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ABSTRACT: In this paper, we present an experimental study about the motion of bed load particles in water.
Recent developments in the stochastic theory of bed load transport call for precise experimental data to validate
the models. We set up the experiment in a tilted narrow flume, where we could control water discharge. The
erodible bed was made of natural rounded particles of mean diameter 8 mm. Two high speed cameras, disposed
next two each other, recorded the transport process at 200 frames per seconds over an observation window of
approximatively 1 meter and during periods of 150 seconds. Contrasting with previous experimental study that
aimed to track moving particles, we imposed ourselves three constraints: (i) all moving particles have to be
tracked, (ii) tracking should be fully automatic, (iii) bed load transport rates have to be measured independently.
The former constraint is mandatory to correctly compare to theoretical predictions while the second is a condi-
tion to be able to get large samples of trajectories in relatively short time periods. The latter is obviously needed
to validate the algorithm. After briefly introducing the numerical treatment that allow the particle tracking, we
present some interesting results about the bed load particles dynamics.

1 INTRODUCTION

Recently, the stochastic approach to the problem of
the transport of bed load particles has regained the
interest of the scientific community (Parker et al.
2000, Ancey et al. 2008, Singh et al. 2009, Turowski
2010, Ancey 2010, Martin et al. 2012, Furbish et al.
2012, Roseberry et al. 2012, Heyman et al. 2013,
Furbish and Schmeeckle 2013). This might be due
to the apparent failure of the majority of determin-
istic based formulas in predicting bed load transport
rates, both in the laboratory and in the field, within
descent precision (Recking 2013). Indeed, the rela-
tive error between predicted and observed transport
rates rarely drops beyond 5 in laboratories, and of-
ten reaches several orders of magnitudes in natural
rivers. In the latter, this surprising unpredictability
is generally attributed to the lack of precise knowl-
edge of boundary and initial conditions (topography,
grain size, shear stress) and to complex effects such
as armoring (Chiari and Rickenmann 2010), segrega-
tion, dunes and bars migration (Dinehart 1992, Nel-
son et al. 2010). In the laboratory, that is in a precisely
controlled environment, the failure of averaged bed
load formulas is harder to justify. Meanwhile, time
fluctuations in the transport rates are strongly interfer-
ing in the sampling of the average rates (Carey 1985,
Bunte and Abt 2005, Ancey et al. 2006). The ampli-
tude of those fluctuations is known to be large, often

several time larger than the mean transport rates (An-
cey et al. 2006).

The stochastic approach to bed load transport aims
thus to take into account the intrinsic fluctuating na-
ture of the transport of particles in order to derive
statistically consistent averages as well as their ex-
pected fluctuations. In the recent contributions, (Fur-
bish et al. 2012) comes up with a macroscopic defi-
nition of the solid flux based on statistical arguments.
Contrarily to classical bed load flux definitions, a dif-
fusive flux appear in the macroscopic equations, due
to particle velocity fluctuations. They also presented
few experiments that confirmed their findings. In the
same time, (Ancey and Heyman 2014) generalized a
previously published stochastic model (Ancey et al.
2008) to a spatio-temporal stochastic theory of bed
load transport. In a similar manner, a diffusive flux
emerges from particle velocity fluctuations. The au-
thors showed that the particle activity, defined as the
number of moving particles per unit bed area, is re-
sponsible for the large fluctuations of the bed load
flux. From their stochastic model, (Heyman et al.
2013) showed that correlation in time and space could
emerge from particle motions, and that the theoretical
predictions compared well with previous experimen-
tal studies.

