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ABSTRACT: Observations in rivers or flumes have shown that for low water discharge, sediment transport is a
very intermittent process. To understand the physical origins of the solid-discharge fluctuations, we investigated
the motion of coarse spherical glass beads entrained by a steady shallow turbulent water flow down a steep two-
dimensional channel with a mobile bed and steady bead supply at the inlet. Flows were filmed from the side by
a high-speed camera. We also revisited Einstein’s theory on sediment and derived the statistical properties of the
key flow variables.Analyzing the autocorrelation functions and the probability distributions of our measurements
revealed the existence of long-range correlations.These frequent wide fluctuations stemmed particle entrainment
and motion being collective phenomena rather than individual processes, contrary to what is assumed in most
theoretical models.

1 INTRODUCTION

The objective of this paper is to characterize and under-
stand the physical origins of wide fluctuations in the
solid discharge for sediment transport in gravelbed
rivers and mountain torrents. Sediment is assumed to
be made up of coarse particles driven by gravity and
drag exerted by a water turbulent flow.

Despite substantial progress made over the last two
decades in the physical understanding of the motion
of coarse particles in a turbulent stream, the ability
to compute sediment flux in rivers remains poor. For
instance, the sediment flow rates measured in gravel-
bed rivers differ within one to two orders of magnitude
from the bed-load transport equations (Wilcock 2001;
Martin 2003; Barry et al. 2004), even though these
equations have been established from flume experi-
ments using regression techniques and are believed to
provide a proper evaluation of sediment transport in a
well-controlled laboratory environment.

Impediments to a full analytical approach to
twophase flows are many: complex interplay between
the particles and the carrying fluid, particle exchanges
between the bed and the flow, turbulence effects
(bed friction, advection of turbulent structures), etc.
That is why most models are based on substantial

approximations of the interplay between the solid and
fluid phases.

Einstein (1950) realized how important it is to
account for the episodic nature of particle transport
in computing the solid discharge. In Einstein’s view,
sediment transport does not result from an equilib-
rium in the momentum transfers between solid and
liquid phases (Bagnold’s assumption), but rather from
the difference between the entrainment and deposition
rates. Einstein’s stochastic approach raises a number
of issues that have received few responses to date.
For instance, since particles move sporadically and
in different groups, the solid flow rate is made up
of a series of pulses and is highly fluctuating, which
makes it difficult to define and measure it properly,
even under steady flow conditions (Bunte &Abt 2005).
Both field and laboratory experiments have revealed
that instances in which the instantaneous solid dis-
charge is four times higher than its mean value are
frequent (Kuhnle & Southard 1988; Lisle 1989; Böhm
et al. 2004). Translated statistically, this observation
means that the probability density functions of the
transportrate records have a thick tail and depart from
the expected Gaussian behavior. This departure can be
seen as the hallmark of collective motions (Sornette
2000); if so, this also implies that any mean-field
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approximation runs into difficulty since cooperation
between particles is not accounted for.

Our idea was to run experiments in an inclined, two-
dimensional flume with a continuous particle supply
and steady flow rate. This two-dimensional flume is
assumed to be the simplest representation of sediment
transport on the laboratory scale and presents over-
whelming advantages: the boundary conditions can
be controlled and most of the flow variables can be
measured using image processing. Since a quantita-
tive comparison between theory and experiment is
biased by any parameter fitting, we tested Einstein’s
theory by analyzing the probability distributions and
correlations of the signals measured.

2 EINSTEIN’S THEORY REVISITED

Using ad hoc arguments, Einstein (1950) derived
a bed-load equation, which has been considered as
the cornerstone of probabilistic theories of bed-load
transport. Taking inspiration from the work done by
Lisle et al. (1998) and Papanicolaou et al. (2002), we
assume that sediment transport at low flow rates can
be described using a birth-death process.

The solid discharge can be defined as the flux of
particles through a flow cross-section S. Equivalently,
we can define the flow rate ṅ = qs/vp as the number
n of particles in motion within a control volume of
length L times their respective velocity ui

(Böhm et al. 2004). In order to compute the discharge
equation, we need to establish (i) the number n of par-
ticles in motion and (ii) their velocities depending on
the control parameters (water discharge qw, θ , particle
radius a, particle density ρp.

