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1 Introduction

Over the last century, mountain ranges in Europe and North America have seen
substantial development due to the increase in recreational activities, trans-
portation, construction in high altitude areas, etc. In these mountain ranges,
avalanches often threaten man's activities and life. Typical examples include
recent disasters, such as the avalanche at Val d'Is�ere in 1970 (39 people were
killed in a hostel) or the series of catastrophic avalanches throughout the North-
ern Alps in February 1999 (62 residents killed). The rising demand for higher
safety measures has given new impetus to the development of mitigation tech-
nology and has given rise to a new scienti�c area entirely devoted to snow and
avalanches. This paper summarises the paramount features of avalanches (for-
mation and motion) and outlines the main approaches used for describing their
movement. We do not tackle speci�c problems related to snow mechanics and
avalanche forecasting. For more information on the subject, the reader is referred
to the main textbooks published in Alpine countries [1{8].

1.1 A physical picture of avalanches

Avalanches are rapid gravity-driven masses of snow moving down mountain
slopes. With this fairly long de�nition, we try to characterise avalanches with
respect to other snow 
ows. For instance, a snowdrift involves transport of snow
particles, driven not by gravity but by wind. The slow slide and creep of the
snow cover is driven by gravity but with a slow kinetic (typical velocities are in
mm/day). Likewise, the slide of a snowpack down a roof cannot be considered
to be an avalanche.

1.2 Avalanche release

Successive snowfalls during the winter and spring accumulate to form snow cover.
Depending on the weather conditions, signi�cant changes in snow (types of crys-
tal) occur as a result of various mechanical (creep, settlement) and thermo-
dynamic processes (mass transfer). This induces considerable variations in its
mechanical properties (cohesion, shear strength). Due to its layer structure, the
snow cover is liable to internal slides between layers induced by gravity. When
the shear deformation exceeds the maximum value that the layers of snow can
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undergo, a failure arises, usually developing �rst along the sliding surface, then
propagating throughout the upper layers across a crack perpendicular to the
downward direction. This kind of release is very frequent. In the �eld evidence
of such failures consists of a clear fracture corresponding to the breakaway wall
at the top edge of the slab and a bed surface over which the slab has slid (see
Fig. 1). If the snow is too loose, the failure processes di�er signi�cantly from the
ones governing slab release. Loose snow avalanches form near the surface. They
usually start from a single point, then they spread out laterally by pushing and
incorporating more snow.

Fig. 1. Slab avalanche released by gliding wet snow

The stability of a snow cover depends on many parameters. We can distin-
guish the �xed parameters related to the avalanche path and the varying pa-
rameters, generally connected to weather conditions. Fixed parameters include:

� Mean slope. In most cases, the average inclination of starting zones ranges
from 27� to 50� On rare occasions, avalanches can start on gentle slopes of
less than 25� (e.g. slush
ow involving wet snow with high water content),
but generally the shear stress induced by gravity is not large enough to
cause failure. For inclinations in excess of 45� to 50�, many slides (slu�s)
occur during snowfalls; thus amounts of snow deposited on steep slopes are
limited.

� Roughness. Ground surface roughness is a key factor in the anchorage of
the snow cover to the ground. Dense forests, broken terrain, starting zones
cut by several ridges, ground covered by large boulders generally limit the
amount of snow that can be involved in the start of an avalanche. Conversely,
widely-spaced forests, large and open slopes with smooth ground may favour
avalanche release.



Snow Avalanches 3

� Shape and curvature of starting zone. The stress distribution within the
snowpack and the variation in its depth depend on the longitudinal shape
of the ground. For instance, convex slopes concentrate tensile stresses and
are generally associated with a signi�cant variation in the snowcover depth,
favouring snowpack instability.

� Orientation to the sun. The orientation of slopes with respect to the sun has
a strong in
uence on the day-to-day stability of the snowpack. For instance,
in winter, shady slopes receive little incoming radiation from the sun and
conversely lose heat by long-wave radiation. It is generally observed that for
these slopes, the snowpack is cold and tends to develop weak layers (faceted
crystals, depth hoar). Many fatalities occur each year in such conditions.
In late winter and in spring, the temperature increase enhances stability of
snowpacks on shady slopes and instability on sunny slopes.

Among the varying factors intervening in avalanche release, experience clearly
shows that in most cases, avalanches result from changes in weather conditions:

� New snow. Most of the time, snowfall is the cause of avalanches. The hazard
increases signi�cantly with the increase in the depth of new snow. For in-
stance, an accumulation of 30 cm/day may be su�cient to cause widespread
avalanching. In European mountain ranges, heavy snowfalls with a total pre-
cipitation exceeding 1m during the previous three days may produce large
avalanches, with possible extension down to the valley bottom.

� Wind. The wind is an additional factor which signi�cantly in
uences the
stability of a snowpack. Indeed it causes uneven snow redistribution (ac-
cumulation on lee slopes), accelerates snow metamorphism, forms cornices,
whose collapses may trigger avalanches. On the whole, in
uence of the wind
is very diverse, either consolidating snow (compacting and rounding snow
crystals) or weakening it.

