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ABSTRACT 

In recent years, the number of water reservoirs in high-altitude areas has increased. They are often used to provide water 
for various activities related with recreational (i.e. skiing) and production activities. Many of such reservoirs are threatened 
by snow avalanches. To investigate the phenomenon, an experimental study was carried out at the Ecole Polytechnique 
Fédérale de Lausanne using a prismatic 3m-long flume. A mass of buoyant particles, initially at rest, was released into a 
water flume down a 30°-sloping ramp. Its impact with the water surface was analyzed in detail. During the tests, the 
impacting mass, the water depth in the flume and the ramp length were changed. Both the dynamics of the granular mass 
at the impact zone and the wave generation induced by the impact were acquired using a high-frequency camera and 
accurately analyzed. An analysis of the wave propagation along the flume, also captured by two lower-speed cameras, 
was made by mean of numerical analyses based on a depth-averaged Boussinesq-type model. A theoretical analysis has 
also been undertaken to assess how the sub-aerial mass dynamics influences energy dissipation, and to identify the key 
variables of the problem, i.e. the velocity at impact, the shape of the water volume displaced during the impact, the depth 
of the center of the submerged mass and the percentage of submerged mass. 
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1. INTRODUCTION 

The increasing anthropic pressure on high-altitude areas 
and sub-polar regions has fostered research on snow and 
avalanches. One of the recent problems of particular 
relevance to avalanche hazard assessment is the 
generation of tsunami-type waves due to the avalanche 
impact into a water basin, and the following propagation. 
The number of water reservoirs in high-altitude areas, 
including water resources for ski resorts, lakes for 
recreational activities, reservoirs for hydroelectricity 
production and water supply for artificial snow production 
in skiing areas, is increasing and many reservoirs are 
located in areas threatened by avalanches. Over the last 
decade, there have been numerous events of snow 
avalanches hitting water basins. For example, in March 
2006, a reservoir for artificial snow production in Pelvoux 
(France) was filled by a high-speed, dry-snow avalanche. 
The mixture of water and snow led to the formation of a 
wet-snow avalanche, which swept through the forest and 
reached the crosscountry ski trails in the valley bottom. 
Further, in February 1999 an avalanche impacted a lake 
close to the village of Göschenen (Switzerland) and 
emptied it (Ammann, 1999). The resulting snow-water 
mixture flowed out as a thick viscous fluid and overtopped 
a 6-m protection wall, damaging the village structures and 
killing one person (Figure 1). 

 
Figure 1. The village of Göschenen (Switzerland) in February 
1999, after three avalanches, and the flow of a snow-water 
mixture (taken from Swiss Federal Topography Agency). 

The avalanche-induced tsunami hazard is also high along 
the Northern Europe (Norway, Iceland) and Northern 
America (Alaska, Canada) coastline. Terrain (fjords with 
steep slopes) and climatic conditions (heavy precipitation 
and snow accumulation) are conducive to an intense 
avalanche activity. In the island of Stjernoya in the 
Altafjord, Northern Norway, the Lillebukt bay is often 
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interested by avalanche sliding from the Nabbaren 
mountain (e.g., see Figure 2), so that triggered 
avalanches are being studied in this location 
(Frauenfelder et al. 2014). In October 1995, in Súðavík, 
Iceland, a 2-3 m-thick layer of compacted snow detached 
from an 800 m-wide channel at 500 m above the sea 
level, then extending for 200 m into the fjord and 
generating a 10 m-high wave that damaged several 
structures (Ágústsson and Sigurðsson, 2004). 

a)  

b)  
Figure 2. Freeze frame taken from video footage of the April 8, 
2014 avalanche. (Image credit: Sibelco Nordic - 
http://www.nrk.no/nordnytt/sprengtelos-enormt-snoskred-
1.11658148)  

Engineers are used to distinguishing between “flowing 
avalanches” (flow depth less than 10 m thick, density in 
the 150-500 kg/m3 range, velocity ranging from 5 to 
30 m/s) and particles suspended in air (10-100 m thick 
cloud, with mean density in the 5-50 kg/m3 range and 
velocity in the 50-100 m/s range). 

Avalanche formation and propagation course are closely 
related to meteorological conditions and terrain. The 
variability of the corresponding parameters explains why 
the avalanche dynamics is so complex. Statistical fluid-
dynamics approaches have been developed for predicting 
the main features of avalanche motion and its maximum 
runout distance (Ancey, 2001, 2012). As field experiments 
are difficult to conduct and interpret, additional insights 
have been brought by small-scale laboratory experiments. 
Granular flows have been used to simulate flowing 
avalanches in the lab, while turbidity and density currents 
can reproduce the dynamics of powder airborne 
avalanches (Savage, 1989 and Hutter, 1996). 

In the following section, small-scale experiments, 
exploiting the analogy between flowing avalanches and 
granular flows, are proposed for studying impulse waves 
generated by snow avalanches into water reservoirs. A 
two-dimensional physical model is used. The analysis of 
the main processes involved in the avalanche dynamics 
led to the selection of the following parameters: the 
granular mass, the water height and the slope length. In 
section 3, the experimental setup and protocol are 
reported, while section 4 summarizes the main results of 

the experimental campaign. The physical model proposed 
here shows similarities with that used in the studies on 
landslide-generated impulse waves (e.g., Fritz et al., 
2003a, b). The main differences between avalanche 
impact and landslide impact are discussed. Correlations 
between the avalanche impulse and wave characteristics 
are obtained and compared with those pertaining to 
landslides. The motion of the submerged mass barycenter 
is also described. A preliminary attempt at numerically 
describing the wave propagation is reported in section 5. 
Some conclusions close the paper. 