Meanwhile, the refinement of theory calls for new
experimental techniques to measure the dynamics of
individual particle. Indeed, the knowledge of instan-



taneous positions and velocities of moving particles is
particularly relevant to describe completely the phase-
space domain. In the past, computer imaging tech-
niques have been rarely used to monitor bed load
transport. Since recently, many authors have preferred
to treat images manually. The obtained samples were
thus extremely restricted in time and space. For in-
stance, (Drake et al. 1988) analysed an analogue film
to reconstruct particle motions. In total, only a few
seconds of film could be treated. It spanned a small
region of the bed, for about 200 particles trajecto-
ries. (Drake et al. 1988) pointed that “[...] these ar-
eas and times [were] not large in comparison with the
spatial and temporal variation in bed surface material
and bed load transport [...]”. Other authors, such as
(Roseberry et al. 2012) and (Lajeunesse et al. 2010)
recently used manual tracking to reconstruct the par-
ticle trajectories over relatively short time and space
scales. Some researchers (Martin et al. 2012) succeed
in tracking automatically a sample of a few parti-
cles, called tracers. However, extrapolating results to
the whole solid mass in motion is not obvious. Few
years ago, (Böhm et al. 2004) used an extremely nar-
row flume, filled with glass beads of equal diame-
ter and reconstruct trajectories automatically over 30
seconds for a 25 cm observation window. In total, a
few thousand trajectories could be obtained via an au-
tomatic tracking algorithm. However, turbulence and
grain dynamics were severely affected by the strong
experimental constraints. Extrapolating their results
to unconstrained bed load transport is thus not obvi-
ous.

To overcome this limitations, we present an auto-
matic algorithm that tracks bed load particles through
the frames of a film. The method borrows widely used
concepts to image and signal processing science (Yil-
maz et al. 2006). First, we present the experimental
setup and the acquisition hardware. Second, we draw
the main lines of the processing algorithm and show
some typical output. Finally we present several statis-
tical results about bed load particle dynamics under
water.

2 EXPERIMENTS & METHODS

2.1 Experimental setup

We carried out experiments in a 2.5 m long, 3.5 cm
wide tilted flume. We imposed a constant water dis-
charge at the inlet with a pump. The erodible bed was
made of natural gravels of narrow grain size distribu-
tion (d50 = 8 mm). Natural particle colors were suf-
ficiently bright to obtain a good contrast in images.
Constant sediment feeding at the flume inlet was also
maintained with a conveyor belt. As our problematic
concerns sediment transport in mountain rivers, the
slope was adjusted between 2 and 4 degree to repro-
duce a supercritical flow. In this regime, the water
depth is small and surface waves strongly perturbs

Table 1: Experimental parameters. θ, slope in degrees; Fr, Froude
number; Re, Reynolds number; τ , Shields stress; h̄, mean wa-
ter depth (m); Rh, Hydraulic radius; ū, mean velocity (m/s); q̄s,
mean bed load flux (particle/s).
θ Fr Re τ h̄ Rh ū q̄s

1.99 1.52 40800 0.098 0.034 0.012 0.89 1.16

the free surface. Filming particle motions from above
is thus impractical. Indeed, the use of a glass lid (to
avoid light refraction effects) is not possible without
perturbing the flow. As a consequence, we took the
image sequences by the side transparent wall. The
channel width being relatively small (∼ 4d50), mov-
ing particles were rarely occluding each other. Exper-
imental conditions are resumed in table 2.1.

We used 2 cameras Basler c© A504k of resolution
1280× 256 with 8 bits gray scale pixels. The cameras
were placed next to each other so that their fields of
vision overlap by a few centimetres. We used 28 mm
lenses, a fair compromise between image deforma-
tion and angle of vision. In total, a one-meter long
observation zone of the bed was achieved (Fig. 1).
The frame rate was fixed to 200 fps so that the quick-
est particles could not move further than one diam-
eter away between two frames. This parameter was
found to be crucial for the particle trajectories re-
construction. A set of 4 halogen lights and diffusers
were placed above the flume so that the camera expo-
sure time could be decreased down to 0.02 seconds
for a 4 mm lens aperture. As a consequence, even
the fastest particles were sharply delimited on frames
(Fig. 2). 328 Kb are required to store each frame, so
that, with 20 Gb available random access memory on
our computer, 30000 frames (2.5 minutes) could be
acquired in once. These video sequences were taken
repetitively after saving the frames in the disk.

