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Front dynamics of a water surge at high Reynolds number: Similarity
solutions to the Saint-Venant equations

C. Ancey, S. Cochard, M. Rentschler & S. Wiederseiner
Ecole Polytechnique Fédérale de Lausanne, Ecublens, Lausanne, Switzerland

ABSTRACT: In this paper, we seek similarity solutions to the shallow-water (Saint-Venant) equations for
describing the motion of a gravity-driven surge supplied in fluid by a source placed at the inlet of a horizontal
plane. Gratton and Vigo have shown that imposing certain conditions on the inflow rate makes it possible to
find similarity solutions to the Saint-Venant equations when a Benjamin-like boundary condition is imposed at
the front (i.e., non-zero flow depth). When the flow depth is zero at the front, we show that the solution to the
Saint-Venant equations is singular: its curve is the limiting curve of the regular solutions. We also show that the
front takes the form of an acute wedge, with a straight free boundary, and is separated from the body by a bore.
This singular behavior explains why current numerical models fail in computing the front position and velocity
when no ad hoc downstream boundary conditions are supplemented.

1 INTRODUCTION

There is a growing number of models inspired from
shallow-water (Saint-Venant) equations, which are
used to describe time-dependent, free-surface flows
involving fluids with various rheologies. Essentially,
these models are based on a set of hyperbolic par-
tial differential equations that are obtained by inte-
grating the mass and momentum balance equations
across the flow depth. Typical examples include den-
sity currents (Rottman and Simpson 1983), particle
suspensions (Parker et al. 1986), viscoplastic fluids
(Huang and Garcìa 1998), dry granular flows (Savage
and Hutter 1989), saturated granular fluids (Iverson
and Denlinger 2001), etc.

The models cited above have often been used to
compute the collapse of a finite volume of fluid or
the spread of a surge emanating from a source with a
given inflow rate. The common characteristics of these
flows is that they have a front exhibiting a significant
curvature of the free surface. For an inertia-dominated
regime, an ad hoc boundary condition must often be
imposed at the front by constraining the value of the
Froude number in order to take into account the resist-
ing effect of the ambient fluid (Benjamin 1968).This is
tantamount to considering the front as a discontinuity
(bore) moving at a prescribed velocity. Using phase-
plane formalism, Gratton and Vigo (1994) provided
evidence that the front controls the dynamics of the
body on some specific circumstances. A few analyti-
cal results have also been established without imposing

this front condition: Ritter (1892) provided an analy-
tical solution to the shallow-water equations for the
dam-break problem. In that case, it was shown that
the head was an elongating wave presenting an acute
angle at the leading edge. Later, Dressler (1952) and
Whitham (1954) demonstrated that hydraulic resis-
tance modified the shape and velocity of the front. In
addition to providing more rigorous proofs, Hogg and
Pritchard (2004) found that taking shearing effects into
account substantially alters the mathematical structure
of the solution to the dam-break problem, especially
in the tip region.

The objective of this paper is to find similarity
solutions to the Saint-Venant equations in the context
of rapidly varying surges emanating from a source
and spreading along a horizontal plane. Similarity
solutions were found in an earlier paper by Gratton
and Vigo (1994), where these authors considered a
Benjamin-like boundary condition at the front, i.e.,
the Froude number Fr is constant and the flow depth
is nonzero. Gratton and Vigo (1994) claimed that the
solution associated with the boundary condition h = 0
is found by taking the limit Fr → ∞. In this paper,
we will show that the proper solution associated with
a zero flow depth at the front is a singular curve,
which structurally differs from the solutions related to
a Benjamin-like boundary condition. Emphasis will be
given to the topological structure of the equations in
the tip region. It will be shown that the front dynamics
is fully controlled by the critical points of the phase
plane, implying that the shape and velocity of the tip
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region are imposed independently of the far-field con-
ditions. We will show that the solutions found in this
paper are in fairly good agreement with the analytical
solutions to the Euler equations (Ancey et al. 2006).

