction. After Sengun and Probstein
(1989b).

Péclet numbers. For the coarse-particle suspensions, all the generalized Péclet numbers are
much greater than unity. Using a dimensional analysis, Sengun and Probstein deduced that
the coarse relative viscosity cannot depend on the shear rate. In contrast, bulk behavior in
fine-particle suspensions is governed by colloidal particles and thus at least one of the gen-
eralized Ṕeclet numbers is of the order of unity, implying that the fine relative viscosity is
shear-dependent. Sengun and Probstein’s (1989b) experiments on viscosity of coal slurries
confirmed the reliability of this concept. Plottinglogµnr and logµfr againstlog γ̇, they
found that over a wide range of concentrations, the curves were parallel and their distance
was equal tologµcr (see Fig. 4). However, for solid concentrations in the coarse fraction ex-
ceeding 0.35, they observed a significant departure from parallelism, which they ascribed to
nonuniformity in the shear rate distribution within the bulk due to squeezing effects between
coarse particles. In this case, it may be suspected that coarse particles begin to interact.

3.2 Concentrated bimodal suspensions
A solid theoretical rheophysical analysis of bimodal suspensions (including colloidal and
noncolloidal) is beyond our current capacity. The approximation proposed by Sengun and
Probstein is very helpful for a fairly wide range of solid concentrations but fails at high solid
concentrations in coarse particles, as I will show through two typical experiments.

3.2.1 Yield stress of a bimodal suspension
When added to water, kaolin particles form a viscoplastic dispersion. Yield stress is directly
connected with the solid concentration in kaolinφk. For instance, Zhou et al. (1999) have
shown that:

τc ∝ (φk/(1− φk))
c (12)
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Figure 5: Variation of the bulk yield stress.

The question is: what happens when coarse particles are added to this dispersion. At first
glance, since the volume occupied by the colloidal particles is decreased, the bulk yield stress
should decrease and, to first order, we should have:

τ ∝ (φk/(1− φk))
c (1− φc) (13)

whereφc is the coarse-particle concentration. To test this expectation, I measured the bulk
yield stress of kaolin suspensions to which I added a given amount of coarse particles. Due
to the large size of coarse particles used (typically 1 mm in diameter) relative to the gap
size of conventional rheometers, I used the slump test method as described by Pashias et
al. (1996). In order to test the influence of size distribution of coarse particles and particle
roundness, equal-size glass beads, bimodal mixtures of glass beads, and sand were used as
coarse particles.

Figure 5 shows typical results obtained with a bimodal distribution of glass beads (1 mm
and 3 mm in diameter). The dimensionless numberξ is the relative fraction of small beads
(ξ = 0 means that there were no small beads whileξ = 1 means that all coarse particles added
to the kaolin suspension were small beads). The total solid concentrationφt is computed as
follows: φt = φk(1− φc) + φc. The first result is that the trend given by Eq. (13) is correct
to first order: adding a small amount of coarse particles leads to a decrease in the bulk yield
stress (here for total solid concentrations as high as 0.55). Interestingly enough, in contrast
with our previous expectation, the bulk yield stress starts blowing up when the total solid
concentration comes closer to the maximum solid concentration. A striking feature of this
abrupt rise is that the increase rate is very close to the value measured for a pure kaolin
dispersion. This could mean that all happens as if coarse particles surrounded by colloidal
particles behaved in turn as colloidal particles (this statement is naturally wrong). Further
comments on Fig. 5 are the following:

• At low and moderate concentrations in coarse particles, the bulk yield stress was inde-
pendent of the particle size (when equal size distributions were tested) but it increases
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significantly with increasing relative fractions of large particles.

• On the contrary, at high concentration, the finer the distribution, the larger the yield
stress.

The main and unexpected result of this experimental study is that bulk yield stress may be
significantly affected by the concentration of coarse particle but its features (such as the
growth rate with solid concentration) are still ruled by the fine colloidal fraction.

3.2.2 Flow curve of a bimodal suspension
After studying yielding conditions, dynamic conditions will be examined. We return to the
experiment described in Sec. 2.4. The cell was poured with a suspension of glass beads in
water; the solid concentrationφc was very close to the maximum concentrationφm (here
we haveφc = 0.6 while φm = 0.635). Kaolin particles were added to the suspension. The
question is: in which way is bulk behavior affected by adding these particles? Experimental
data are reported in Fig. 6, showing the torque exerted by the suspension on the vane as a
function of its dimensionless rotational speedΓ. Obviously, when the solid concentration in
kaolinφk is low, there is not much difference compared to the results found in Sec. 2.4. Con-
versely, whenφk is sufficiently high, bulk behavior is expected to be viscoplastic (Sengun
and Probstein’s approximation). Both statements are right, as shown in Fig. 6 (material A
refers to a suspension poor in kaolin while material C is rich in kaolin). At intermediate con-
centrationφk (material B in Fig. 6), an odd behavior was observed. The time measurement
of the torque revealed that, when a shear rate was applied, the shear stress first increased
rapidly and reached a maximum (short-term behavior), then decreased slowly and flattened
out, and rose once again to finally attain its late-time value (typically after 1000 revolutions
of the vane). Reporting the early-time and late-time values of the measured torque in Fig. 6,
we observed a complicated response of the material: over a short time span, it behaved like
a power-law (shear-thinning) fluid while, over a long time span, its flow curve was identical
to that of material A. A possible explanation of this behavior is that, when a shear rate step is
applied, the network of particles is broken and contact between coarse particles is lubricated
by the kaolin-water suspension. Since the yield stress of the kaolin-water suspension is not
sufficient for coarse particle sedimentation to be hindered, a network of particles in close
contact forms again after a finite time.

This experiment illustrates the diversity observed in debris flow behavior. In this respect,
material A is typical of materials involved in granular debris flows while material C rep-
resents the class of muddy debris flows. Between these two classes, material B could be
representative of lahar-like flows. A striking result is that small changes in the relative frac-
tion can lead to profound modifications in the structure of the constitutive equation.

4 CONCLUDING REMARKS
This paper has reviewed a number of important concepts used in the rheophysical approach
to particle suspensions and provided a number of connections between theoretical analysis,
laboratory experiments on simple particle suspensions, and debris flows. For highly con-
centrated suspensions, bulk behavior depends a great deal on the formation of force chains
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Figure 6: Variation of the dimensionless torqueM = C/(πρ′ghR3
1) (whereC is the measured torque)

exerted on the vane by the tested suspension as a function of the rotational speedΓ. Material A:
φk = 3.2%, φc = 60.6%, φt = 61.8%. Material B:φk = 9.8%, φc = 58.9%, φt = 62.9%. Material
C: φk = 15.4%, φc = 47.9%, φt = 55.9%.

between the coarsest particles (particle network). Depending on whether contact between
coarse particles is lubricated by the mixture made up of water and fine particles (matrix), the
rheological properties may vary significantly: power-law, viscoplastic, frictional, etc. In this
respect, laboratory experiments successfully represent the diversity in the rheological behav-
ior of real debris flows such as those described in the literature [see the review by Coussot
(1997) and Iverson (1997)]. They have also shown complex time-dependent responses of
suspensions for certain size distributions, a result in line with measurements made by Contr-
eras & Davies (2000) on samples collected from debris flow deposits.
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