Simultaneously, we also monitored the bed load
discharge at the outlet of the flume by an indirect
acoustic technique described in (Heyman et al. 2013).
This technique allows for a high temporal resolution
(from 0.1 seconds to days) and was systematically
controlled by weighting the cumulative sediment col-
lected. This simultaneous measurements were neces-
sary to infer the accuracy of the processing algorithm
used on video frames as shown in §2.4 .

2.2 Image processing

The image processing consists in three main tasks:
(i) Background subtraction (ii) Centroid detection and
(iii) Trajectory reconstruction. Each of these tasks can
be obtained by different techniques. Without pretend-
ing to be exhaustive, we will try to review the different
options that offered to us.

2.2.1 Background subtraction
In bed load transport, particles in motion have gener-
ally the same appearance of those resting on the erodi-
ble bed. Indeed, no distinction between “moving” or



Figure 1: The whole observable window. Estimated water and bed elevation were superposed in blue and yellow.

Figure 2: Example of the algorithm steps: (a) Original image (b)
Background (c) Foreground (d) Convolution product.

“resting” particles can be a priori made when looking
at an individual frame. Thus, we need to consider an
algorithm to split the image into moving and still re-
gions. This is what we call “Background subtraction”
(or its complementary “Foreground selection”). There
are (at least) 3 methods to achieve this.

The simplest way is to subtract pixel to pixel the
current frame from the immediate previous one. The
resulting image is thus formed of only the pixels val-
ues that change in time (particles that moved). Al-
though being extremely fast, this basic method raises
issues when particles travels less than their own di-
ameter, resulting in “crescent moon” particle shapes.
A better result is obtained by the technique of median
filtering. A background image B is updated sequen-
tially by comparing it to the current frame I accord-
ing to the rules:

if Bij > Iij then Bij ← Bij − 1,

if Bij < Iij then Bij ← Bij + 1. (1)

These simple rules insure that the background image
converge to the median image, that is an image where
only the resting particles would appear. Furthermore,
as the background of the scene evolves through time
(because of erosion and deposition of particles), the
median background automatically adapts itself to the
changes. The foreground image is simply obtained

by subtracting the median background to the current
frame. The last possibility, more technical, is called
mixture-Gaussian background subtraction. It consists
in representing the value of each pixel as a superpo-
sition of n Gaussian distributions. At each frame, a
pixel is set to foreground if the probability to observe
its value fall beyond a certain threshold. The gain in
performance of this method compared to median fil-
tering is not obvious, so that we chose the latter for
our purposes.

2.2.2 Centroids detection
Once the foreground image has been appropriately
separated from the background image, positions of
the particle centroids have to be determined. One ex-
pect the foreground picture to be noisy so that image
filtering has often to be apply. Two options are de-
scribed in the following.

The first one consists in thresholding the fore-
ground image and successively apply morphological
operations on pixel (erosion, dilatation, closing...) to
remove isolated pixels. At the end, only groups of
pixels delimiting moving particles should remain. By
studying the properties of these regions, the center
of mass, the area, the eccentricity and orientation of
the particles can be obtained. This option assumes the
choice of a threshold, that has to be retrospectively ad-
justed. The disadvantage of this method is that when
two particles collide, the thresholding operation may
result in a large unique region, precluding the detec-
tion of two particles. This drawback is partially solved
by using the alternative method presented below.

The second option involves a convolution filter. Re-
call that the convolution product is a “comparator” of
two functions such that:

(f ? g) =
∫
f(x)g(y− x)dy. (2)

In our case, f is the two-dimensional foreground im-
age while g is a two-dimensional kernel that has ap-
proximately the shape of a particle. The Laplacian of
Gaussian kernel is particularly suited for our purpose
(Fig 2(d)). It is symmetric (rounded particles), it al-
lows the definition of a mean (mean particle diameter)
as well as a variance (variance in particle diameter).
Particle centroids are obtained by finding local max-
ima in the convolution product. In other words, the
maxima are located where the kernel fits particularly
well the foreground picture, that is when a moving
particle is present. The advantage of the Laplacian of
Gaussian kernel (compared to a simple gaussian for



instance) lies in the presence of negative values on
the edges of the filter, that result in a negative “halo”
over the boundary of particles. Thus, when two par-
ticles collide, the halo prevents them to appear as a
unique particle, so that two local maximums are still
detected. Note that, unlike the thresholding method,
none of the other properties (area, eccentricity...) can
be obtain from the convolution product so that the best
method would be a combination of both.