2 GOVERNING EQUATIONS

2.1 Flow-depth averaged equations

We consider a shallow layer of fluid flowing over a
rigid horizontal impermeable plane. The fluid is invis-
cid and incompressible; its density is denoted by ρ.The
ratio ε = H∗/L∗ between the typical vertical and hori-
zontal lengthscales, H∗ and L∗ respectively, is assumed
to be small. U∗ = O(

√
gH∗) is the velocity scale.

Integrating the local Euler equations over the flow
depth provides the shallow-water equations. Since
they are classic, the details of their derivation are
not reported here (Stoker 1957). The shallow-water
equations take the generic dimensionless form

where the bar refers to flow-depth averaged values.
The dimensionless velocity, flow-depth, distance, and
time were defined as ū = û/U∗, h = ĥ/H∗, x = x̂/L∗,
and t = t̂U∗/L∗, respectively, where the hat refers
to dimensional variables. Introducing the Boussinesq
coefficient γ makes it possible to relate the mean
square velocity to the square of the mean velocity:
u2 = γ ū2. In so doing and assuming that γ is known,
we obtain a closed set of equations for h and ū

When γ is set equal to unity in the momentum balance
equation (4), we retrieve the usual form of the shallow-
water equations (Stoker 1957). When γ is constant and
in excess of unity, the conservation form of Eqs. (3–4)
is identical to the equations used by Hogg and Pritchard
(2004) to analyse the effect of shear on front structure.
In that case, the structure of the governing equa-
tions is slightly altered: the convective acceleration
term is weighted by the shape factor 2γ − 1, while
a Chézy-like term affects the pressure gradient. These
modifications are minor and do not disturb the hyper-
bolic nature of the equations; they may, however, have

Figure 1. The configuration of the flow.

significant impact on some occasions, e.g. when com-
puting the nose features in the dam-break problem
(Hogg and Pritchard 2004). A pervasive assumption
is to ascribe the Boussinesq coefficient to unity by
advocating that in the high Reynolds number limit,
the velocity profile is blunt, which implies that γ must
not differ significantly from unity.

2.2 Flow geometry and boundary conditions

A two-dimensional flow regime is assumed, namely
any cross-stream variation is neglected. The depth of
the layer is given by h(x, t) (see Figure 1). The flow is
generated by a source of fluid: at t = 0, the sluice gate
at the inlet is raised with a given aperture rate h0(t).
Ahead of the front, there is a dry bed.

At the source x = 0, the unleashed volume V varies
with time as follows

with n a prescribed coefficient; in the forthcoming
numerical applications, we will take n = 5/2. The
boundary condition (5) is equivalent to imposing
the flow rate at the inlet: ūh = nAtn−1. To get rid
of the initial-value problem, we furthermore assume
that the Froude number at the source is imposed:
Fr0 = ū/

√
h = 2a/3, where a is a constant. The flow

depth varies with time: h = h0(t) = atm/d, where
m = 2

3 (n − 1) (m = 1 in the numerical applications
here, since n = 5/2) and d is a constant. Note that d
and a are linked: they both related through the relation
A = 2

3n a5/2d−3/2 (this relation is found by integrating
the solution to find the volume).

The other boundary conditions is prescribed at the
front. The front position xf is the point where the flow
depth drops to zero: h(xf ) = 0; moreover, the front
velocity is ū(xf ) = ẋf .

2.3 Jump conditions

The solutions to the system (3–4) may admit discon-
tinuities (shock or hydraulic jump in the hydraulic
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literature). The flows either side of these are connected
by jump conditions which express conservation of
mass and momentum across the moving discontinuity.
Denoting the shock speed by σ , these jump conditions
associated with conservative form of Eqs. (3–4) are
given by (Whitham 1974)

where the [[ · ]] denotes the difference upstream and
downstream of the shock.