In order to compute the number of particles in
motion, we can draw an analogy with chemical reac-
tions. If the particles resting on the bed surface are
denoted by B, the moving particles by M, we can rep-
resent the exchanges between the two phases in the
following way: B � M : From these equations, we can
establish a kinetic equation, which tells us the rate at
which exchanges occur between the species B and M.
The time variation in the number of moving particles is

where nb→m is the number of particles dislodged from
the bed and nm→b is the number of moving particles
that are left to rest within the observation window.
These population exchanges are associated with the
characteristic times tb and tm, which are in turn related
to the mean times during which a single particle stays

Figure 1. (a) Succession of resting and moving phases for
a single particle. (b) The solid discharge is related to the sum
of the state variables.

at rest or moves, respectively σ and τ [see Fig. 1(a)].
We can also use Eq. (1) to define the entrainment rate
(first term on the right-hand side) and the deposition
rate (second on the right-hand side).

Transitions between the moving/resting states occur
randomly. Following Lisle et al. (1998) and Papanico-
laou et al. (2002), we assume that the particle motion
is influenced only by its present state and has a fade
memory of its previous states. In other words, the state
transitions are governed by a continuous-time Markov
process of order 1, with two discrete states (mov-
ing/resting). If we further assume that there is time and
space invariance in the erosion/deposition process, the
Markov transitions occur with constant probability per
unit time. For any small time increment δt, we have

where the characteristic times σ and τ are constant.
This two-state Markov process is known as a telegra-
pher’s process (Gardiner 1983). With these assump-
tions, it can be shown that the resting and moving
times are exponentially distributed with means σ and
τ , respectively. If Tb,i and Tm,i represent the durations
of the ith periods of rest and motion since obser-
vation has started, then Prob(Tm) = τ−1 exp(Tm/τ )
and Prob(Tb) = σ−1 exp(Tb/σ ); said differently, the
waiting time �tb→r between two entrainments is
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exponentially distributed with a mean time equal
to σ : Prob(�tb→r) = (σ + τ )−1 exp (�tb→r/(σ + τ )).
Using the correspondence between the Poisson and
exponential distributions, we also deduce that the
number of events (deposition/entrainment) that occur
per unit time is distributed according to a Poisson
distribution: the probability that we observe k entrain-
ments of the same particle within the time interval
δt (of any duration) is given by Prob(k; δt) = νk

exp−ν/k!, with ν = δt/σ .The autocorrelation function
is ρ(s) = exp(−(1/τ + 1/σ )s) (Gardiner 1983).

This description is a simplified probabilistic
Lagrangian description of a single particle’s motion.
We generalize it to obtain a Eulerian viewpoint, where
we describe the motion of n particles within an obser-
vation window. Within our observation window of
length L = 2λa � a (λ being a free parameter that can
take any value), we assume that on average, the particle
flux is steady, which means that the particles that leave
the window are replaced by other particles coming
from upstream. Within this window, there are approx-
imately N = λ particles lying over the bed surface,
either at rest or in motion. The number n of particles in
motion is then the sum of N variables independently
distributed and governed by a telegraph process [see
Fig. 1(b)]. Since each particle is governed by a tele-
graph process, the probability of observing it in motion
is ξ = τ/(τ + σ ), i.e., it follows a Bernoulli distribu-
tion. Now, summing N particles following a Bernoulli
distribution leads to a binomial distribution with mean
ξN and variance ξ (1 − ξ )N . We then conclude that
with our assumptions, the number n of moving parti-
cles is distributed according to a binomial distribution,
which means that if ξ stays constant independently
of the number of particles N when L → ∞, then the
probability distribution of n tends toward a Gaussian
distribution. If we further assume that whenever a
particle is set in motion, it reaches a fairly constant
velocity up (Ancey et al. 2003), then using Eq. (1)
leads to concluding that the probability distribution of
the solid discharge is the binomial distribution Bi, with
mean ξNup and variance ξ (1 − ξ )Nu2