2.2.3 Trajectories reconstruction
Once a list of particles centroids through space and
time is obtained, the last task is to link them between
two frames to construct a unique trajectory. The is-
sues are numerous:
- Several particles have to be tracked at the same time.
- The number of particles to track is varying in time,
due to erosion, deposition and migration of particles
in and out the image.
- Two particles can collide or/and overlap for a few
images, leading to only one centroid detection. Al-
though this phenomena is mitigated by using the
Laplacian of Gaussian convolution kernel, it is still
likely to happen. This is even more probable when
the images are taken from the side wall, as in our ap-
plication.
- The observation of the true position of centroids is
not guaranteed over all frame, as some measurement
noise can interfere in the process.
- The motion of particles is chaotic due to repeated
impacts and turbulent forces.

Several tools have to be used conjointly to reduce
at a minimum the error in trajectory reconstruction.
We present some of them in the following. The sim-
plest way to reconstruct a trajectory is to link a cen-
troid to its nearest neighbour in the next frame. How-
ever, when multiple trajectories are simultaneously
tracked, this does not guaranty the best combination.
One would prefer an optimisation algorithm (also
called Hungarian algorithm) that minimize a global
cost function, defined as the sum of the distance be-
tween present particle positions and their potential
candidates in the next frame. This insure that the con-
structed trajectories are the best in average.

To tackle the issue of errors or failures in centroid
detections, the use of a Kalman filter is opportune.
The Kalman filter consists in two successive step: a
prediction step where the new positions of particles
are predicted according to some kinematic model, and
a correction step where these predictions are com-
pared to the observations. The kinematic model can
be made as complex as wanted, but in the absence of
precise knowledge about the forces involved, the sim-
plest model is to assume a constant acceleration (con-
stant forces acting on particles). That is, given the po-
sition xti of the i-th particle at frame t, the predicted
position at frame t+ 1 is given by:

x̃t+1
i = xti + vti∆t+ ati∆t

2, (3)
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Figure 3: Particle trajectories in the x− t plane. The color en-
codes the vertical component (in meter).

where vti and ati are particle velocity and accelera-
tion respectively. We then compare the centroids de-
tected in frame t + 1 with the previous estimations,
for instance by mean of the Hungarian algorithm
mentioned above. Finally the corrected position xt+1

i

of particle i is obtained by a weighted combination
of the observed and the predicted position. The rel-
ative weight is given as a function of the noise ex-
pected in measurements and the expected departure
from the kinematic model. This prediction-correction
algorithm allows the continuous tracking of particles.
When a particle centroid is missing for a few frames,
the kinematic model continues to estimate its posi-
tion, and eventually reconnects it with a future obser-
vation.

More general methods use Bayesian statistics to
predict and update the particle positions (Schikora
et al. 2011). The kinematic model is now defined as
a prior probability function. The ultimate position is
then obtained by maximizing the posterior function
(maximum likelihood).

Fig. 3 shows a sample of particles trajectories ob-
tained by the algorithm. Each trajectory consists in a
continuous line. Some trajectories appear to be bro-
ken in several pieces, when the Kalman filter couldn’t
predict accurately enough their positions. Note that,
at this point, still no manual treatment has been in-
volved.

2.3 Velocity threshold

Once particle trajectories are obtained, the instanta-
neous particle velocity can be computed by finite dif-
ference:

uk(ti) =
xi − xi−1

∆t
, vk(ti) =

yi − yi−1
∆t

, (4)

where ∆t is the inverse of the frame rate of the cam-
era.

In order to discriminate between moving and rest-
ing particles, a velocity threshold needs to be defined.