2. PHYSICAL MODEL 

The physical model used to simulate an avalanche impact 
in water is a two-dimensional approximation of the 
problem. We consider a sloping ramp with inclination α, 
entering into a horizontal flume filled with still water. The 
still water depth is denoted by h (see section 3). The 
global coordinate system (x,y) is defined with the origin at 
the still water shoreline, the x-axis being positive 
streamwise and the y-axis downward. A further coordinate 
ξ, with the same origin, follows the ramp slope. A mass M, 
with initial density ρm(0), is released at a distance ls from 
the shoreline. 

The granular material chosen to represent the avalanche 
mass is characterized by a grain diameter dg and a 
density lower than that of the water ρm(0)<ρw. During the 
fall of the granular slide along the chute, the average 
density ρm(t) and shape of the bulk vary with time as a 
result of volume expansion. The shape can be described 
by a function s(ξ,t) representing the slide thickness at 
location ξ and time t. The mass shape at the impact 
corresponds to the value of the function at the shoreline 
s(0,t). The velocity along the slope is described by the 
function vm(ξ,t). Since the granular mass density is lower 
than the water density, the bulk spreads into the water 
after the impact, initially sinking for a short time without 
reaching the flume bottom, then floating in the water. An 
index for the submerged mass motion is given by the 
position of the center of mass of the submerged grains 
xG(t),yG(t).The impact on the water surface generates an 
impulse wave, described by the function η(x,t). Figure 3 
illustrates the two-dimensional physical model and the 
main problem parameters. 

 
Figure 3. Two-dimensional physical model for an avalanche 
impacting into water. Both initial and impacting mass are 
illustrated. The submerged mass is identified by the shaded area. 
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The mass of the slide, M, and the gravitational 
acceleration, g, define the initial energy of the slide. They 
are two governing parameters for the dynamics. The slope 
length ls can be neglected if we regard the problem as 
starting at the beginning of the impact. In that case the 
energy can be defined by the mass M and the slide 
impact velocity vm(0,t). The bulk density of the avalanche 
at the impact affects the momentum transfer to water, but 
is difficult to assess. It can be related to other parameters. 
First, we define the impact duration Δt as the time 
between the impact time of the first particle (t in) and that 
of the last particle (t fin), i.e. Δt=tfin-t in. Then, we define the 
mean avalanche thickness at the impact: 

∫
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and the length of the impacting slide lm,in, related to the 
impact velocity, which is taken to be a constant (see 
section 3):  

),0(, tvtl minm ∆=  [2] 
 

Finally, it is possible to define the avalanche volume:  

btvthtV minmin ),0()( , ∆=  [3] 
 

where b is the flow (flume) width. Now it is possible to 
express the impact density ρm(tin) as a function of the 
mass M, the mean impact thickness hm,in, the impact 
duration Δt and the impact velocity vm(0,t): 
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As b is fixed, while M and vm(0,t) are already included in 
the governing parameters, we can regard the mean 
avalanche thickness hm,in and the impact duration Δt as 
further governing parameters. In addition, the momentum 
transfer is also affected by the avalanche bulk density at 
rest ρm(0), the slope angle α and the grain diameter dg. 
The wave formation and propagation, also depend on the 
time t, the water density ρw, the water depth h and the 
wave propagation distance x. 

Since the main phenomenon to be investigated is the 
propagation of surface water waves, Froude similarity is 
used. Fluid viscosity, surface tension, and elastic 
compression forces are taken to be negligible. In 
summary, we consider the following model parameters: 

1. Mass M 
2. Gravitational acceleration g 
3. Slope length ls 
4. Slide impact velocity vm(0,t) 
5. Mean value of the slide impact shape hm,in 
6. Duration of the impact Δt 
7. Slope angle α 
8. Grains diameter dg  
9. Water depth h 
10. Water density ρw 
11. Avalanche bulk density at rest ρm(0) 
12. Position x 
13. Time t 

Buckingham’s theorem states that any further variable of 
the problem, e.g. the water elevation η, can be written as 

),),0(,,,,,,),,0(,,,( , txhdthtvlgM mwginmms ρραhh ∆=  [5] 
 

The involved dimensions are: length [L], mass [M] and time [T], 
thus three scaling parameters are chosen: gravitational 
acceleration g, water depth h and water density ρw. Hence, the 
following dimensionless (starred) parameters are defined: 

1. Dimensionless slide mass M* = M/(ρw b h2) 
2. Dimensionless slope length ls* = ls/h 
3. Slide Froude number Fr= vm/ (gh)0.5 
4. Dimensionless average slide thickness h*m,in=  hm,in 

/h 
5. Dimensionless duration of the impact Δt* = Δt (g/h)0.5 
6. Slope angle α 
7. Dimensionless grains diameter dg*= dg/h 
8. Dimensionless bulk density at rest ρ*m(0)= ρm(0)/ ρw 
9. Dimensionless wave propagation distance x*=x/h 
10. Dimensionless time t*=t(g/h)0.5 
 
The dimensionless form of [5] is:  

),),0(,,,,,,,( ,
∗∗∗∗∗∗∗∗∗∗ ∆== txdthFrlM

h mginms rαhhh  [6] 
 

Seminal works on landslides modelled through block model 
experiments (Kamphuis and Bowering, 1972; Walder et al., 
2003) suggest that the impact dimensionless volume and the 
Froude number are the key parameters. However, both impact 
volume and impact velocity are difficult to vary systematically 
and, therefore, other variables, from which they depend, are 
used here as governing parameters. The impact volume varies 
with the mass M and the average impact bulk density 
ρm(tin), which also depends on hm,in, Δt and vm(0,t). Since 
such variables are difficult to be controlled, we regard the 
bulk density at rest ρm(0) and the slope length ls as the 
controlling parameters, while hm,in, Δt and vm(0,t) are 
measured. The impact velocity vm(0,t), taken as a 
governing parameter, indirectly varies by changing the 
slope length ls. 