p

In the large N limit, this distribution tends to be Gaus-
sian. Since the sum of Poisson-distributed variables
also has a Poisson distribution, we infer that the num-
ber of deposition/entrainment events per unit time has
a Poisson distribution: the probability that we observe
k entrainments within the time interval δt is given by

with ν = Nδt/σ . Instead of the Poisson distribution for
characterizing the number of events per unit time, we
can equivalently use the exponential distribution for

specifying the lag times between two events; the mean
waiting times between two entrainments within the
observation window is (σ + τ )/N .The autocorrelation
function of N parallel telegrapher’s processes is

with τ∗ = στ/(τ + σ )/N . It is worth noting that, with
our assumptions, the solid discharge and the num-
ber of moving particles have the same autocorrelation
function.

According to Einstein (1950), the probability of
entrainment is the fraction of time ξ = τ/(τ + σ ) that
a particle is in a moving state. It also represents, on
average, the relative number of particles (i.e., p) that
have moved within the observation window for a given
time interval (Papanicolaou et al. 2002). Moreover,
in Einstein-like theories, particle entrainment results
from a loss of stability: when the instantaneous lift
and/or drag force exceeds the resisting forces, the
particle is dislodged from the bed and starts to roll.
By relating the fluid forces to the instantaneous fluid
velocity uf , we can deduce the fluid threshold uc cor-
responding to incipient motion (Papanicolaou et al.
2002; Marsh et al. 2004). The probability p is then
defined as p = ξ = Prob(uf > uc). Over the time inter-
val tb, the number of particles that are entrained is then
nb→m = Np, while the number of particles that come to
a halt is nm→b = n(1 − p) over the period tm. In steady
flow conditions, Eqs. (2) and (1) lead to

which is formally similar to the solid-discharge equa-
tion derived by Einstein (1950), except that the solid
discharge is now explicitly dependent on the particle
velocity.

3 EXPERIMENTAL FACILITIES

3.1 Overview

In order to test the influence of fluid velocity (or,
equivalently, Shields number) on bed-load transport,
we ran six experiments with different flow rates in a
twodimensional channel (see Sect. 3.2). The features
of each run are summarized in Table 1. The hydraulic
conditions are specified using classic dimension-
less numbers. The flow Reynolds number is defined
as Re = 4Rhuf /ν, where Rh = Wh/(2h + W ) denotes
hydraulic radius, uf = qw = (Wh) mean fluid velocity,
ν kinematic viscosity of water, and h the time-averaged
water depth. The Froude number Fr = uf /

√
gh varied

significantly over the duration of the experiment and
along the main stream direction. The mean Fr values
are reported in Table 1. The Shields number is defined
as Sh = ρf u2

f /((ρp − ρf )gh) and reflects the ratio of the
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Table 1. Flow characteristics and time-averaged values of dimensionless numbers characterizing bed load and
water flow. The slope is kept constant: tan θ = 10%, while the solid discharge at the inlet ṅ0 is altered. The notation
E10-6 means: tan θ = 10% and ṅ0 ≈ 6 beads/s. The measured solid discharge within the observation window is
denoted by ṅ. Re, Fr, and Sh are the Reynolds, Froude, and Shields dimensionless numbers. The time-averaged
particle velocity in the rolling (saltating, respectively) regime is denoted by ur (us, respectively), while nr (ns,
respectively) represents the mean number of rolling (saltating, respectively) particles; the variance (Var) of nr and
ns is provided. We have also reported the autocorrelation time te of the rolling-particle number nr(t).