3 PHASE-PLANE FORMALISM

In order to solve the similarity problem, we will use
the ‘phase-plane’ (or portrait) formalism as earlier
authors did for the same kind of problem (Grundy and
Rottman 1986; Gratton 1991; Gratton and Vigo 1994).
The types and characteristics of the similarity solutions
are described in details by Gratton and Vigo in (Grat-
ton and Vigo 1994) when the downstream boundary
condition is of the Benjamin type, i.e., at the front,
the Froude number is constant and the flow depth is
nonzero. Gratton and Vigo claimed that the bound-
ary condition h(xf ) = 0 is obtained asymptotically by
making the Froude number tend to infinity (Gratton
and Vigo 1994), but we will show that in the particular
case investigated here, their construction is not possi-
ble. Except for this point, the formalism is identical
to that used in (Gratton and Vigo 1994) and we will
not replicate their results. This notably implies that we
will focus on a single particular case n = 5/2 in our
applications for clarity (the other cases being similar).

Gratton and Vigo (1994) have shown that the gov-
erning equations (3–4) admit similarity solutions for a
range of conditions at the source 0 ≤ n < 4.This condi-
tion on n is needed for the shallowness assumption to
be consistent. Following Grundy and Rottman (1986)
and Gratton and Vigo (1994), we pose

where ξ is the similarity variable

with δ to be determined from the initial conditions (5).
The boundary conditions impose

where ξf denotes the front position. At the source, we
have the asymptotic behaviour

Since the solution may admit discontinuities, we sup-
plement the following condition derived from Equa-
tion (5), which ensures that the mass balance is not
violated

withV the total volume and ξP the front abscissa.When
there is not discontinuity, this equation is redundant
with Equation (12).

4 SIMILARITY SOLUTIONS

We shall see that ξ is an autonomous variable in the
governing equations for Z and V , which means that we
can get rid of ξ and directly seek a relation between
Z and V by solving a first-order ordinary differential
equation in the form

The behaviour of the solutions to this equation can be
qualitatively outlined by working in the V − Z plane
and discussing the various possibilities of finding an
‘integral’ curve passing through a given region.

4.1 Matrix representation and critical curves

Substituting the similarity forms into the governing
equations (3–4), we obtain two ordinary first-order dif-
ferential equations for Z and V that can be cast in a
matrix form

with w = [Z , V ]T,

The determinant of the matrix M is

with I (V ) = 1 + (V − 2)Vγ . Along the V -axis (Z = 0)
and the curve CI of equation Z = I (V ), the solutions
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Table 1. Properties of the special curves CA, CF , CI , and CJ .

Label Equation Properties

CA see Eq. (27) Exceptional solution to Eq. (14)
CF F = 0 Integral path having horizontal tangent when crossing CI
CI Z = I (V ) Critical curve separating sub- and super-critical regimes
CJ Z = J (V ) Integral path having vertical tangent when crossing CJ

V (ξ ) and Z(ξ ) to Equations (15) are not properly
defined because det M = 0: these functions are mul-
tivalued except when the crossing occurs close to a
critical point. A multivalued behaviour is not physi-
cally admissible and this issue is fixed by constructing
discontinuous solutions (see Section 5).

When det M is nonzero, the system of equa-
tions (15) can be inverted to provide

with F(V , Z) = −Z(2Zδ + V (−2V δγ + 4γ + 3δ − 3)
− 2) and G(U , Z) = Z(2 − (V + 2)δ) + V (V (2γ +
((V − 4)γ + 3)δ − 3) + 1).

Instead of solving this system of differential equa-
tions, we form the ratio of the two equations to arrive at
a single ordinary differential equation (14) for Z ′(V ).