In the present experiments, different Fr are obtained by 
varying the water depth h. The slope angle α, grain 
diameter dg and bulk density at rest ρm(0) are not varied. 

3. EXPERIMENTAL CAMPAIGN  

3.1 Experimental setting 

The experimental setup is composed of a wooden chute, 
with slope angle α = 30°, reaching the bottom of a 3 m-
long prismatic flume, with transparent glass sidewalls. 
Both chute and flume are 0.11 m wide. The flume is filled 
with water and three different water depths are used: 
h=0.11 m, 0.14 m and 0.18 m. The released mass M is 
composed of granular expanded clay, whose bulk density 
at rest ρm(0) is about 500 kg/m3, which is close to the 
compact snow density before of the avalanche 
detachment. The bulk density at rest ρm(0) is measured 
for each mass release, before the experiment; its average 
over all the experiments is 489 kg/m3, with a standard 
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deviation of 8%. The average grain diameter is dg=9 mm. 
For each value of h, the mass of the bulk is increased 
from 100 g to 700 g, by increments of 100 g. The mass is 
placed on the chute, at a distance ls from the shoreline. 
Two lengths of the slide path are used, i.e. ls=0.66 m and 
1.21 m. The slide impact velocity vm(0,t), mean slide 
impact shape hm,in and impact duration Δt are measured using 
the equipment described in the following. 

Three cameras are placed along the flume, with the 
optical axis perpendicular to the flume length. One is an 
high-speed camera, located in front of the shoreline, 
acquiring 256×785 px images at the impact zone, with a 
frequency of 1000 fps. A meshed metric grid is used to 
rectify the raw images and determine the size conversion 
factor. Two low-speed cameras are placed along the 
flume, collecting images with a resolution of 120×658 px 
and a frequency of 120 fps. The synchronized images of 
the two cameras are calibrated and merged using the 
meshed grid. A top view of the experimental setting is 
shown in Figure 4. 

 
Figure 4. Sketch of the experimental setting. 

Each experiment is repeated twice: both non-colored 
water (NCW), to better analyze the impact behavior of the 
slide, and colored water (CW), to study the wave 
formation and propagation, are used. 

3.2 NCW Experiments 

The NCW experiments have been designed to optimize 
the analysis of the dynamics of the submerged particles. 
For these experiments only the high-speed camera 
recording has been employed and images are used to 
estimate the controlling parameters hm,in, Δt and vm(0,t), 
as well as the position of the center of mass of the 
submerged slide xG(t),yG(t). 

The velocity vm(0,t) is evaluated using the high-speed 
camera images. The aerial part of the avalanche is 
studied and the image sequence is divided into 30 time 
intervals. For each interval the initial frame tsample and 
another frame, with a delay of 0.003s with respect to 
tsample, are analyzed. The two images are superposed 
giving a sample, shown in Figure 5, which is used to 
measure the displacement of the moving particles. The 
number of measurements for each sample depends on 
the quality of the image. Only samples containing a 
sufficient number of sliding particles are analyzed, hence 
the number of samples for each experiment is not the 
same, For each analyzed sample the mean value of the 
particle’s displacement is evaluated and the impact 
velocity vm(0,t) is estimated, since the time delay is given. 
The measurement of the displacement has a precision of 

0.45 mm (i.e. 0.5 px). The uncertainty on the velocity due 
to the measurement procedure is 0.15 m/s. 

 
Figure 5. Sample used to evaluate particles displacement at the 
impact. 

Table 1. Mean velocity and standard deviation of the mass at 
impact - for each experiment. 

Exp ID n [sample] vm [m/s] σv [m/s] 
50 7 1.5896 0.1082 
51 10 1.5214 0.1789 
52 12 1.5074 0.1438 
53 13 1.4837 0.0964 
54 14 1.4340 0.1656 
55 15 1.4381 0.1630 
56 15 1.4418 0.2130 
57 8 2.1819 0.1530 
58 11 2.0521 0.1716 
59 13 2.0247 0.2081 
60 15 2.0331 0.1518 
61 16 1.9143 0.1514 
62 16 1.8538 0.1729 
63 22 1.8064 0.2265 
64 8 1.5508 0.1353 
65 13 1.4957 0.1282 
66 12 1.4240 0.1461 
67 15 1.4689 0.1938 
68 17 1.3942 0.2244 
69 19 1.2404 0.2248 
70 23 1.1124 0.2462 
71 11 1.9420 0.1560 
72 12 2.0240 0.3732 
73 14 1.9303 0.2060 
74 18 1.8009 0.1914 
75 19 1.9450 0.1952 
76 17 1.8179 0.2202 
77 18 2.0115 0.1787 
108 10 1.9749 0.1839 
109 12 1.8671 0.1881 
110 27 1.9164 0.1747 
111 19 1.8410 0.2061 
112 20 1.8409 0.1502 
113 20 1.9434 0.1525 
114 22 1.6964 0.1982 
115 14 1.5866 0.1001 
116 17 1.6227 0.1384 
117 21 1.5241 0.1256 
118 21 1.5282 0.1960 
119 25 1.3727 0.1646 
120 16 1.4116 0.1262 
121 15 1.2424 0.2568 
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The obtained impact velocity vm(0,t) shows a consistent 
average value and a relatively small standard deviation 
(see Table 1), hence the impact velocity can be assumed 
to be constant over time and equal to the mean value of 
the sample velocities: 

)),0((),0( samplemmm tvmeanvtv ==  [7] 
 

Table 1 reports, for each experiment, the number of the 
samples used n, the mean velocity vm and the standard 
deviation σv. From samples like the one shown in Figure 5 
is evident that the velocity direction is parallel to the slope-
ramp, then it can be projected as follows: 









==

α
α
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αwithαvv mm
  [8] 

 

In order to evaluate hm,in , Δt , vm(0,t) and xG(t), yG(t) from 
the video, each frame of each NCW video is treated using 
the procedure illustrated in Figure 6a-f. The analyzed 
frame (Figure 6b) is cropped, the contrast is increased 
and the grayscale image is converted into black and 
white, with a white cut value of 0.18, where 1 corresponds 
to white and 0 to black. This leads to images like the one 
reported in Figure 6d. The resulting sample is masked 
with an image (Figure 6c) obtained from the first frame, 
where no particles are in the water (Figure 6a), using the 
same image processing. The subtraction of the mask from 
the sample gives an image where only particles are 
represented (Figure 6e). Noisy pixels are then removed. 
In the final sample image (Figure 6f), particles appears as 
white pixels. 