This threshold is arbitrary in the sense that a parti-
cle is never totally resting on the bed but its position
slightly oscillates due to the turbulent flow drag. It is
worth noting that the choice of the threshold is likely
to influence the results. Indeed, by including the slow-
est particles into the group of moving particles, more
importance to transport by rolling or sliding will be
given. On the contrary, by ignoring them, saltation
will be the dominant mode of transport. In the follow-
ing, we consider that a particle is moving if its instan-
taneous velocity magnitude is larger than 0.3 cm/s,
which is approximately 1% of the bulk average parti-
cle velocity.

2.4 Validation

A detailed validation of the detection algorithm is dif-
ficult. A visual check of each single trajectories is the
only way to insure the accuracy of our algorithm. Un-
fortunately, it is infeasible when a large number of
trajectories is involved. However, visual check on a
few video samples can help to get an idea of the ob-
tained accuracy. To that end, graphic interfaces like
the MtrackJ plug-in for the open-source imageJ soft-
ware are convenient.

As we could measure the bed load flux at the outlet
of the flume at the same time as acquiring images, we
can also compare the resulting bed load flux obtained
with both techniques. The instantaneous bed load flux
defined as a volume average reads:

qs(t) =
1

∆x

N∑
i=1

vi [Particles/s] (5)

where ∆x is the length of the observation window
(Ancey and Heyman 2014). The cumulative trans-
ported load between two times is thus:

Q =
∫ t2

t1
qs(t)dt, (6)

and can be directly compared to the cumulative flux
obtained at the outlet of the flume (Fig. 4). Note that
we do not expect a perfect agreement between the
curves because the observation window was not di-
rectly touching the outlet of the flume, but was ending
approximately 10 cm before. Thus, the 10% discrep-
ancy observed in Fig. 4 between the two cumulative
fluxes at the end of a video sequence is likely to be
caused by spatial variability in the bed load transport
fluxes rather than an under estimation from the track-
ing algorithm. Despite this, the instantaneous fluxes
of both methods compare well on Fig 4.

3 RESULTS

3.1 Flux

The Exner equation, or mass conservation equation,
involves the spatial derivative of the solid flux. Thus,
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its knowledge is of great importance for any morpho-
dynamic model. The volume average instantaneous
solid flux in an observation window of length ∆x was
defined in equation (5). It is tempting to decompose
the bed load flux as:

qs =
1

∆x
nv (7)

where n and v are two random variables for the num-
ber of moving particles in the windows and their ve-
locities. In a similar manner as a Reynolds decom-
position in turbulence, we define n = n̄ + n′ and
v = v̄ + v′ so that

qs = n̄v̄ + n′v̄ + v′n̄+ v′n′. (8)

Fig. 5 shows both the variation of qs and of n dur-
ing a short time period. We can see that most of the
fluctuations of qs originate from the fluctuations of n.
Indeed, in practice, v′� (n′, n), so that to first order,
qs ∼ v̄ (n̄+ n′) +O(v′).

3.2 Velocity distribution

The velocity distribution of particles is shown in
Fig. 6. It is fairly well described by a Gaussian prob-
ability law, of mean v̄ = 0.34 m/s and standard de-
viation σv = 0.26 m/s. This is in agreement with the
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Figure 6: Probability density function of the streamwise velocity
component of moving particles.

model proposed in (Ancey and Heyman 2014). Other
models suggest an exponential distribution for the
particle velocities (Roseberry et al. 2012, Furbish and
Schmeeckle 2013). Apart from the negative veloci-
ties and the high positive velocities, the experimental
probability density function does not show an evident
exponential shape (a line in semi-log plot).

3.3 Diffusivity

Unlike the movement of Brownian particles that un-
dergo uncorrelated motion, the velocities of parti-
cles shows some non-vanishing correlation over time.
Moreover, as particles start from rest and eventually
return to rest after some time, the velocity of a sin-
gle particle exhibits periodicity. According to (Fur-
bish et al. 2012), the effective diffusivity can be ob-
tained by calculating the variance of the particle ve-
locity as well as the integral of its auto-correlation.
However, because of the periodicity, the integral does
not grow monotonically towards a constant value over
long time scales.