When det M is zero, the system may have solutions
if the determinant of the cofactor matrix

is also zero. In the space (V , Z), the locus of the points
for which det N = 0 is a continuous curve CJ of the
equation

Note that G(V , Z) = Z − J (V ), which means that CJ is
also the locus of points where the integral curves, solu-
tions to Equation (14) have vertical tangents. Except
for the case γ = 1 and n = 1 (δ = 1), the curves CI
and CJ do not coincide, but intersect at two points:
Aγ with coordinates (2/(4γ − 3), (9 − 8γ )/(4γ − 3)2)
and P∗ with coordinates (1, 1 − γ ). P∗ lies inside the
first quadrant only when γ ≤ 1. These points play an
important role since their existence means that there
may be continuous solutions with discontinuous gradi-
ents at points A and P∗. They will be useful thereafter

in constructing the solutions (see Section 5). When
γ = 1 and n = 1 corresponding to the dam break prob-
lem (Whitham 1974), the curves CI and CJ coincide,
which implies that a piece of this curve is a part of the
solution sought.

4.2 Critical points

In addition to the curves CI and CJ , there is another
specific curve that plays a role in the phase portrait:
the curve CF is the curve along which F vanishes, i.e.,
at which the integral path has a horizontal tangent; its
equation is given by

The properties of these curves are summarized in
Table 1.

In the first quadrant of the phase plane V − Z , there
are three critical points resulting from the crossing of
the specific curves CF and CJ . The first one is the
origin point O, which is a node. Point Aγ is also a
singularity (node). The third one is referred to as point
Bγ and has coordinates (2/(3δ), (9 − 8γ )/(9δ2)); it is
a saddle.

Figure 2 shows a few trajectories, the specific
curves (CI , CJ , and CF ), the critical points (O, Aγ ,
Bγ ), the intersection point P∗ between CI (solid line)
and CJ (dashed line), and the front P. Note that at
point Aγ , the three curves CI , CJ , and CF meet, which
implies significant behaviour changes close to point
Aγ . A few trajectories (thin curves with arrows) repre-
senting solutions to Equation (14) are also reported and
illustrate the behaviour of the solutions close to the crit-
ical points; not all the paths are physically meaningful
since some cross the critical curve CI (solid line).

5 FLOW DISCONTINUITIES

5.1 Rankine-Hugoniot condition

The crossing of the critical curve CI at a regular point
of intersection is not possible, but is possible at a criti-
cal point (Aγ here).When the crossing is not permitted,
we consider that a shock occurs, which is ruled by the
jump conditions (6–7). If we know the flow variables
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Figure 2. Specific curves CI (solid line), CJ (dashed line), CF (dotted line).The thin curves with arrows represent a few trajec-
tories computed numerically. The critical points O, Aγ , Bγ , and Cγ are plotted together with the front (point P). Computations
made for a = 4, d = 1, and γ = 1.05.

Z1 and V1 upstream of the shock, we can solve the
shock equations (6–7) to determine the shock veloc-
ity σ and a curve referred to as the ‘shock curve’
V2(Z2|Z1, V1), which is the locus of all the points
satisfying the jump conditions (6–7). Solving this sys-
tem of equations, we derive the shock velocity and the
variation in upstream velocity V2 with upstream flow
depth Z2

with χ = γ + (1 − γ ) Z2
Z1

. Since there is a quadratic
dependence on velocity in Eqs. (6–7), we actually find
two shock curves, but a single one is physically admis-
sible by requiring that energy dissipation through the
shock be positive. This shock curve is then used to
pass from one trajectory to another one that satisfies
the boundary conditions downstream. The problem
boils down to finding the point (V1, Z1) at which the

shock occurs. To that end, we use a trial and error
procedure: first we select a point (V1, Z1) on the inte-
gral path emanating from the source S, then we plot
the shock curve V2(Z2|Z1, V1), and finally we find
the intersection point between the shock curve and the
other integral path coming from the front point P. The
procedure is iterated until the fluid volume found by
numerical integration is consistent by the inflow rate
imposed at the plane entrance Equation (13).