 
Figure 6 Example of processing of the video of the impact zone 
for the NCW experiments. 

A similar procedure, with a larger white cut value, is used 
with the first image, to obtain a black-and-white image 
where the free surface at rest is captured. To evaluate 
hm,in, a horizontal line (level) above the free surface is taken as 
reference, in order to avoid splashes and floating particles. The 
value of such level varies depending on the experiment, due to 
both the water depth and the intensity of the splashes. In 
practice it ranges from 15 mm to 40 mm. For each frame the 
horizontal slide thickness sh(level,t) is evaluated as the sum of 

the white pixels on the horizontal level in the final sample image. 
Then the thickness function is computed as the projection 
perpendicular to the slope: s(0,t)= sh(level,t)sinα. The duration 
of the impact Δt is obtained from the estimate of both initial and 
final times of the impact. The former corresponds to the frame 
at which the first particle reaches the free surface, i.e. the first 
white pixel appears under the still water depth. The latter is 
more difficult to evaluate, because of splashes and floating 
particles, thus we assume that tfin corresponds to the frame 
after which the shape function is lower than 5 pixels. The 
position xG(t), yG(t) of the center of mass of the submerged 
portion of the slide is evaluated as the barycenter of the area 
below the initial free surface. 

3.3 CW Experiments 

The CW experiments have been designed to optimize the 
reconstruction of the impulse wave generated by the slide 
impact. Both the high-frequency camera (at the impact zone) 
and the low-speed cameras (along the flume) are employed. 
Both sets of collected images are used to extrapolate the water 
elevation η(x,t) of the generated impulse wave. Images from the 
high-speed camera are processed in order to obtain the main 
characteristics of the propagating wave, i.e. the maximum wave 
amplitude Am, the maximum wave height Hm and the maximum 
wave period Tm. The spatial (x) and temporal (t) domains used 
for the analysis depend on the acquisition window, but also on 
the area affected by splashes and floating particles. Hence, for 
each experiment a proper space-time domain is chosen in 
order to have the maximum suitable area for a time lapse long 
enough to evaluate the maximum height and period. The water 
elevation at a fixed position can also be used as the boundary 
condition to initialize numerical simulations of the wave 
propagation. 

Images coming from the two low-speed cameras are used both 
to estimate the wave energy and to benchmark the numerical 
simulations of the wave propagation. 

Image processing is the same for both videos and a small 
sample is shown in Figure 7 Each frame is first cropped, to 
remove splashes and falling particles (Figure 7 a). The contrast 
is increased and the gray-scale image converted into a black-
and-white image (Figure 7 b). From the resulting image, where 
the water is black, the free surface can be extracted. The 
difference between the obtained surface level and the still 
surface obtained from the first frame (Figure 7 c) gives the 
instantaneous water elevation η(x,t) (Figure 7 d). 

 

 
Figure 7 Sample of processing of the video of the wave 
propagation zone for CW experiment 
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The wave amplitude A, height H and period T are computed as 
functions of the position x and the time t within the cropped 
image. The maximum value of each property (Am, Hm and Tm) 
and the corresponding locations (xAm, xHm and xTm) are, thus, 
obtained. 

4. RESULTS 

4.1 Relations between avalanche and wave parameters 

4.1.1 Dimensionless parameters 

The dimensionless characteristics of the wave are the 
maximum dimensionless wave amplitude A*m= Am/h, the 
maximum dimensionless wave height H*m= Hm/h and the 
maximum wave period T*m= Tm(g/h)0.5, with the 
corresponding dimensionless positions x*Am=xAm/h, 
x*Hm=xHm/h and x*Tm=xTm/h. All the stored dimesionless 
parameters are reported in Tables 2 and 3. 

Table 2. Avalanche dimensionless parameters and wave 
dimensionless characteristics of experimental campaign – first 
part. 

ID 50 51 52 53 54 55 56 
M* 0.047 0.093 0.139 0.186 0.232 0.279 0.325 
ls* 4.714 4.714 4.714 4.714 4.714 4.714 4.714 
Fr 1.356 1.298 1.286 1.266 1.224 1.227 1.230 

h*m,in 0.094 0.118 0.132 0.148 0.167 0.152 0.171 
Δt* 0.054 0.080 0.099 0.117 0.113 0.126 0.134 
Am* 0.041 0.059 0.067 0.070 0.077 0.099 0.086 
x*Am 1.581 2.411 2.360 1.729 1.722 2.144 1.816 
Hm* 0.083 0.095 0.082 0.084 0.086 0.104 0.090 
x*Hm 1.407 2.411 2.360 2.006 1.719 1.848 1.816 
Tm* 0.147 0.161 0.136 0.202 0.188 0.138 0.126 
x*Tm 2.395 2.421 2.418 2.385 2.279 1.655 1.874 
ID 57 58 59 60 61 62 63 
M* 0.046 0.093 0.138 0.186 0.231 0.278 0.318 
ls* 8.643 8.643 8.643 8.643 8.643 8.643 8.643 
Fr 1.862 1.751 1.728 1.735 1.633 1.582 1.541 