� Rain and liquid water content. The rain plays a complex role in snow meta-
morphism. Generally, for dry snow, a small increase in the liquid water con-
tent (LWC<0.5%) does not signi�cantly a�ect the mechanical properties of
snow. However, heavy rain induces a rapid and noticeable increase in LWC,
which results in a drop in the shear stress strength. This situation leads to
widespread avalanche activity (wet snow avalanches).

� Snowpack structure. A given snowpack results from the successive snowfalls.
The stability of the resulting layer structure depends a great deal on the
bonds between layers and their cohesion. For instance, heterogeneous snow-
packs, made up of weak and sti� layers, are more unstable than homogenous
snowpacks.

1.3 Avalanche motion

It is very common and helpful to consider two limiting cases of avalanches de-
pending on the form of motion [7]:
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� The 
owing avalanche (avalanche coulante, Fliesslawine, valanga radente): a

owing avalanche is an avalanche with a high-density core at the bottom.Mo-
tion is dictated by the relief. The 
ow depth does not generally exceed a few
meters (see Fig. 2). The typical mean velocity ranges from 5m/s to 25m/s.
On average, the density is fairly high, generally ranging from 150kg/m3 to
500kg/m3.

� The airborne avalanche (avalanche en a�erosol, Staublawine, valanga nubi-
forme): it is a very rapid 
ow of a snow cloud, in which most of the snow
particles are suspended in the ambient air by turbulence (see Fig. 3). Relief
has usually little in
uence on this aerial 
ow. Typically, for the 
ow depth,
mean velocity, and mean density, the order of magnitude is 10{100m, 50{
100m/s, 5{50kg/m3 respectively.

Fig. 2. Flowing avalanche impacting a wing-shaped structure in the Lauratet experi-
mental site (France)

The avalanche classi�cation proposed here only considers the form of motion
and not the quality of snow. In the literature, other terms and classi�cations
have been used. For instance, it is very frequent to see terms such as dry-snow
avalanches, wet-snow avalanches, powder avalanches, etc. In many cases and
probably in most cases in ordinary conditions, the motion form is directly in
u-
enced by the quality of snow in the starting zone. For instance, on a su�ciently
steep slope, dry powder snow often gives rise to an airborne avalanche (in this
case no confusion is possible between airborne and powder snow avalanches).
However, in some cases, especially for extreme avalanches (generally involving
large volumes of snow), motion is independent of the snow type. For instance,
wet snow may be associated with airborne (e.g., Favrand avalanche in the Cha-
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Fig. 3. Airborne avalanche descending a steep slope (Himalayas)

monix valley, France, on 16 May 1983). Between the two limiting cases above,
there is a fairly wide variety of avalanches, which exhibit characteristics common
to both airborne and 
owing avalanches. Sometimes, such 
ows are referred to as
\mixed-motion avalanches". The use of this term is often inappropriate because
it should be restricted to describing complex 
ows for which both the dense core
and the airborne play a role (from a dynamic point of view). In some cases,
the dense core is covered with a snow dust cloud, made up of snow particles
suspended by turbulent eddies of air resulting from the friction exerted by the
air on the core. This cloud can entirely hide the high-density core, giving the
appearance of an airborne avalanche, but in fact, it plays no signi�cant role in
avalanche dynamics. It should be born in mind that the mere observation of a
cloud is generally not su�cient to specify the type of an avalanche. Further ele-
ments such as the features of the deposit or the destructive e�ects are required.

The current terminology asserts that there are two main types of motion. In
this respect, mixed-motion avalanches are seen as avalanches combining aspects
of both airborne and 
owing avalanches, but they are not seen as a third type
of avalanche. The question of a third type of avalanche has been raised by some
experts during the last few years. Indeed, there is �eld evidence that some events
did not belong either to the group of airborne or 
owing avalanches. For instance,
the Taconnaz avalanche (Haute-Savoie, France) on 11 February 1999 severely
damaged two concrete-reinforced structures. The impact pressure was estimated
at (at least) 600 kPa. The assumption of a 
owing avalanche is not supported
by the shape of the deposit. Current knowledge of airborne dynamics has a hard
time explaining such a high impact pressure.

To conclude it should be noticed that there is currently a limited amount of
data on real events. Some of the main parameters, such as the mean density in
an airborne avalanche, are still unknown. Thus, many elements of our current
knowledge of avalanches have a speculative basis. Today a great deal of work is
underway to acquire further reliable data on avalanche dynamics. Experimental
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sites, such as la Sionne (Switzerland) or the Lautaret pass (France), have been
developed for that purpose. However a survey of extreme past events shows
that the characteristics of extreme avalanches (involving very large volumes)
cannot be easily extrapolated from the features of ordinary avalanches. In this
respect, the situation is not very di�erent from the problems encountered with
large rockfalls and landslides [9,57]. Many observations that hold for ordinary
events no longer hold for rare events. Examples include the role of the forest,
the in
uence of the snow type on avalanche motion, etc.