5.2 Weak discontinuities

It is worth recalling that a particular case of discon-
tinuity includes the functions that are continuous, but
whose derivative is not continuous at isolated points.
This case is encountered when the curves CI and CJ
coincide (i.e. for γ = 1 and n = 1): when an integral
curve crosses the critical curve, we have both det
M = 0 and det N = 0, which implies that at this point,
we can pass from one trajectory to another one and
since det N = 0, the new trajectory is a piece of CI
(Gratton and Vigo 1994).

6 SIMILARITY SOLUTIONS FOR γ > 1

We first consider the case where the Boussinesq coef-
ficient is prescribed in advance. We are interested in
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determining the solutions to Equation (14) evolving in
the first quadrant (V ≥ 0, Z ≥ 0) and related to γ > 1
and boundary conditions (11–13).

To simplify presentation, computation and numer-
ical applications were made by taking n = 5/2 and
δ = 3/2.

6.1 Special solution

Note that there is a special analytical solution

which is the solution to Equation (14). This curve is a
parabola that we call P; the boundary condition (12)
implies that the source point S lies at infinity on P .
No computation at this stage is needed since the cor-
responding integral path coincides with the special
curve P . As shown in Figure 2, P crosses the criti-
cal curves CI and the specific curve CJ at point Aγ .
Since this point is singular, the crossing is not associ-
ated with a hydraulic jump. A bit farther, the parabola
once again crosses the curve CI at point Cγ with coor-
dinates (2/3, 1 − 9γ = 8), which is a regular point,
implying that the solution should become discontin-
uous in the neighbourhood of Cγ . The parabola P
does not pass through point P . Since the integral curve
crosses the critical curve CI , discontinuous solutions
can be constructed. We then envisage two possibilities.

6.2 Trajectories in the front neighborhood

The first possibility occurs that, when reaching point
Aγ (for which det M = det N = 0), the integral curves
take another path to reach point P. Since Aγ is also a
node, all the curves (except for the singular curves)
are tangent to a limiting curve CA, whose equation is
given in terms of a Taylor expansion

This equation is obtained by applying L’Hôpital’s rule
to Equation (14). Note that in numerical applications,
we used a power series expansion to order O(V 6) that
ensures accuracy to within 10−4 in the numerical solu-
tion. Except when γ = 1, this limiting curve does not
pass through P. A graphical representation of CA is
given in Figure 3 (dotted line). Since P is a regular
point, a single integral curve passes through it: it is
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Figure 3. Specific curves CI (solid line), CJ (dashed line)
together with CA (dotted line). (a) Computations made for
a = 4, d = 1, and γ = 1.05. (b) Computations made for γ = 1.
The thin curves with arrows represent a few trajectories com-
puted numerically; the arrows indicate increasing ξ . The
critical point Aγ (respectively A1 in subplot b) is plotted
together with the front P. The parabola P is a special tra-
jectory and is plotted in bold; in subplot b, we have also
superimposed the parabola P computed with γ = 1.05 and
ending at Aγ .

the trivial solution Z = 0 (the V -axis). The situation
is sketched on Figure 3(a): no integral curve except
for the trivial solution Z = 0 passes through point P
representing the front.We conclude that there is no
way of joining Aγ and P when γ �= 1 by following
pieces of integral curves representing regular solutions
to Equation (14).

The second possibility occurs when the parabola
meets the critical curve CI at Aγ or Cγ , which would
make it possible to use the hydraulic jump conditions
(24–25) to find another admissible integral curve.This
is not possible because a hydraulic jump cannot form
between a dry bed and the current, as mentioned above
in solving the Euler equations. Indeed, using the shock
conditions (24–25) to relate P to the integral path
coming from the source (S) leads to constructing a
nonphysical solution since the energy balance equa-
tion is violated. Point P can in no way can be located
on a shock curve.
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6.3 Construction of the solution within
the tip region