h*m,in 0.082 0.108 0.107 0.112 0.133 0.145 0.127 
Δt* 0.059 0.087 0.113 0.137 0.129 0.142 0.184 
Am* 0.038 0.054 0.061 0.070 0.078 0.075 0.079 
x*Am 1.191 1.658 1.742 2.379 2.092 1.948 2.208 
Hm* 0.087 0.108 0.097 0.114 0.082 0.091 0.084 
x*Hm 1.552 1.841 1.713 2.025 2.092 2.459 2.257 
Tm* 0.126 0.145 0.158 0.196 0.141 0.190 0.214 
x*Tm 1.140 1.931 2.289 2.363 2.173 2.450 2.208 
ID 64 65 66 67 68 69 70 
M* 0.028 0.055 0.084 0.112 0.139 0.168 0.193 
ls* 3.667 3.667 3.667 3.667 3.667 3.667 3.667 
Fr 1.167 1.126 1.072 1.105 1.049 0.933 0.837 

h*m,in 0.038 0.042 0.059 0.056 0.064 0.081 0.069 
Δt* 0.073 0.122 0.114 0.162 0.155 0.182 0.291 
Am* 0.020 0.051 0.051 0.046 0.055 0.051 0.066 
x*Am 2.321 1.307 1.490 3.356 2.361 3.108 1.490 
Hm* 0.045 0.066 0.065 0.061 0.060 0.057 0.071 
x*Hm 2.321 1.787 1.856 1.693 2.361 2.712 2.623 
Tm* 0.190 0.208 0.202 0.208 0.182 0.187 0.197 
x*Tm 3.257 3.306 2.024 2.079 2.391 2.742 3.014 

 
 
 

Table 3. Avalanche dimensionless parameters and wave 
dimensionless characteristics of experimental campaign – 
second part. 

ID 71 72 73 74 75 76 77 
M* 0.028 0.056 0.084 0.112 0.136 0.168 0.195 
ls* 6.722 6.722 6.722 6.722 6.722 6.722 6.722 
Fr 1.461 1.523 1.453 1.355 1.464 1.368 1.514 

h*m,in 0.026 0.041 0.045 0.055 0.053 0.063 0.072 
Δt* 0.113 0.111 0.149 0.168 0.197 0.181 0.194 
Am* 0.024 0.036 0.059 0.050 0.056 0.050 0.062 
x*Am 3.618 2.519 1.351 2.371 2.227 2.198 2.000 
Hm* 0.049 0.075 0.082 0.072 0.062 0.060 0.067 
x*Hm 3.618 2.534 1.693 1.915 2.564 2.198 2.000 
Tm* 0.179 0.198 0.213 0.229 0.211 0.200 0.198 
x*Tm 3.227 2.227 2.668 2.782 3.598 3.133 3.014 
ID 108 109 110 111 112 113 114 
M* 0.076 0.150 0.223 0.298 0.376 0.450 0.526 
ls* 11.00 11.00 11.00 11.00 11.00 11.00 11.00 
Fr 1.901 1.797 1.845 1.772 1.772 1.871 1.633 

h*m,in 0.081 0.119 0.121 0.112 0.178 0.107 0.162 
Δt* 0.062 0.081 0.110 0.157 0.131 0.257 0.220 
Am* 0.051 0.067 0.066 0.083 0.098 0.106 0.117 
x*Am 3.021 3.329 4.608 4.390 4.454 4.705 3.272 
Hm* 0.110 0.133 0.145 0.124 0.108 0.131 0.125 
x*Hm 3.021 3.094 4.041 4.049 4.463 4.390 4.284 
Tm* 0.159 0.179 0.184 0.177 0.188 0.180 0.169 
x*Tm 4.535 4.535 4.584 4.260 4.738 4.714 3.296 
ID 115 116 117 118 119 120 121 
M* 0.076 0.144 0.226 0.300 0.372 0.442 0.527 
ls* 6.00 6.00 6.00 6.00 6.00 6.00 6.00 
Fr 1.527 1.562 1.467 1.471 1.321 1.359 1.196 

h*m,in 0.085 0.126 0.132 0.129 0.169 0.211 0.306 
Δt* 0.074 0.085 0.141 0.166 0.175 0.165 0.230 
Am* 0.049 0.060 0.082 0.089 0.110 0.106 0.118 
x*Am 2.251 2.438 2.446 4.705 3.102 3.669 3.142 
Hm* 0.107 0.101 0.104 0.107 0.116 0.123 0.122 
x*Hm 2.251 2.567 4.130 3.896 3.904 3.628 4.001 
Tm* 0.155 0.136 0.193 0.160 0.139 0.144 0.166 
x*Tm 4.163 3.847 4.406 3.142 2.535 3.815 3.863 

 

4.1.2 Comparison with landslide models 

A physical model similar to that presented here has been 
used in studies of landslide-generated impulse waves 
(Fritz et al., 2003a; Fritz et al., 2003b; Fritz et al., 2004). 

Some important differences make the present model more 
suited to describe the dynamics induced by snow 
avalanches. First the bulk density of the mass at rest for a 
landslide is always relatively large, i.e. ρm,la(0)>700kg/m3, 
while for an avalanche it is significantly smaller, i.e. 
ρm,av(0)<500kg/m3. Furthermore, in typical landslide 
models the granular slide is controlled by a piston: in this 
manner most parameters are more easily varied in a 
systematic way but it is hardly possible to promote a 
dilution of the bulk, as seen for avalanches. Our 
experimental setup differs from Fritz’s setup because the 
motion of the granular mass is only due to the 
gravitational field: this makes some parameters more 
difficult to be controlled, but a large volume expansion is 
allowed for, as in real-life avalanches. Moreover, the large 
impact density and mass of landslides induce a clear 
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phase separation and the bulk reaches the bottom of the 
flume, while in the present granular-avalanche model the 
material is dispersed and, because of its lower density, 
particles first sink (never reaching the bottom) and then 
float in the water, as evident in Figure 8. 