Experiment E10-6 E10-7 E10-8 E10-9 E10-16 E10-21

tan θ (%) 10.0 10.0 10.0 10.0 10.0 10.0
ṅ0 (beads/s) 5.3 6.7 8.0 10.0 15.4 20.0
qw = W (10−3 m2/s) 4.15 4.42 5.38 5.54 8.19 10.31
h (mm) 10.2 10.6 12.2 12.3 16.6 19.1
uf (m/s) 0.41 0.42 0.44 0.45 0.49 0.54
ṅ (beads/s) 5.72 6.85 7.74 9.41 15.56 20.57
Re 4020 4090 4550 4570 5280 5910
Fr 1.29 1.29 1.28 1.30 1.22 1.25
Sh 0.113 0.120 0.135 0.139 0.188 0.216
Cs (%) 2.40 2.69 2.50 2.96 3.30 3.47
ur (m/s) 0.063 0.074 0.065 0.075 0.075 0.072
us (m/s) 0.28 0.29 0.29 0.29 0.32 0.32
nr 7.29 6.92 10.37 9.94 16.65 26.69
Var(nr) 59.13 32.72 55.82 42.61 69.37 119.06
ns 2.17 2.93 3.39 3.74 6.19 7.52
Var(ns) 2.40 2.87 3.14 3.30 4.88 5.44
te (s) 0.34 0.36 0.23 0.22 0.20 0.18

water driving force to the friction resistance force on
the bed (Böhm et al. 2004). The solid concentration is
defined as the ratio of the solid and water discharges
Cs = qs/qw. Values reported in Table 1 are low, which
indicates that particle flow was dilute. The h/dratio is
low, typically in the range 1.7–3.2.

3.2 Channel

Experiments were carried out in a tilted, narrow, glass-
sided channel, 2 m in length and 20 cm in height.
Figure 2 shows a sketch of the experimental facility.
The channel width W was adjusted to 6.5 mm, which
was slightly larger than the particle diameter (6 mm).
In this way, particle motion was approximately twodi-
mensional and stayed in the focal plane of the camera.
The channel slope tan θ was 10%.

3.3 Channel base and mobile bed

The channel base consisted of half-cylinders of equal
size (a = 3 mm), but they were randomly arranged.
Disorder was essential, as it prevented slipping of
entire layers of particles on the upper bed surface.

3.4 Solid and water supplies

Colored spherical glass beads with a nominal diameter
2a of 6 mm and a density ρp of 2500 kg/m3 were used.
They were injected from a reservoir into the channel
using a wheel driven by a direct current motor and

equipped with 20 hollows on the circumference, as
depicted in Fig. 2. For the experiments presented here,
the injection rate ṅ0 ranged from 5 to 20 beads per
second, with an uncertainty of less than 5%. This cor-
responded to a solid discharge per unit width qs/W
of 9−38 × 10−5 m2/s. The water supply at the channel
entrance was controlled by an electromagnetic flow
meter. The discharge per unit width qw/W ranged
from 4 to 10 × 10−3m2/s. The hydraulic conditions
(velocity profile, bed friction, etc.) have been speci-
fied in earlier papers (Ancey et al. 2002; Böhm et al.
2004).

3.5 Experimental procedures

Once bed equilibrium was reached, the particles and
the water stream were filmed using a Pulnix partial
scan video camera (progressive scan TM-6705AN).
The camera was placed perpendicular to the glass
panes at 115 cm away from the channel, approxi-
mately 80 cm upstream from the channel outlet. It was
inclined at the same angle as the channel. Lights were
positioned in the backside of the channel. An area of
L = 22.5 cm in length and 8 cm in height was filmed
and later reduced to accelerate image processing.

The camera resolution was 640 × 192 pixels for a
frame rate of f = 129.2 fps (exposure time: 0.2 ms,
256 gray levels). Each sequence was limited to 8000
images due to limited computer memory; this corre-
sponded to an observation duration of approximately
1 minute.
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Figure 2. Sketch of the experimental setup.

Each experiment was repeated at least twice in order
to spot possible experimental problems and to get an
idea of the data scattering. Images were analyzed using
the WIMA software, provided by the Traitement du
Signal et Instrumentation laboratory in Saint- Etienne
(France). For more details, the reader can refer to
(Böhm 2005).

4 EXPERIMENTAL RESULTS

As we shall see below (Sect. 4.1), the generalized
Einstein theory predicts a number of features such
as the nearly Gaussian distribution of the solid dis-
charge, the Poissonian character of the occurrence of
entrainment/deposition over time, and the exponen-
tial decrease in the autocorrelation function of the
number of particles moving within the observation
window. There are also a number of features that con-
flict with the fundamental assumptions underpinning
this theory. In Sect. 4.2, we will see that the probabil-
ity distributions of the key variables have much thicker
tails than expected. This will be interpreted as the hall-
mark of cooperation processes between particles when
they are entrained or when they move.