2 Modelling avalanches

Avalanches are extremely complex phenomena. This complexity has led to the
development of several approaches based on very di�erent points of view. Many
papers and reports have presented an overview of current models. These include
the review by Hop�nger [12] as well as a comprehensive up-to-date review of
all existing models edited by K. Harbitz [13] in the framework of an European
research programme. Here we shall only outline three typical approaches: the
statistical approach, the deterministic approach, and small-scale models.

2.1 Statistical methods

In land-use planning (avalanche zoning), the main concern is to delineate ar-
eas subject to avalanches. Avalanche mapping generally requires either accurate
knowledge of past avalanche extensions or methods for computing avalanche
boundaries. To that end several statistical methods have been proposed. The
two main models used throughout the world are the one developed by Lied and
Bakkeh�i [15] and the one developed subsequently by McClung and Lied [14].
Both attempt to predict the extension (stopping position) of the long-return
period avalanche for a given avalanche path. Generally, authors have consid-
ered avalanches with a return period of approximately 100 year returns. All
these methods rely on the correlations existing between the runout distance and
some topographic parameters. They assume that the longitudinal pro�le of the
avalanche path governs avalanche dynamics. The topographic parameters gen-
erally include the location of the top point of the starting zone (called point A)
and a point B of the path pro�le where the local slope equals a given angle,
most often 10� (this point is usually interpreted as the deceleration point of the
path). The position of the stopping position (point C) is described using the
angle �, which is the angle of the line joining the starting and stopping points
with respect to the horizontal (see Fig. 4). Likewise, � is the average inclination
of the avalanche path between the horizontal and the line joining the starting
point A to point B.

To smooth irregularities in the natural path pro�le, a regular curve (e.g., a
parabola) can be �tted to the longitudinal pro�le. Statistical methods have so far
been applied to 
owing avalanches. In principle, nothing precludes using them
for airborne avalanches. But in this case, one is faced with the limited amount of
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Fig. 4. Topographic parameters describing the pro�le. The dashed line represents the
�tted parabola

data and their poor quality (airborne avalanches are rare and the limits of their
deposits are hard to delineate in the �eld). As an example of statistical models,
we indicate the results obtained by Lied and Toppe [16]. Using regression analysis
on data corresponding to the longest runout distance observed for 113 avalanche
paths in western Norway, these authors have found that:

� = 0:96� � 1:7�: (1)

The regression coe�cient is fairly good (r2 = 0:93) and the standard deviation
is relatively small (s = 1:4�). Many extensions of the early model developed by
Lied and Bakkeh�i have been proposed over the last twenty years either to tune
the model parameters to a given mountainous region or adapt the computations
to other standards. For instance, subsequent work on statistical prediction of
avalanche runout distance has accounted for other topographic parameters such
as the inclination of the starting zone or the height di�erence between the start-
ing and deposition zones. Although statistical methods have been extensively
used throughout the world over the last twenty years and have given fairly reli-
able and objective results, many cases exist in which their estimates are wrong.
Such shortcomings can be explained (at least in part) by the fact that for some
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avalanche paths, the dynamic behaviour of avalanches cannot be merely related
or governed by topographic features.

2.2 Deterministic approach (Avalanche-dynamics models)

The deterministic approach involves quantifying the elementary mechanisms af-
fecting the avalanche motion. Avalanches can be considered at di�erent spatial
scales (see Fig. 5). The larger scale, corresponding to the entire 
ow, leads to the
simplest models. The chief parameters include the location of the gravity centre
and its velocity. Mechanical behaviour is mainly re
ected by the friction force
F exerted by the bottom (ground or snowpack) on the avalanche. The smallest
scale, close to the size of snow particles involved in the avalanches, leads to com-
plicated rheological and numerical problems. The 
ow characteristics (velocity,
stress) are computed at any point of the occupied space. Intermediate models
have also been developed. They bene�t from being less complex than three-
dimensional numerical models and yet more accurate than simple ones. Such
intermediate models are generally obtained by integrating the motion equations
across the 
ow depth in a way similar to what is done in hydraulics for shallow
water equations.

u

F

u(x,t)
í
p

h(x,t)

u(x,y,t)

ë(x,y,t)

Fig. 5. Di�erent spatial scales used for describing avalanches

Simple models

Simple models have been developed for almost 80 years in order to crude es-
timations of avalanche features (velocity, pressure, runout distance). They are
used extensively in engineering throughout the world. Despite their simplicity
and approximate character, they can provide valuable results, the more so as
their parameters and the computation procedures combining expert rules and
scienti�c basis have bene�ted frommany improvements over the last few decades.
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Simple models for 
owing avalanches. The early models date back to the
beginning of the 20th century. For the Olympic Games at Chamonix in 1924,
the Swiss professor Lagotala computed the velocity of avalanches in the Favrand
path [18]. His method was then extended by Voellmy , who popularised it. Since
the model proposed by Voellmy (1955), many extensions have been added. The
Voellmy-Salm-Gubler (VSG) model [17] and the Perla-Cheng-McClung model
[11] are probably the best-known avalanche-dynamics models used throughout
the world. Here we outline the VSG model. In this model, a 
owing avalanche
is considered as a sliding block subject to a friction force:

F = mg
u2

�h
+ �mg cos �; (2)

where m denotes the avalanche mass, h its 
ow depth, � the local path inclina-
tion, � a friction coe�cient related to the snow 
uidity, and � a coe�cient of
dynamic friction related to path roughness. If these last two parameters cannot
be measured directly, they can be adjusted from several series of past events. It is
generally accepted that the friction coe�cient � only depends on the avalanche
size and ranges from 0.35 (small avalanches) to 0.155 (very large avalanches)
[17]. Likewise, the dynamic parameter � re
ects the in
uence of the path on
avalanche motion. When an avalanche runs down a wide open rough slope, � is
close to 400. Conversely, for avalanches moving down con�ned straight gullies,
� can be taken as being equal to 1000 or more. In a steady state, the velocity is
directly inferred from the momentum balance equation:

u =
p
�h cos � (tan � � �): (3)

According to this equation two 
ow regimes can occur depending on path in-
clination. For tan � > �, (3) has a real solution and a steady regime can occur.
For tan � < �, there is no real solution: the frictional force (2) outweighs the
downward component of the gravitational force. It is therefore considered that
the 
ow slows down. The point of the path for which tan � = � is called the
characteristic point (point P). It plays an important role in avalanche dynamics
since it separates 
owing and stopping phases. In the stopping zone, we deduce
from the momentum equation that the velocity decreases as follows:

1

2

du2

dx
+ u2

g

�h
= g cos � (tan � � �) : (4)

The runout distance is easily inferred from (4) by assuming that at a point x = 0,
the avalanche velocity is up. In practice the origin point is point P but attention
must be paid in the fact, according to (3), the velocity at point P should be
vanishing; a speci�c procedure has been developed to avoid this shortcoming
(see [17]). Neglecting the slope variations in the stopping zone, we �nd:

xa =
�h

2g
ln

�
1 +

u2P
�h cos � (�� tan �)

�
: (5)
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This kind of model enables us to easily compute the runout distance, the max-
imum velocities reached by the avalanche on various segments of the path, the

ow depth (by assuming that the mass 
ow rate is constant and given by the
initial 
ow rate just after the release), and the impact pressure.

Simple models for airborne avalanches. For airborne avalanches, simple
models have been developed using the analogies with inclined thermals or start-
ing plumes. An inclined thermal consists of the 
ow of a given volume of a heavy

uid into a surrounding light 
uid down an inclined wall. Buoyancy is the key
factor of motion. To our knowledge, the earliest model was proposed by Tochon-
Danguy and Hop�nger [19], then further developments were made by B�eghin and
Hop�nger [20], Fukushima and Parker [21], as well as Akiyama and Ura [22]. But
as for Voellmy's model, similar models were probably developed in parallel by
other authors, notably Russian scientists [23]. The main di�culty encountered
here is that avalanche volume increases constantly as the avalanche descends.
Thus contrary to simple models developed for 
owing avalanches it is necessary
to consider a further equation re
ecting changes in volume or mass. To that
end, it is generally assumed that the avalanche volume is a half ellipsoid (three-
dimensional cloud) or a half cylinder with an elliptic basis (two-dimensional
cloud). Changes in volume are due to entrainment of surrounding air into the
airborne avalanche and snow incorporation from the snow cover. Here, for the
sake of simplicity, we only consider two-dimensional 
ows without snow incorpo-
ration. We further assume that the friction exerted by the ground on the cloud
is negligible compared to the buoyant force.

Fig. 6. A thermal is de�ned as the 
ow of a constant-volume 
ow driven by buoyancy
(instantaneous release). A starting plume is a constant-supply 
ow (continuous release).

It is widely recognised (see [25]) that the in
ow rate is proportional to a
characteristic velocity (generally the mean velocity) and the surface area what-
ever the type of the 
ow (jet, plume, thermal) and the environment (uniform or
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strati�ed). Such an assumption leads to:

d�%V

dt
= %a�(�)SU; (6)

where V is the cloud volume, U its velocity (velocity of the mass centre), �% the
mean bulk density of the \heavy" 
uid, %a the density of the ambient (\light")

uid, and the surface area S (per unit width) is ks

p
HL with H the 
ow depth

and L the 
ow length. We can also express the volume V (per unit width) as
�HL. We used a shape factor ks de�ned by: ks = E(1�4k2)=

p
k, where k = H=L

and E denotes the elliptic integral function; likewise, � is another shape factor:
� = �=4. In (6), we have also introduced �(�), which is an entrainment coe�cient