An other method to determine the diffusivity makes
use of the fact that the mean squared displacement
should grow linearly with time 〈X2〉 ∝ 2Dt (Taylor
1922). Finding D is thus equivalent to fitting the par-
ticle’s mean squared displacement through time with
a linear regression curve. For short time scales, the
mean squared displacement shows a strong t2 depen-
dence, confirming the super-diffusive behavior due to
particle velocity correlations. For scales greater than
0.5s, the mean squared displacement depends linearly
on time, such that the diffusivity coefficient can be
computed.

3.4 Clustering

The last interesting feature that can be highlight by
our algorithm concerns spatial patterns in particles
positions. It has been shown by several authors that,
close to the threshold of motion, the transport of par-
ticle occurs intermittently. Indeed, (Drake et al. 1988)
observed that “bursts” in particle activity were hap-
pening less than 9% of the time but were concentrat-
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ing not less than 90% of the total load. He pointed that
moving clusters of particles were responsible of those
bursts in solid discharge.

Mathematically, this translates into correlations in
particle positions. When moving particles are ran-
domly distributed in the space, no correlation should
exist between them. However, when particle clusters
are present, this indicates a non-zero correlation be-
tween particles. The correlation originates from dif-
ferent processes, such that turbulent coherent struc-
tures or collective entrainment (Heyman et al. 2013).

A simple way to quantify this apparent correlation
is the K−function (Ripley 1976), where K(x) repre-
sents the expected number of moving particles found
in a ball of radius x centred at a particle centroid di-
vided by the mean process rate. If the process is un-
correlated, we expect K(x) to grow linearly with x.
If the process is positively correlated, K(x) grows
quicker than linearly (Fig. 8).

As expected, the experimental K-function shows
a positive correlation for spatial scales smaller than
30 cm. Its behavior seems to become linear at longer
scales, proving that long range correlations are not
involved (e.g. the integral of the spatial correlation
function exists).

4 CONCLUSIONS

In this paper, we presented an automatic algorithm
to track the motion of bed load particles in water.
Motion tracking is a vast research area and various
methods have been proposed. Their performances de-
pend strongly on the application, such that methods
performing well for a soccer ball wont automatically
apply to bed load transport. The latter presents sev-
eral inherent difficulties (see 2.2), such as variations
in the number of particles, particle occlusions... Some
of them can be avoided by filming the transport pro-
cess from above, if the free surface has no influence
on the flow dynamics. For extremely shallow water
flow, such as steep slope flows, filming from the side
wall is unavoidable.

We showed that Kalman filters, and more generally
all Bayesian filters, are or great help to deal with im-
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age noise and measurements error. An a priori knowl-
edge of some fundamental kinematics of the parti-
cle motion, like the constant acceleration model men-
tioned, allows a better reconstruction of particle tra-
jectories. However, it is worst warning that those fil-
ters can also modify the apparent nature of particle
motion (for instance, by smoothing strong variations)
and thus, their impact on the statistical results have to
be carefully assessed.

As an example, we presented an experiment carried
out in a steep narrow flume. The whole observation
window covered about 1 m. To the authors knowl-
edge, this is the largest motion-picture experiment ex-
isting. Particle flux calculated from particle trajecto-
ries compared well with the flux measured at the out-
let of the flume. This validates partially the tracking
algorithm. The major limitation arise from the fact
that particle trajectories are often broken in several
pieces, so that estimation of the rate of erosion and
deposition is difficult. Still, a lot of characteristics of
the motion of particles can be extracted by our method
such as particle flux, particle diffusivity, particle clus-
tering...

Improving the algorithm is certainly possible, and
even desirable. The use of advanced methods, such
as optical flow or more complex Bayesian filters
(Schikora et al. 2011) have to be considered in the
future to overcome the present limitations.
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Ancey, C., T. Böhm, M. Jodeau, & P. Frey (2006, Jul.). Statisti-
cal description of sediment transport experiments. Phys. Rev.
E 74(1), 011302.
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