None of these possibilities being effective, we must
find another way of constructing the solution. A rea-
sonable assumption is to consider that in the vicinity
of the front, the Boussinesq coefficient drops to unity,
which ensures that we can find a non-trivial inte-
gral path passing through P: the limiting curve CA, as
shown in Figure 3(b) is the only one passing through P
except for the trivial solution.We construct the solution
as follows. At point Aγ , the flow undergoes a shock:
in the phase plane, this implies that there must be
a shock curve mapping point Aγ onto another point
of the limiting curve CA that we refer to as point
A′. This situation is depicted in Figure 3(b) and Fig-
ure 4(a). On Figure 4(a), we have plotted the two shock
curves (long-dashed curve) emanating from Aγ using
Eqs. (24–25) together with points Aγ and A′; the only
physically admissible shock curve is that correspond-
ing to a flow depth increase and a velocity decrease to
ensure energy dissipation. Between A′ and P, the inte-
gral path follows the limiting curve CA. We can now
compute the solution.

Since the integral path S → Aγ is given by Equa-
tion (26), we can analytically compute V (ξ ) by inte-
grating Equation (20); we obtain: ln ξ 2 = ln (9V − 4) −
3 ln V + e, where e is a constant of integration. Tak-
ing into account the asymptotic behaviour when ξ → 0
given by Equation (12), we deduce

The path A′ → P must be integrated numerically. For
instance, for a = 4, we find ξA = 1.850 using the
relation just above, ξP − ξ ′

A = 1.284, which leads to
ξP = 3.133. The fluid volume V is found by numerical
integration of

∫ xp
0 h(x)dx and we find V = 8.516t5/2,

which is very close to the exact variation imposed
by Equation (13), i.e. V = 8.533t5/2 (relative error of
−0.2%). Better agreement can be obtained by consid-
ering that the critical transition occurs just upstream
of point Aγ ; e.g. for a = 4, the numerical computation
(not reported here) showed that the transition occurs
at ξA = 1.738 instead of ξA = 1.850.

7 SIMILARITY SOLUTION FOR γ = 1

We are now interested in determining the solution
to Equation (14) in the usual case for the Saint-
Venant equations, where the Boussinesq coefficient
is set equal to unity. The resulting integral path in
the phase plane continues to evolve in the first quad-
rant (V ≥ 0, Z ≥ 0) and must satisfy the boundary
conditions (11–13). We still take n = 5/2 for the
computations.

Figure 4. (a) Phase plane in the vicinity of Aγ : the spe-
cific curves CI (solid line), CJ (dashed line), P (dotted line)
are reported. The critical point Aγ is plotted together with
the front P. The long dashed lines represent the shock curves
emanating from point Aγ . (b) Flow-depth variation with ξ :
the solution to the Saint-Venant equations (solid line) is com-
pared with the solution to Euler equations (dashed line). (c)
Velocity variation with ξ . All the computations made for
a = 4, d = 1, and γ = 1.05.

The general numerical solution of the problem rep-
resented by Equation (14) and boundary conditions
(11–13) involves computing the solution from the
source S to the front P. Given the asymptotic behaviour
exhibited by Equation (12), the source is located at
infinity on a parabola of equation Z = (V/F0)2, where
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F0 = 2
3 a denotes the Froude number at the inlet. For

numerical purposes, we need to give finite values (V0,
Z0) to the coordinates of the source point S in the phase
plane. Taking large values for the initial value V0 and
posing Z0 = (V0/F0)2 allows us to reasonably approxi-
mate the behaviour close to the source; typically taking
V0 = 104 is sufficient to obtain solutions accurate to
within 10−4 close to the inlet. Equation (14) is solved
numerically by moving from the source S0 to the
front P. The goal is to find an integral curve reaching
point P.

As previously, there is no integral path relating the
source point S and the front point P. Moreover, we sus-
pect the occurrence of a jump. Indeed, the topological
structure of the phase plane is a bit different compared
to the case γ > 1, since the integral path does not pass
through the critical point A1 in the supercritical region
and thus crosses the critical curve CI at a regular point
that we refer to as R.