depending on the inclination � only. This assumption needs further explanations.
It is usually stated that the entrainment coe�cient is a function of an overall
Richardson number, de�ned here by: Ri = g0h cos �=u2, where we introduced the
reduced gravity g0 = g��%=%a and ��% = �% � %a is the buoyant density [24{26].
Here the overall Richardson number re
ects the stabilizing e�ect of the density
di�erence and the relative importance of buoyancy [24]. In the case of a gravity
current with constant supply, it is observed that for a given slope, the mean
velocity U reaches a constant value, insensitive to slope but depending on the
buoyancy 
ux (per unit width) A = g0hU : U / 3

p
A [24,27]. This also means that

the 
ow adjusts rapidly to a constant Richardson number (for a given slope).
In this case, using approximate equations for the mass and momentum balances
(respectively d(HU )=dx = �U and d(HU2)=dx = g0h sin �), we easily deduce
that the entrainment coe�cient � is a function of the Richardson number and
slope: � = Ri tan � [24]. Here, although buoyancy supply is not constant, we
assume that the entrainment coe�cient � depends only on the slope.

Using the fact that at any time the mean bulk density can be de�ned by:

�% =
%0V0 + %a(V � V0)

V
; (7)

where %0 and V0 denote the initial density and volume of the cloud, we infer the
volume balance equation:

�
dHL

dt
= �(�)ks

p
HLU: (8)

In the present context, B�eghin assumed that the ratio k = H=L remains constant
from the beginning to the collapse of the cloud. Thus, using the fact that d()=dt =
Ud()=dx, where the abscissa x refers to the downward position of the mass centre,
we easily deduce from (8) that:

dH

dx
= �H ; (9)

where �H = �(�)
p
kks=(2�). The ambient 
uid exerts two types of pressure on

the cloud: a term analogous to a static pressure (Archimede's theorem), equal to
%aV g, and a dynamic pressure. As a �rst approximation, the latter term can be
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evaluated by considering the ambient 
uid as an inviscid 
uid in a irrotational

ow. On the basis of this approximation, it can be shown that the force exerted
by the surrounding 
uid on the half cylinder is Fdyn: = %akvd(UV )=dt, where
kv = 2k is sometimes called the added mass coe�cient [28]. Thus the momentum
balance equation can be written as:

d�%V U

dt
= �%gV sin � � %agV sin � � kv%a

dV U

dt
(10)

or equivalently:
d(�% + kv%a)V U

dt
= ��%gV sin �: (11)

The buoyant term on the right-hand side of (11) is constant. Indeed, using (7),
we �nd that:

��%gV sin � = ��%0V0g sin � (12)

with ��%0 = �%0 � %a the initial buoyant density. Moreover, to simplify (11), we
can use the Boussinesq approximation, which involves neglecting the excess in
density in front of the inertial terms (�% � %a). Thus we infer from (11):

dU2

dx
+

4

H(x)
�HU

2 =
2�(�)

H2(x)
; (13)

where: �(�) = g00V0 sin �= (�k(1 + kv)). After integrating (13), we �nd that the
mean velocity varies as a function of the abscissa as follows:

U2 =
3H4

0U
2
0 + 6�xH(x) + 2��2x3

3H4(x)
; (14)

where (U0;H0) refer to the initial velocity and depth of the cloud. For large values
of x, the mean velocity behaves asymptotically as: U / 1=

p
x. The velocity of

the front is given by:

Uf =
d

dt
(xf � x+ x) = U +

1

2

d

dt
L = U

�
1 +

�H
2k

�
: (15)

Thus the velocity of the front is found to be proportional to the mean velocity.
Asymptotically, the front position varies as:

Uf �
�
1 +

�H
2k

�s2��2

3�4
H

r
1

x
(16)

or equivalently:

xf �
�
1 +

�H
2k

�2=3�2
3

�2

�4
H

g00V0 sin �

�k(1 + kv)

�1=3

t2=3: (17)

This result is of great interest since it is comparable to other results found using
di�erent approaches. For instance, using the von K�arm�an-Benjamin boundary
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condition at the leading edge { stating that the front motion is characterized
by a constant Froude number Fr = U=

p
gh [i.e., Fr2 = g0=(g Ri)] { Huppert

and Simpson [29] developed a very simple model, sometimes called the \box
model" (see also Chap. ??). They considered a two-dimensional gravity current
as a series of equal cross-sectional area rectangles [of length l(t) and height h(t)]
advancing over a horizontal surface: u = Fr

p
g0h and V (t) = h(t)l(t) = V0

where V0 denotes the initial volume (per unit width) of 
uid (here Fr =
p
2

inferred from theoretical considerations using the Bernoulli equation [30]). Using
u = dl=dt and integrating the volume equation leads to:

l(t) =

�
3

2
Fr

�2=3

(g0V0)
1=3t2=3: (18)

Comparison of (17) and (18) reveals the same asymptotic behaviour, except
that in B�eghin's model, the position depends on the inclination �. This is both
disturbing and comforting since these two models are based on very di�erent
approximations: B�eghin's model assumes that 
ow is governed on average by
a momentum balance while Huppert and Simpson's model states that the 
ow
behaviour is dictated by dynamic conditions at the leading edge. Many experi-
ments have been performed on the motion of a two-dimensional cloud over hor-
izontal surfaces or down inclined planes (Britter [31,27], Simpson [33], Huppert
[29], Rottman [32], B�eghin [20,34], Fukushima [35], Hallworth [36], Bonnecaze
[38,37], Hatcher [39], etc.). They have con�rmed the theoretical trend displayed
in (16) or (17). The main di�erence between experimental results concerns the
depth increase rate �H (ranging from 0.01 to 0.02 for � = 5�).