The parameters varied in landslide models are the 
dimensionless mass M*, the dimensionless mean 
thickness h*m,in, the Froude number Fr and the slope 
angle α, while the measured variables are the 
dimensionless duration of the underwater motion t*s and 
the slide dimensionless length at impact l*m.in. In contrast, 
in the present model, the varied (i.e. governing) 
parameters are the dimensionless mass M* and the 
dimensionless slope length l*s, which influence the 
measured variables h*m,in, Fr, Δt* and l*m.in. The impact 
dimensionless duration Δt*, which is a fundamental 
variable in the present model, is neglected in landslide 
models. 

 
Figure 8. Example of floating particles and dispersion of particles 
in the water. 

For landslide-generated impulse waves relations between 
wave and landslides characteristics are parameterized to 
be based on an impulse product parameter P (Heller et 
al., 2010), which is related to the square root of the 
streamwise slide momentum flux component (Zweifel et 
al., 2006). Such a parameter is built with M*, h*m,in, Fr and 
cos(α) and its actual definition is based on use of the 
available experimental data. 

4.1.3 Impulse product parameter 

We evaluate the momentum flux of an avalanche as 
follows: we consider that an avalanche of duration Δt and 
mass M has a mass flow rate given by: 

t
MQm ∆

=  [9] 
 

Since the velocity of the avalanche is found to be constant 
in the experiments, the momentum flux is:  

t
vMQ m

∆
=


 [10] 

 
Thus, it is possible to define an impulse product 
parameter for an avalanche in terms of the dimensionless 
duration of the impact Δt*, instead of the dimensionless 
mean thickness h*m,in. In fact the two parameters are 
connected through Eq [1]. Then, two different impulse 
product parameters are proposed for avalanches: the first 
one involves the dimensionless duration of the impact Δt*: 

αα eeee
t

TMF tMFrP cos∗∗
∆ ∆=  [11] 

 
and the second one involves the dimensionless mean 
thickness h*m,in: 

αα ee
inm

ee
h

hMF hMFrP cos,
∗∗=  [12] 

 
The exponents eF, eM, et, eα and eh  are evaluated as the 
coefficients that give the best fitting predictions for 
variables of interest, e.g. A*m, through relations: 

Pe
m kPA =∗  [13] 

 
where the coefficient k and the exponent eP are 
themselves evaluated, through a nonlinear regression, as 
the values which best fit the dimensionless wave 
amplitude. In order to fit the dimensionless maximum 
wave amplitude A*m we vary the exponents and 
coefficients in the [0:1] range except for et, which is varied 
in the [-1:0] range, since it is reciprocal of the momentum 
flux in Eq. [10]. The best fit for A*m with PΔt is 

7.02.08.02.0 cos5.0 α−∗∗
∆∆

∗ ∆== tMFrPwithPA ttm  [14] 
 

which gives a coefficient of determination R2=0.88. 
Further the best fit for A*m with Ph is 

7.03.0
,

9.04.05.0 cos2.0 αhe
inmhhm hMFrPwithPA ∗∗∗ ==  [15] 

 
which gives a coefficient of determination R2=0.90. 
Comparison between empirical trends and experimental 
data are illustrated, respectively, in Figure 9 (A*m vs PΔt) 
and Figure 10 (A*m vs Ph). The two impulse product 
parameters in Eqs. [14] and [15] are similar: in both cases 
the dimensionless mass is the most significant controlling 
variable, Δt* and h*m,in display an exponents of opposite 
sign, as expected from Eq. [1], while Fr is of lesser 
influence. However, the dependence of A*m on Fr differs 
in Eqs. [14] and [15]. A similar analysis is ongoing to 
derive predictive relations for both the maximum 
dimensionless wave height H*m and the maximum wave 
period T*m. 

 
Figure 9. Comparison of the predictive relation A*m=0.5PΔt with 
experimental values. 



  E-proceedings of the 36th IAHR World Congress, 
28 June – 3 July, 2015, The Hague, the Netherlands   

 
          

  

8 

 
Figure 10. Comparison of predictive relation A*m=0.2Ph

0,5 with 
experimental values. 

4.2 Avalanche and wave energies 

The amplitude η(x,t), extrapolated from the low-speed 
cameras along the entire flume length, is used to evaluate 
the energy of the wave propagating in the flume. The 
wave potential energy is computed as: 

∫=
end

o

x

x
wpotw dxtxgbtE 2

, ),(
2
1)( ηρ  [16] 

 

where the integration domain goes from the limit of the 
splash zone (xo) to the end of the flume (xend). In order to 
estimate the kinetic wave energy, the horizontal depth-
averaged velocity u(x,t), not available from the 
measurements, is reconstructed using the shallow water 
solution, i.e. the numerically-reconstructed velocity for the 
available experimental water surface elevation, and the 
wave kinetic energy is evaluated as: 

∫=
end

o

x

x
wkinw dxtxubtE 2

, ),(
2
1)( ρ  [17] 

 

These energies are compared with the energy of the 
avalanche at impact. Given our choice for the coordinate 
system, the avalanche’s energy at impact includes the 
kinetic energy contribution only: 

2
, 2

1
mkins MvE =  [18] 

 
The energy transfer is evaluated as the ratio between the 
maximum value of the wave energy and the energy of the 
avalanche at impact. The ratio results in the following 
range: 

( )
48.0

)()(max
02.0

,

,, ≤
+

≤
kins

kinwpotw

E
tEtE  [19] 

 
which is in line with the results found in the literature for 
landslides (e.g. Huber, 1980; Fritz et al. 2004). 