To construct the solution with a discontinuity, we
have used the trial and error procedure, as specified
in Section 5. As earlier, we note that the only trajec-
tory coming from P is the limiting curve CA. We then
assume that a piece of the path P →A1 on this curve is
a part of the solution sought; the other part of the solu-
tion is a piece of the integral path S → R. On this latter
curve, we guess the position of the point marking the
discontinuous transition towards the path P →A1; we
refer to this point as point E. At regular point E, there
is a jump. As a typical example, we have plotted the
shock curves (long-dashed line) on Figure 5(a); a sin-
gle curve crosses the limiting curve emanating from P
and we refer to this intersection point as E′.

The path EE′ represents the jump experienced by
the surge; the path PE′ is the integral path representing
the head while the path ES is the integral curve rep-
resenting the body. Equations (20) and (14) have been
numerically integrated to produce Z(ξ ) and H (ξ ). For
instance, for a = 4 and d = 1, we found: ξP = 3.077,
ξE = 1.590 versus ξa = 2.999 and ξb = 1.945 for the
reference solution given in a companion paper (Ancey
et al. 2006), ξP = 3.133 and ξA = 1.850 for the Saint-
Venant solution related to γ > 1. The fluid volume V
is found by numerical integration of

∫ xp
0 ± h(x)dx, and

we find V = 8.533t5/2, which perfectly matches the
fluid volume imposed by Equation (5). It is also worth
noting that the solution thus built is sensitive to the
numerical estimation of the transition point E: chang-
ing the position of the endpoint E by a few percent
along the curve SR leads to altering the fluid volume,
which shows that there is only one solution for a given
set of boundary conditions, at least locally. Similarly
to the case γ > 1, we applied the same shock con-
ditions as used by (Gratton and Vigo 1994) instead
of the Rankine-Hugoniot relations (24–25) and again
we obtained a solution that differed slightly from
the solution given here: indeed, we found ξP = 3.072,

Figure 5. (a) Phase plane in the vicinity of A1 and con-
struction of the transition point E and its conjugate E’. Same
caption as in Figure 4(a). (b) Flow-depth variation with ξ :
the solution to the Saint-Venant equations (solid line) is com-
pared with the solution to Euler equations (dashed line). (c)
Velocity variation with ξ . All the computations made for
a = 4, d = 1, and γ = 1.

ξA = 1.593, and V = 8.512t5/2 (i.e. relative deviation
of −0.3% with the input volume).

On Figure 5(b–c), we have reported the flow-depth
and velocity variations with the similarity variable ξ
(solid lines). We have also reported the reference solu-
tion (dashed lines) found in another paper (Ancey et al.
2006). Note the significant difference in the position
of the transition point between the solutions, whereas
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the front position is properly evaluated to within 5%.
In contrast, the departure from the theoretical curve
remains moderate since the relative deviation doe not
exceed 10% for the velocity and the flow depth.

8 DISCUSSION

A striking feature of our results is that the head of the
surge is wedge-shaped with an acute angle.This wedge
structure has been observed in experimental realiza-
tions of gravity currents in tanks. Different examples
drawn from various flow conditions in the labora-
tory and in nature clearly demonstrate the existence
of wedge-like fronts contrasting with the Benjamin
assumption. For instance, in the experiments con-
ducted by Simpson (1972), the development of the
flow patterns were made visible by using a blend of
dense fluid and fine aluminium particles: a stretching
vortex occupying the tip region was clearly observed
at the leading edge and produced an intense roll-up of
fine aluminium particles, which makes it possible to
visualize the streamlines and the two vortices; in the
upper part of the head, a counter-clockwise rotating
vortex occurred. This flow pattern is very close to the
one exhibited by the Saint-Venant equations.