4.1 Solid-discharge time series

Figure 3 shows the time variations in the solid dis-
charge ṅ, the number of particles nr in a rolling regime,
the number of particles that passed from a resting state
to a rolling state (r → b) and conversely (b → r). This
diagram represents the results obtained for a mean bed
slope of 0.1 and a solid discharge at the flume inlet
ṅ0 = 8 beads/s (experiment 10-8 inTable 1); these plots

are typical of the results that we obtained for other solid
discharges ṅ0.

Note that in these state transitions [see Fig. 3(d–e)],
more than one particle can be involved; because of
the limitation of the acquisition rate of our highspeed
camera (130 images per second), we could not resolve
two events that occurred over very short time intervals.
This limitation may pose problems when interpreting
the Markovian properties of our time series.

A striking point in Fig. 3 is the wide fluctuations that
all the time series exhibit. Typically, the solid flow rate
ranged from 0 to 22 beads/s, while the mean flow rate
imposed at the inlet was ṅ0 = 8 beads/s. For the rolling
regime, the fluctuation range was 0–40 beads within
the observation window, whereas the mean number
was nr = 9.7 beads.

As shown in Fig. 4(a), the empirical probability dis-
tribution of solid discharge is closely approximated by
a Gaussian distribution, although, in places, there are
spikes departing from the Gaussian trend.These spikes
reflect the existence of a finite number of particles
within the observation window (Böhm et al. 2004).
This Gaussian behavior is expected since the solid
discharge is defined as the product of the number of
moving particles and of their velocities [see Eq. (1)].
Indeed, if the particle velocities are sufficiently agi-
tated (resulting in a random velocity distribution) and
the number of moving particles within the observation
window varies significantly with time, the law of large
numbers supports this expectation.

As expected, the autocorrelation functions ρ of the
measured signals ṅ(t), nr(t), and ns(t) are similar. As
shown by Fig. 4(b), the typical behavior is the same:
(i) we observe a fairly slow exponential decrease, i.e.
for short times, we have ρ(s) ≈ exp(−t/te) with te a
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Figure 3. Experiment 10-8: mean solid discharge at the channel inlet ṅ0 = 8 beads/s; mean bed slope tan θ = 0.1. (a) Solid
discharge ṅ as a function of time. (b) Variation in the number of rolling particles nr . (c) Exchanges between the bed and the
rolling phases: each bar oriented upward indicates the number of beads that passed from the resting state to the rolling regime
over a given time interval � ≈ 1/130 s; downward-oriented bars represent the number of rolling particles coming to a halt.

typical time scale; (ii) the typical time scales te related
to each signal are very close. For experiment E10-8,
we found te ≈ 230 ms. The autocorrelation times for
other experiments are reported in Table 1.

In an earlier paper (Böhm et al. 2004), the timescale
te was interpreted as the typical travel time of the mov-
ing particles through the observation window. While
this interpretation seems reasonable for the solid dis-
charge, there is at first glance no clear reason why this
should be so for the number of rolling/saltating parti-
cles. One could call on the following explanation for
the similarity in the autocorrelation functions: once a
particle experiences a transition into another regime, it
moves at approximately the same velocity as the mean
phase velocity and hence one expects that the autocor-
relation time nr(t) and ns(t) is somehow related to a
travel time. However, since their mean phase velocity
was quite different (see Table 1), their autocorrelation
times should also be different.

In Sect. 2, we have also shown that for parti-
cle entrainment, the waiting-time distribution should