4.3 Submerged mass barycenter motion 

Inspection of the relative barycenter depth y*G(t*) 
suggested us to split the experiments into two groups: the 
first group includes experiments with relatively small 

masses, M=100÷200 g, while the second group 
corresponds to larger masses, M=400÷700 g. 

For the first group the horizontal position of the 
submerged mass barycenter in time, x*G(t*), is parabolic 
during the initial stages of the impact and linear in the rest 
of the evolution (Figure 11), while the time variation of the 
vertical position, y*G(t*), is closely approximated by a 
parabola at short times, then by an hyperbola at longer 
times (Figure 12). For cases belonging to the second 
group the horizontal position of the submerged mass 
barycenter, x*G(t*), displays a linear time dependence, but 
the rate differs between short and long times (Figure 13). 
The depth curve, y*G(t*), is closer to a parabola during the 
first stage and linear in the following one (Figure 14). 

 
Figure 11. Horizontal motion of the submerged mass barycenter 
for experiments with M=100÷200g. 

 
Figure 12. Vertical motion of the submerged mass barycenter for 
experiments with M=100÷200g. 
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Figure 13. Horizontal motion of the submerged mass barycenter 
for experiments with M=400÷700g. 

 
Figure 14. Vertical motion of the submerged mass barycenter for 
experiments with M=400÷700g. 

The approximate functions of x*G(t*) and y*G(t*) for the 
two groups are related to control parameters which 
depend on the experimental data. An example of the 
approximate functions of each group is shown in Figure 
11, Figure 12, Figure 13 and Figure 14, where the mean 
(ensemble) value of each group’s experimental data is 
fitted. 

These approximate functions are fairly complicated. For 
example, for the first group the following approximating 
functions can be used: 





≥−+
≤++

=
∗∗∗∗∗∗

∗∗∗∗∗
∗∗

ccIIc

cin
G ttforttxx

ttforxBtAt
tx

)(
)(

2
 

[20] 
 

with 

)(2 max2
max

max ∗∗∗∗
∗

∗∗

=−=
−

= cGc
in txxAxB

t
xx

A  [21] 
 

and 





≥−+
≤+

=
∗∗∗∗∗

∗∗∗∗
∗∗

c
n

c
n

c

c
G ttforttCy

ttforBtAt
yty

hyphyp )(
)(

2
 

[22] 
 

with 

)(2 max2
max

max ∗∗∗
∗∗

∗∗
∗

∗

∗

=
−

−
=−=−= ccn

c
n

u

cu tyy
tt
yy

CAyB
t
y

A
hyphyp

 [23] 
 

where x*in is the dimensionless initial distance from the 
shoreline, x*max is the dimensionless maximum distance 
from the shoreline in the parabolic part, t*max is the 
dimensionless time when x*max occurs, t*c is the matching 
dimensionless time, x*II is the slope of the linear part, 
y*max is the dimensionless maximum depth reached by 
the barycenter, t*max is the dimensionless time when y*max 
occurs, y*u is the dimensionless longterm depth 
(evaluated for t*u=23) and nhyp is the exponent of the 
hyperbolic part.  

Regressions lead to a fairly good fit for the first group 
(small masses), with R2≥0.75, and very good fit for the 
second group (large masses), with R2≥0.90. The 
regression ranges are reported in Table 4 and an example 
(experiment 50) of the fit for x*G(t*) and y*G(t*) is shown in 
Figure 15 and Figure 16. 

Table 4. Range of variation for the parameters of the 
approximate function for the first group of experiments 

Function parameter  Regression range  

x*
in   0.2 <x*

in <1.3  

x*
max  x*

in <x*
max <1.7  

t*
max  3 < t*max <10  

t*
c  t*max < t*c <min(2.5* t*max,12)  

ẋ*
II   0.005< ẋ*

II  <0.1  

y*
max  0.15 < y*

max < 0.35  

t*
max  1 < t*max < 8  

t*
c  t*max < t*c < 1.5t*max  

y*
u  0 < y*

u < 0.15  

nhyp   -1 < nhyp < 0.1  

 

  
Figure 15. Approximate function for x*G(t*) for experiment 50 
(small mass group), which gives R2=0.95. 
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Figure 16. Approximate function for y*G(t*) for experiment 50 
(small mass group), which gives R2=0.81. 
 

5. NUMERICAL SIMULATIONS 

To better understand the physics of the phenomenon 
under investigation, the propagation of the impulse wave 
throughout the flume is studied. Such an analysis is 
undertaken by means of a Boussinesq-type numerical 
solver commonly used for shallow water applications, 
hence characterized by depth-averaged quantities (Shi et 
al., 2012). The equations chosen for the impulse wave 
propagation are fully nonlinear. The water surface level, 
which is first extracted from the data collected by the high-
speed camera (as explained in section 3.3), is then 
decomposed in all its wave components using a Fast 
Fourier Transform. These are used to generate the 
periodic boundary condition for the numerical model (for 
details, see Wei et al., 1999). The other boundaries are 
reflective, representing the flume lateral and end walls. 
The numerical domain, of dimensions equal to those of 
the experimental flume (see section 3.1), is discretized by 
a (∆x, ∆y)=(2, 2) cm grid. 

However, modeling is difficult because the generated 
wave is characterized by a three-dimensional evolution, 
due to the particle dispersion both in the horizontal plane 
and along the vertical. The result is that the depth-
averaged velocity and phase speed of the wave are not 
well captured by the model, the numerical wave being 
reproduced with some delay, and the wave shape being 
not very accurate. An example of the results is illustrated 
in Figure 17, where the numerical results are compared 
with the corresponding original and filtered experimental 
data. 

a)  

b)  
Figure 17. Comparison between numerical results (─) and 
experimental original () and filtered (─) data at 0.74 s (a) and 
1.11 s (b). 