In most gravity-current models, the details of the
front shape and structure are omitted and the front is
replaced by something close to a hydraulic jump and
ruled by a Benjamin-like relation according to which
the Froude number at the front is a function of the rel-
ative submersion of the current and the density ratio
between the current and the surrounding fluid. This
boundary condition produces currents with a very nar-
row vertical front, which may appear unrealistic in
some circumstances. This is the case of currents with
an increasing flow rate, as studied here, where it has
been shown that the head occupies one third of the total
current length and adopts a wedge shape. The actual
shape of the front has drawn little attention so far. In his
seminal paper, Benjamin (1968) supplemented the ear-
lier heuristical analysis of von Kármán, demonstrating
that a steady front makes an angle of π/3 with respect
to the horizontal: Benjamin provided an approximate
analytical solution describing the shape for the lock-
exchange problem when the flow depth is half the total
depth and again found that the front angle was π/3.
Recently, McElwaine (2005) has extended Benjamin’s
results by considering steady finite-volume currents
down a steep slope, which experience resistance from
the surrounding fluid. He also found that the front
makes an angle π/3 with the bottom line. Our result
contrasts with the earlier findings: the front angle is not
constant, but varies with time. Therefore, there appear
to be significant changes in dynamics in the front angle
between steady and time-dependent flow conditions.
This observation may have a potential impact since

until now, most models have used a constant-Froude-
number boundary condition even though the flow is
not steady.

When compared to analytical solutions to the Euler
equations (Ancey et al. 2006), the Saint-Venant equa-
tions successfully capture the shape and the dimen-
sions of the front when the Boussinesq coefficient γ
is known in advance. In the converse case, when γ
is set equal to unity, the front shape is properly pre-
dicted, but its dimensions are slightly overestimated.
This clearly shows that minute changes in the value
of γ markedly affect the solution to the Saint-Venant
equations, as shown earlier by Hogg and Pritchard
(2004) in the case of a surge induced by a dam
break. Surprisingly, whatever the value of γ , the front
position is properly evaluated to within 4%. On the
whole, despite the potential pitfalls of the problem
investigated (strong time dependence, non-hydrostatic
pressure, rapid regime transition), we can consider that
the Saint-Venant equations provide very satisfactory
results, even in the usual case where the Boussinesq
coefficient is set equal to unity, since the relative devi-
ation with the solution to the Euler equation usually
does not exceed 10%.

9 CONCLUSION

The goal of this paper was to find similarity solutions to
the Saint-Venant (shallow-water) equations when the
boundary conditions at the front impose a zero flow-
depth. The solutions to the Saint-Venant equations
were constructed by making use of the phaseplane for-
malism and seeking similarity forms in a way similar
to earlier investigations (Gratton and Vigo 1994).

When the Boussinesq coefficient was in excess of
unity, it was not possible to find a physically admissi-
ble solution close to the front without providing further
information. This conclusion is akin to the observation
made by Hogg and Pritchard (2004) in their investiga-
tion of drag influence on head shape for the dam-break
problem. Instead of using a Benjamin-like condition at
the front (imposing a nonzero flow depth), we assumed
that the flow-depth averaged velocity was uniform,
which implied that the Boussinesq coefficient dropped
to unity.

A very important point that did not seem to be
noted in the previous investigation was that the only
way to construct the solution close to the front was
to determine a special curve, referred to as CA in the
phaseplane analysis. Indeed, in the phase plane V − Z
(e.g. see Figure 2), the integral path representing the
solution must pass through certain points; the front
was represented by point P and laid in the neighbor-
hood of a critical point called A, which was a node: all
the curves in a given region aroundA were attracted by
A and pass through it tangent to an asymptotic curve
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CA. None of these integral paths passed through A,
but the limiting curve CA did. This curve represented
an exceptional and local solution to the Saint-Venant
equations.

It is worth noticing that this topological structure
of the similarity solutions in the front vicinity entails
that a specific numerical method must be used to com-
pute accurate solutions to Saint-Venant equations close
to the front and explains why the current numerical
methods fail to predict the behavior close to the front.
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