follow an exponential distribution of rate r = N/(σ +
τ ). A particular problem encountered here in evaluat-
ing the parameter r is that we could not resolve suc-
cessive events when they occurred within a very short
time interval (less than the acquisition rate of our cam-
era, i.e. for lag times shorter than 2/130 = 0.015 s);
this means that we should censor the lag-time sam-
ple to remove the lowest values if we want to properly
evaluate the sample distribution. For the sake of sim-
plicity, however, we did not proceed in this way. Figure
5(a) shows the empirical probability distribution func-
tion of the lag times �t for the different classes
of events (entrainment or deposition, transition to a
rolling or a saltating regime). We have superimposed
the exponential distribution, the coefficient of which
has been adjusted using the method of moments on
the whole sample. As expected, the exponential distri-
bution is a fairly good representation of the lag-time
distribution whatever the type of exchange except
at low values of �t, for which the empirical dis-
tribution departs significantly from the exponential
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Figure 4. (a) Probability distribution function (pdf) of the solid discharge for experiment E10-8 (ṅ0 = 8 beads/s; mean bed
slope tan θ = 0.1): the dots represent the empirical pdf, whereas the solid line is a Gaussian distribution adjusted on the data
(mean: 7.93, standard deviation: 3.49). (b) Autocorrelation function for experiment E10-8: the thick dotted line corresponds
to the solid discharge ṅ, the thin solid line to the number of rolling particles nr , and the dashed line to the number of saltating
particles ns.
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Figure 5. Probability distribution of the time lag �t between
two events (change in state): the filled disks represent the
state transition b → r (entrainment, τb→r), while the empty
disks represent the state transition r → b (deposition, τr→b);
the solid line provides the exponential probability distri-
bution adjusted on the data b ←→ r (using the method of
moments). The filled boxes represent the state transition
r → s, while the empty boxes represent the converse tran-
sition s → r; the dashed line is the exponential probability
distribution adjusted on the data r ←→ s. (b) Variation in the
lag times �tb→r (filled disks), �tr→b (empty disks), �tr→s
(filled boxes), and �ts→r (empty boxes).

trend. Adjustment provides the following characteris-
tic times for each transition type for experiment E10-8:
�tb→r = 33.9 ms, �tr→b = 31.7 ms, �tr→s = 57.4 ms,
and �ts→r = 61.3 ms. For all experiments, the mean
lag times are reported as a function of the mean fluid
velocity in Fig. 5(b).

Up to this point, the generalized Einstein the-
ory is qualitatively consistent with our laboratory
experiments. A discrepancy is, however, noticeable.
In Sect. 2, we found that the autocorrelation time
te was τ∗ = στ/(τ + σ )/N and the waiting time was
�tb→r = r−1 = (σ + τ )/N . From these relations, we
deduce that the ratio

in contradiction with our experimental results, since
for instance for E10-8, we have τ∗/�tb→r = 6.9. The
autocorrelation time is much longer than expected.
As we shall see in the next subsection, this result is
not fortuitous and illustrates the existence of long-
range correlations in the physical processes governing
sediment transport.

4.2 Probability distribution of the number of
moving particles

Analyzing the probability distribution of the number
of moving particles is richer than examining that of
the solid discharge because the latter combines two
sources of fluctuations: the number of particles and
their velocities, which makes it difficult to properly
interpret them. Here, we will focus on the probability
distributions of the number of rolling particles nr (see
Fig. 6).

Figure 6 shows how the probability distribution of
nr changes when the fluid velocity is increased. At low
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Figure 6. Probability distributions of the number of rolling particles. The dots represent the empirical probability mass
functions.The dotted lines represent the negative binomial distribution, while the dashed lines represent the gamma distribution.
(a) experiment E10-6, (b) experiment E10-7, (c) experiment E10-8, (d) experiment E10-9, (e) experiment E10-16, (f) experiment
E10-21.

fluid velocities, the probability distribution is close to a
straight line in a log-linear diagram, revealing a power-
like behavior.At higher fluid velocities, the probability
distribution takes the shape of an asymmetric bell, with
its maximum moving from left to right. At first sight,
the prominent impression is that increasing the solid
discharge leads to making the probability distribution
of nr more Gaussian.

In the generalized Einstein theory presented in Sect.
2, we inferred that the number of moving particles
should be distributed according to a binomial law,
with mean ξN and variance ξ (1 − ξ )N where N is
the density number of particles lying on the bed and
ξ = τ/(σ + τ ) is the mean relative time during which
a particle is maintained in motion by the stream. A
particularity of the binomial law is that its variance

must be lower than its mean. For all our experiments,
we found that the sample variance exceeded the sam-
ple mean. For instance, for experiment E10-8 [see
Fig. 6(c)], the mean number of particles is nr = 10.4,
whereas the variance is Var(nr) = 55.8. For all proba-
bility distributions, the distribution tail is much thicker
than expected.