Many �eld and laboratory observations have shown the signi�cant role played
by particle sedimentation or incorporation of material from the ground into the
cloud. Improvements of existing simple models have been achieved by imple-
menting new procedures taking material entrainment into account. Research on
this topic is still in process. Compared to �eld data, B�eghin's model usually
provides correct estimates of the mean front velocity (to 20%) but it may sub-
stantially underestimate the impact pressure by a factor 10. The reason why the
impact pressure computed as %u2=2 is underestimated is not clear. Very large
velocity 
uctuations inside the airborne avalanche or particles clustering at the

ow bottom may be responsible for very high impact pressures. Another �eld
observation that cannot be explained by B�eghin-type models is the consider-
able acceleration at the early stages of an aerosol; in some cases, acceleration of
6m/s2 over a 40� slope has been recorded for more than 5 s. This may also be
related to the controversy on reduced gravity [40]. Indeed, some authors have
claimed that a 
ow acceleration scaling as g0 is not physical and suggested the
alternative g00 de�ned by g00 = g(�% � %a)=�%. Concerning avalanches, �eld data
tend to show that avalanche acceleration scales as g0.

Intermediate models (depth-averaged models)

Simple models can provide approximate predictions concerning runout distance,
the impact pressure, or deposit thickness. However they are limited for many
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reasons. For instance, they are restricted to one-dimensional path pro�les (the
spreading of the avalanche cannot be computed) and the parameters used are
�tted to past events and cannot be measured in the �eld or in the laboratory
(rheometry), apart from airborne models if the analogy with turbidity currents
is used. More re�ned models use depth-averaged mass and momentumequations
to compute the 
ow characteristics. With such models, the limitations of sim-
ple models are alleviated. For instance it is possible to compute the spreading
of avalanches in their runout zone or relate mechanical parameters used in the
models to the rheological properties of snow. As far as we know, the early depth-
averaged models were developed in the 1970s by Russian scientists (Kulikovskii,
Eglit [23,41,42]) and French researchers (Pochat, Brugnot, Vila [43,44]) for 
ow-
ing avalanches. For airborne avalanches, the �rst stage was probably the model
developed by Parker, Fukushima, and Pantin [45], which, though devoted to sub-
marine turbidity currents, contains almost all the ingredients used in subsequent
models of airborne avalanches. Considerable progress in the development of nu-
merical depth-averaged models has been made possible thanks to the increase
in computer power and breakthrough in the numerical treatment of hyperbolic
partial di�erential equation systems (see [46] for a comprehensive review on hy-
perbolic di�erential equations in physics and [47] for a practical introduction to
numerical treatment).

Depth-averaged motion equations. Here, we shall address the issue of
slightly transient 
ows. We focus exclusively on gradually varied 
ows, namely

ows that are not far from a steady uniform state for the time interval under
consideration. Moreover, we �rst consider 
ows without entrainment of the sur-
rounding 
uid and variation in density: % � �%. Accordingly the bulk density
may be merely replaced by its mean value. In this context, the motion equations
may be inferred in a way similar to the usual procedure used in hydraulics to
derive the shallow water equations (or Saint-Venant equations): it involves in-
tegrating the momentum and mass balance equations over the depth. As such
a method has been extensively used in hydraulics for water 
ow [50] as well
for non-Newtonian 
uids (see for instance Parker, Fukushima, and Pantin [45],
Savage and Hutter [48] or Piau [49]; see also Chap. ??) we shall brie
y recall
the principle and then directly provide the resulting motion equations. Let us
consider the local mass balance: @%=@t +r:(%u) = 0. Integrating this equation
over the 
ow depth leads to:

h(x;t)Z
0

�
@u

@x
+
@v

@y

�
dy =

@

@x

hZ
0

u(x; y; t)dy � u(h)
@h

@x
� v(x; h; t)�v(x; 0; t); (19)

where u and v denote the x- and y-component of the local velocity. At the
free surface and the bottom, the y-component of velocity satis�es the following
boundary conditions:

v(x; h; t) =
dh

dt
=

@h

@t
+ u(x; h; t)

@h

@x
; (20)
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v(x; 0; t) = 0: (21)

We easily deduce:
@h

@t
+
@hu

@x
= 0: (22)

where we have introduced depth-averaged values de�ned as:

�f (x; t) =
1

h(x; t)

h(x;t)Z
0

f(x; y; t)dy: (23)