6. CONCLUSIONS 

A simple experimental setup, for a two dimensional 
physical model, is used to simulate the impact of snow 
avalanches in water, the motion of the submerged mass, 
the wave formation and the wave propagation. 

A relation between the avalanche dimensionless 
parameters and the dimensionless maximum wave 
amplitude A*m is sought by introducing the impulse 
product parameter, inspired by a similar parameter used 
for describing landslide-induced impulse waves. The 
relation between Δt* and h*m,in suggests the possibility of 
using the former instead of the latter in the definition of an 
impulse product parameter suitable for avalanches. In fact 
in the two proposed impulse product parameters of Eqs. 
[14] and [15] Δt* and h*m,in have a similar importance, with 
an exponent of opposite sign. The possible use of the 
impact duration instead of the impact thickness in a 
predictive relation could be useful in view of the difficulties 
in evaluating the avalanche thickness at the impact.  

Results on energy transfer is in line with literature results 
on landslide generated impulse wave. This endorses the 
validity of applying concepts typical of studies on 
landslide-induced impulse waves to the analysis of 
avalanche-induced waves. 

The analysis of the motion of the submerged mass 
barycenter revealed two different behaviors depending on 
the slide mass. Such behavior can be described through 
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polynomial and exponential functions, but the piecewise 
nature of these functions makes the finding of a relation 
between the coefficients of the approximating function and 
the avalanche’s dimensionless parameters rather difficult. 
However, we are currently looking for a simpler 
approximation for the vertical motion of the submerged 
mass barycenter in similarity to that of a damped 
harmonic oscillator. Improved numerical simulations of the 
impulse waves are also ongoing. 

ACKNOWLEDGMENTS  

The experimental campaigns at the basis of the present 
work have been carried out during research visits of 
Maurizio Brocchini and Gianluca Zitti at the LHE-EPFL. 

REFERENCES  

Ágústsson K. and Sigurðsson HÞ., (2004), Hættumat fyrir 
Suðureyri í Súgandafirði. Report 04023, Icelandic 
Meteorological Office, 16. 

Ammann WJ. (1999) Der Lawinenwinter, 
Eidgenössisches Institut für Schnee- und 
Lawinenforschung, Davos. pp. 588,  

Ancey C., (2001). Snow Avalanches. Geomorphological 
Fluid Mechanics, Lecture Notes in Physics, 582, 319-
338 

Ancey C., (2012). Gravity Flow on Steep Slope, in 
Buoyancy Driven Flows, edited by E. Chassignet, C. 
Cenedese, and  J. Verron. Cambridge University 
Press, New York, 372-432,  

Frauenfelder R., Jònsson A., Lied K., Schwerdtfeger d., 
Bergum G., Buhler Y., Stoffel L. (2014), Analysis of an 
artificially triggered avalanche at the Nepheline 
Syenite Mine on Stjernøya, Alta, Northern Norway. 
Proc International Snow Science Workshop 2014 
Proceedings, Banff, Canada 

Fritz HM., Hager WH. and Minor HE. (2003). Landslide 
generated impulse waves. 1. Instantaneous flow fields. 
Experiments in Fluids, 35, 505-519 

Fritz HM., Hager WH. and Minor HE (2003). Landslide 
generated impulse waves. 2. Hydrodynamic impact 
craters”. Experiments in Fluids, 35, 520-532. 

Fritz HM., Hager WH. and Minor, HE. (2004). Near field 
characteristics of landslide generated impulse waves. 
Journal of Waterway, Port, Coastal, and Ocean 
Engineering, 130(6), 287-302  

Heller V. and Hager WH. (2010). Impulse product 
parameter in landslide generated impulse waves. 
Journal of Waterway, Port, Coastal, and Ocean 
Engineering, 136(3), 145-155 

Huber, A. (1980). Schwallwellen in Seen als Folge von 
Bergstürzen. VAW-Mitteilung, D. Vischer, ed., Vol. 47, 
Versuchsanstalt für Wasserbau, Hydrologie und 
Glaziologie, ETH, Zürich, Switzerland, (in German). 

Hutter K. (1996)  Avalanche dynamics, in Hydrology of 
Disasters, edited by V.P. Singh. Kluwer Academic 
Publications, Dordrecht, 317-392. 

Kamphuis, JW., and Bowering, RJ. (1972). Impulse waves 
generated by landslides. Proc., 12th Coastal 
Engineering Conf., 1, ASCE, New York, 575–588. 

Savage SB.,(1989) Flow of granular materials, in 
Theoretical and Applied Mechanics, edited by P. 
Germain, J.-M. Piau, and  D. Caillerie. Elsevier, 
Amsterdam, 241-266. 

Shi F., Kirby JT., Harris JC., Geiman JD., and Grilli ST. 
(2012). A high-order adaptive time-stepping TVD 

solver for Boussinesqe modeling of breaking waves 
and coastal inundation. Ocean Modeling, 43-44, 36-51 

Walder, J.S., P. Watts, O.E. Sorensen, and K. Janssen 
(2003). Tsunamis generated by subaerial mass flows, 
J. Geophys. Res., 108(B5), 2236(2). 

Wei G., Kirby J.T., Sinha A. (1999). Generation of waves 
in Boussinesq models using a source function method. 
Coastal Engineering, 36, 271-299. 

Zweifel A., Hager WH. And Minor HE. (2006). Plane 
impulse waves in reservoirs. Journal of Waterway, 
Port, Coastal, and Ocean Engineering, 132(5), 358-
368 

http://link.springer.com/book/10.1007/3-540-45670-8
http://link.springer.com/book/10.1007/3-540-45670-8
http://link.springer.com/bookseries/5304