Since thick tails are often associated with collective
phenomena (Sornette 2000), it is worthwhile charac-
terizing these distributions more accurately.We found
that the negative binomial distribution provides a fairly
proper representation of the empirical distribution, as
shown in Fig. 6. Small departures are observed in the
distribution tail (insufficient number of data) and when
nr → 0. Note that it was not always very easy to dis-
tinguish between incipient motion and oscillations of
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bed particles and consequently our image-processing
algorithm failed at times to count the exact number
of moving particles. The small deviations between
the theoretical and empirical probability distributions
may result from this uncertainty on nr . Except for the
behavior close to the boundaries, the whole trend is
well represented by the negative binomial distribu-
tion. Instead of a discrete distribution, we can use a
continuous probability distribution to approximate the
empirical distribution of nr . A natural candidate is the
gamma distribution, which can be fairly well adjusted
on data, as shown in Fig. 6.

This observation is of fundamental importance
since it conflicts with the assumptions underlying
the birthand- death process used in the theoretical
derivation. Indeed, if the particles are independent
and identical, then one obtains a binomial distribution
whatever the model taken for rest/move, provided that
the flow is steady and there is bed equilibrium. The
only way to obtain a non binomial behavior would be
to have (i) unsteady flow conditions or (ii) non identi-
cal or dependent particles. Assumption (ii) is the most
plausible. Taking a closer look at the resting and mov-
ing states showed that on many occasions, particles
moved in well-separated groups (Böhm et al. 2004).
Collective displacement and entrainment of particles
explained why the particles were to some extent depen-
dent and thus why the autocorrelation time was much
longer than expected. One might think that aggre-
gate transport was promoted by particle sphericity
and equal size. Our observations are, however, well
supported by field measurements, which documented
similar processes in gravel-bed rivers (Drake, Shreve,
Dietrich, & Leopold 1988). The wide range of fluctu-
ations exhibited by laboratory or field measurements
(Wilcock 2001; Martin 2003; Barry, Buffington, &
King 2004) also confirmed the existence of thick-
tailed probability distributions for sediment transport
involving irregular particles.

5 CONCLUSION

Our experimental results provided evidence that,
although some statistical properties (such as the auto-
correlation function of the solid discharge) predicted
by Einstein’s theory were consistent with our data, the
autocorrelation functions of the number of moving
particles and their mass distribution functions vio-
lated the assumptions underpinning Einstein’s theory.
Typically, the autocorrelation time was much longer
than expected and the mass distribution function had a
much thicker tail than predicted using Einstein’s argu-
ments. For instance, from the theoretical standpoint,
the number of moving particles within any observa-
tion window is a random number distributed according
to a binomial distribution; in the large-number limit,
the theoretical distribution should tend very quickly

toward a Gaussian limit. In contrast, our experiments
showed that the sample variance outweighed the sam-
ple mean and a negative binomial distribution fits the
data better.This means that extreme events (i.e., a large
number of moving particles) are much more frequent
than expected. Furthermore, our experiments showed
that the convergence toward the Gaussian limit is slow.
At the lowest solid discharges achievable with our sys-
tem, the probability distribution of the particle number
is closer to a power-law distribution. When increasing
the solid discharge, the variance/ mean ratio decreases
and the probability distribution becomes increasingly
bell-shaped.

The present study has many important implications.
First, it provides a plausible explanation about the fail-
ure of all mean-field theories on bed-load transport,
which ignore any cooperation effects between parti-
cles. It thus motivates further research with a clear
focus on collective effects in entrainment and displace-
ment of coarse particles as a result of fluid action.
Second, this work sheds some light in the critical issues
concerning bed-load measurement in rivers (Bunte &
Abt 2005). Hydraulicians and geomorphologists use
various systems (Helley-Smith sampler, bed-load trap)
to measure the solid discharge by capturing sediment
over a given time interval. The crux of the issues lies in
the proper selection of the sampling time (ranging from
a few seconds to several minutes), and this dif- ficulty
of selecting a proper timescale is illustrated by the large
differences among various measurement systems.
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