The same procedure is applied to the momentum balance equation: du=dt =
�g +r:�, where � denotes the stress tensor. Without di�culty, we can deduce
the averaged momentumequation from the x-component of the momentumequa-
tion:

�%

 
@hu

@t
+
@hu2

@x

!
= �%gh sin � +

@h��xx
@x

� �p; (24)

where we have introduced the bottom shear stress: �p = �xy(x; 0; t). In the
present form, the motion equation system (24 and 22) is not closed since the
number of variables exceeds the number of equations. A common approximation
involves introducing a parameter (sometimes called the Boussinesq momentum
coe�cient) which links the mean velocity to the mean square velocity:

u2 =
1

h

hZ
0

u2(y) dy = ��u2: (25)

Another helpful (and common) approximation, not mentioned in the above sys-
tem, concerns the computation of stress [50]. Putting ourselves in the framework
of long wave approximation, we assume that longitudinal motion outweighs ver-
tical motion: for any quantity m related to motion, we have @m=@y � @m=@x.
This allows us to consider that every vertical slice of 
ow can be treated as if it
was locally uniform. In such conditions, it is possible to infer the bottom shear
stress by extrapolating its steady-state value and expressing it as a function of u
and h. A point often neglected is that this method and its results are only valid
for 
ow regimes that are not too far away from a steady-state uniform regime.
In 
ow parts where there are signi�cant variations in the 
ow depth (e.g. at the
leading edge and when the 
ow widens or narrows substantially), corrections
should be made to the �rst-order approximation of stress [49]. Finally, an unre-
solved problem concerns the nature of the front in a transient 
ow. The same
problem has been already pointed out above in the discussion on B�eghin's model
and \box models". Some authors have considered it as a shock; in this case, it is
included in the motion equations as a downstream boundary condition [42{44].
In contrast, authors have implicitly assumed that the front has no speci�c dy-
namic role and can be generated by the hyperbolic motion equations [51]. Other
authors considered that the front may be controlled by gravity unstability. For
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instance, numerous experiments performed on viscous and buoyant gravity cur-
rents have revealed that a shifting pattern of lobes and clefts ranges across the
front due to a gravity instability [52{54].

Flowing avalanches. The material is very concentrated in ice particles: gen-
erally the concentration ranges from 20% to 65%. The material is highly com-
pressible (it is frequent to observe snow densities in the deposition zone three
times larger than in the starting zone). This is due to the intrinsic compressibity
of snow as well as dilatant behaviour when the material contains snow balls. The
rheology of ice/air mixtures is rather complex: signi�cant variations in the mix-
ture composition are caused by minute changes in the air temperature around
0�C. This explains the considerable variability of snow consistency: granular
(snow ball), loose, slush-like or pasty snow. The diversity of snow consistency,
along with the size scales, makes any thorough rheometrical examination of snow
involved in avalanches a tricky undertaking. To date, few experimental studies
have been devoted to this topic. The authors (such as Dent [55] or Maeno and
Nishimura [56]), who studied the rheological bulk behaviour of snow, have gen-
erally found that snow is a non-Newtonian viscoplastic material, which depends
a great deal on density. Several constitutive equations have been proposed: New-
tonian 
uid, Reiner-Ericken 
uid, Bingham 
uid, frictional Coulombic 
uid, and
so on. For instance, Savage and Hutter assumed that 
owing avalanches have
many similarities with dry granular 
ows [10,48]. They have further assumed
that, as a �rst approximation, the Coulomb law can be used to describe the
bulk behaviour of 
owing granular materials. Therefore they have expressed the
bottom shear stress as: �p = %gh tan � cos �, where � denotes a bed friction angle.
Likewise, the normal mean shear stress can be written as: ��xx = �ka%gh cos �=2,
where the coe�cient ka is related to the earth pressure coe�cient used in soil
mechanics. Eventually they obtained for 
ows down inclined planes:

@h

@t
+
@hu

@x
= 0; (26)

@�u

@t
+ �u

@�u

@x
= g cos � (tan � � tan �)� kag cos �

@h

@x
: (27)

Laboratory tests with dry granular media have shown that such a model cap-
tures the 
ow features well for steep smooth inclined channels [10,57{59]. Similar
models were developed using di�erent constitutive equations. For instance, Eglit
used empirical expressions for the bottom shear stress (in a form similar to (2))
and treated the leading edge using a speci�c boundary condition [42,41]. Naaim
and Ancey used a Bingham constitutive equation in their model [60]. All these
models must deal with the di�cult problem of �tting rheological parameters.
Due to the lack of relevant rheological data on snow, the parameters are usually
adjusted for the runout distance to coincide with �eld data.

Airborne avalanches. An airborne avalanche is a very turbulent 
ow of a
dilute ice-particle suspension in air. It can be considered as a one-phase 
ow
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as a �rst approximation. Indeed, the Stokes number de�ned as the ratio of a
characteristic time of the 
uid to the relaxation time of the particles is low,
implying that particles adjust quickly to changes in the air motion [61]. At the
particle scale, 
uid turbulence is high enough to strongly shake the mixture since
the particle size is quite small. To take into account particle sedimentation, au-
thors generally consider airborne avalanches as turbulent strati�ed 
ows. Thus,
contrary to 
owing avalanches, bulk behaviour is well identi�ed in the case of
airborne avalanches. The main di�erences between the various models proposed
result from the di�erent boundary conditions, use of the Boussinesq approxima-
tion, and the closure equations for turbulence. Parker and his co-workers [45]
developed a complete depth-averaged model for turbidity currents. The motion
equation set proposed by these authors is more complicated than the correspond-
ing set for dense 
ows presented above, since it includes additional equations
arising from the mass balance for the dispersed phase, the mean and turbulent
kinetic energy balances, and the boundary conditions related to the entrainment
of sediment and surrounding 
uid:

@h

@t
+
@hU

@x
= EaU; (28)

@(Ch)

@t
+
@(hUC)

@x
= vsEs � vscb; (29)

@hU

@t
+
@hU2

@x
= RCgh sin � � 1

2
Rg

@Ch2

@x
� u2

�
; (30)

@hK

@t
+
@hUK

@x
=

1

2
EaU

3+u2
�
U�"0h�1

2
EaURCgh�RCghvs�1

2
Rghvs (Es � cb) ;

(31)
where U is the mean velocity, h the 
ow depth, K the mean turbulent kinetic
energy, C the mean volume concentration (ratio of particle volume to total vol-
ume), Ea a coe�cient of entrainment of surrounding 
uid into the current, vs
the settlement velocity, Es a coe�cient of entrainment of particles from the bed
into the current, cb the near-bed particle concentration, R the speci�c submerged
gravity of particles (ratio of buoyant density to ambient 
uid density), u2

�
the bed

shear velocity, and "0 the depth-averaged mean rate of dissipation of turbulent
energy due to viscosity. The main physical assumption in Parker et al.'s model
is that the 
ow is considered as one-phase from a momentum point of view but
treated as two-phase concerning the mass balance. Equation (28) states that the
total volume variation results from entrainment of surrounding 
uid. In (29), the
variation in the mean solid concentration is due to the di�erence between the
rate of particles entrained from the bed and the sedimentation rate. Equation
(30) is the momentum balance equation: the momentum variation results from
the driving action of gravity and the resisting action of bottom shear stress;
depending on the 
ow depth pro�le, the pressure gradient can contribute either
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to accelerate or decelerate the 
ow. Equation (31) takes into account the tur-
bulence expenditure for the particles to stay in suspension. Turbulent energy is
supplied by the boundary layers (at the 
ow interfaces with the surrounding 
uid
and the bottom). Turbulent energy is lost by viscous dissipation ("0h in (31))
as well as by mixing the 
ow (fourth and �fth terms in (31)) and maintaining
the suspension against sedimentation 
ow mixing (last term on the right-hand
side of (31)). Although originally devoted to submarine turbidity currents, this
model has been applied to airborne avalanches, with only small modi�cations in
the entrainment functions (Fukushima and Parker [21], Gauer [62]). Further de-
velopments have been brought to the primary model proposed by Parker et al.,
notably in order to consider non-Boussinesq 
uids and snow entrainment from
the snowcover [63]. To our knowledge, such models do not currently provide
better results than simple models when compared to �eld data.

Three-dimensional computational models.

The rapid increase in computer power has allowed researchers to integrate local
motion equations directly. Compared to the depth-averaged models, the prob-
lems in the development of three-dimensional (3D) computational models mainly
concern numerical treatments. For instance, the treatment of the free surface
poses complicated issues. Naturally, problems linked to the constitutive equa-
tions reliable for snow are more pronounced compared to intermediate models
since the entire constitutive equation must be known (not just the shear and
normal stress). The development of 3D models is currently undertaken mainly
for airborne avalanches generally using �nite-volume codes for turbulent 
ows.
Examples include the models by Naaim [64], Hermann [66], Schweiwiller and
Hutter [65], etc.

2.3 Small-scale models

A few authors have exploited the similarities between avalanches and other
gravity-driven 
ows. For instance, Hop�nger and Tochon-Danguy used the anal-
ogy between airborne avalanches and saline density currents to perform experi-
ments in the laboratory in a water tank [67]. In this way, examination of various
aspects of airborne dynamics has been possible: e�ect of a dam, structure of
the cloud, determination of the entrainment coe�cients, etc. The chief issue
raised by the analogy with density or gravity currents concerns the similarity
conditions based on both the Froude (or equally the Richardson number) and
Reynolds numbers [12,34,67]. Regarding 
owing avalanches, authors have con-
sidered the analogy with granular 
ows. Various materials (ping pong ball, sand,
beads) have been used. In engineering laboratory experiments simulating 
owing
avalanches o�er promising tools for studying practical and complicated issues,
such as the de
ecting action of a dam [68] or braking mounds [69]. A few scien-
tists have conducted or are performing experiments studying snow 
ows down
con�ned geometries the �eld [70].
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