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Flows down inclined channel may be seen as a rheometric test. We suggest using such a
flow geometry as a discriminating experiment to test the reliability of various constitutive
equations proposed for modeling a single-phase flow or to deduce the main rheological
properties. To that purpose, we have endeavored to link the main bulk properties to the
constitutive equation characteristics. Investigated properties include the velocity profile,
the discharge equation, etc. Using an analogy with hydraulics, we examine the form of
the free surface profile, the existence of sub- and supercritical flows, the development of
bores (jumps), and the (linear) stability domain. We have applied the results to the case
of Newtonian fluids. The obtained results can serve a guide to interpret experimental
data for various types of complex fluids.

1. Introduction
Many experiments are performed in laboratory using an inclined channel since this

geometry is very close to practical situations encountered in industry or environment.
In hydraulics, a large amount of literature is devoted to the computation of flows down
channels (Chow 1959). The development of instabilities (roll waves, transition from lami-
nar to turbulent flows, etc.) has been also studied using channel as flow geometry. On rare
occasions, a channel has been used as a rheometer. Examples include the investigations
on the rheological properties of polymeric liquids (Astarita & Palumbo 1964), granular
materials (Ancey et al. 1996; Suzuki & Tanaka 1971), and clay suspensions (Coussot
1995). More frequently, the reliability of some constitutive equations proposed in the
literature is tested by comparing theoretical predictions and experimental data obtained
on channels. For instance, several comparisons have been made on the velocity profile of
flow down inclined channel to test the reliability of kinetic theories for granular materials
(Ahn et al. 1991).

The underlying idea of the present report is to arrive at a quite complete theoretical
description of the connection between local properties (among others the bulk constitutive
equation) and flow features (velocity profiles, discharge equation, flow stability, etc.). On
the basis of this connection, it is possible to consider flows down inclined planes (in
practice, channels) as a discriminating experiment, which allows to test the reliability
of the different constitutive equations proposed for modelling a single-phase flow. In the
following, we shall examine the general features of uniform flows and non-uniform flows
down inclined channels. In the former case, we shall determine the main flow properties
such as the velocity and density profiles, and the discharge equation. In the latter case,
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Figure 1. Definition sketch for steady uniform flow.

an analogy with hydraulics shall be drawn: emphasis will be given to free surface curve,
existence of sub- and super-critical flows, formation of jump, flow stability. In both cases,
we endeavor to analytically relate bulk flow and local properties.

The originality of the report is to propose a consistent and general framework to study
the rheological properties of various materials. The results obtained in the report may
be applied to a broad class of materials. We shall only consider situations in which the
fluid flow can be treated as isochoric (at least as a first approximation). Some types of
material (two-phase material, strongly compressible material, etc.) have to be discarded
since their description is outside of the customary treatment of single-phase continua or
are not compatible with assumption of isochoric flow. We will apply these results to the
classical well-known case of Newtonian fluids.

2. Equations of motion and flow characteristics
2.1. Governing equations for a flow down an inclined plane

In this section, we focus attention on gravity-driven free-surface flows of a fluid down an
inclined plane (rectilinear flow). It is assumed that (i) a steady uniform regime can take
place at an inclination θ to the horizontal, (ii) the continuum undergoes a simple shear.
We use the Cartesian co-ordinate system of origin 0 and of basis ex, ey, as depicted in
Figure 1.

The kinematic field depends on the co-ordinate y alone and takes the following form

vx = u(y), vy = 0, vz = 0, (2.1)

where u is a function of y to be determined. Accordingly the strain-rate tensor d̄ has the
following components in the co-ordinate system

d̄ =
γ̇

2




0 1 0
1 0 0
0 0 0


 , (2.2)

where γ̇ denotes the shear rate; it is defined as a function of the co-ordinate y and
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implicitly of the inclination θ

γ̇(y) =
(

∂u

∂y

)

θ

. (2.3)

The momentum balance can be written as

ρ
dv
dt

= ρg +∇ ·Σ, (2.4)

where ρ and g respectively denote the local material density and the gravitational accel-
eration. As sign convention, we use positive stress to represent tensile stress. Σ stands for
the total stress tensor. Without restriction, the stress tensor can be written as the sum
of a spherical tensor and a deviatoric term called the extra-stress tensor (T) (Coleman
et al. 1966; Tanner 1988):

Σ = −p1 + T, (2.5)
where 1 denotes the identity tensor and p is a scalar referred to as pressure. Two com-
plementary classes of materials can be represented by the relation (2.5). The first class
corresponds to compressible materials, for which the pressure is defined thermodynami-
cally (using the free energy). The second class includes incompressible materials, for which
the pressure is indeterminate and is found by solving the equations of motion. In this
case, in order to remove the non-uniqueness of T (due to the indeterminate pressure), the
following convention is usual: trT = 0. For a homogeneous and isotropic simple fluid, the
extra-stress tensor depends on the strain-rate only: T = G(D), where G is an isotropic
functional. Many classes of material are in fact neither homogeneous, nor isotropic, nor
merely expressible in the form given equation (2.5). In that case, the extra-stress tensor
may be a function of the strain-rate tensor and other parameters which can be scalar or
tensorial quantities (Ψ): T = G(D, Ψ). Further equations are needed to supplement the
governing equations. A typical example is given by kinetic theories where the extra-stress
tensor is written as a function of the strain-rate and the temperature (Campbell 1990).
The temperature is a scalar parameter, whose variations are governed by the (kinetic)
energy balance equation. In some cases, the constitutive equation may be expressed in
the form given by equation (2.5) only for a steady state. This is the case for materials
with time-dependent properties (thixotropic materials, viscoelastic materials). In prac-
tice, we are not dealing with the stress tensor in its whole. It is often more convenient
to use its components. We shall focus on the shear stress τ = Σxy = Txy and the normal
stress differences

N1 = Σxx − Σyy and N2 = Σyy − Σzz,

called the first and second normal stress differences, respectively.

2.2. Boundary conditions
We have to specify the boundary conditions for stress and velocity fields at the free sur-
face and at the bottom wall. We assume that there is no slip at the bottom: u(y) = 0.
Furthermore, we assume that there is no interaction between the free surface and the
ambient fluid above (except the pressure exerted by the ambient fluid). Notably, we
ignore surface tension effects on the free surface. If the boundary condition at the free
surface suffers no criticism, the boundary condition at the bottom appears more delicate.
For many non-Newtonian fluid, the no-slip condition is not satisfied (Barnes 1995). In
practice, this imposes either to measure the slip velocity and to take it into account in
the computations or to use suitable devices. For instance, the use of roughened base is
generally sufficient to vanish the slip velocity, but in turn can entail new disturbing phe-
nomena and the development of a boundary layer with rheological specificities different
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from the ones of the studied material. For instance, for a suspension of particles, this
is reflected by depletion, torque transmission, energy flux, etc. It is expected that for
sufficiently thick flows, such phenomena have minute effects on the whole dynamics. In
the simplified approach below, they will be neglected.

2.3. Properties of steady uniform flows
Since for steady rectilinear flows, acceleration vanishes and the components of T depend
on y alone, the equations of motion (2.4) reduce to

0 =
∂Txy

∂y
− ∂p

∂x
+ ρg sin θ, (2.6)

0 =
∂Tyy

∂y
− ∂p

∂y
− ρg cos θ, (2.7)

0 =
∂p

∂z
. (2.8)

It follows from equation (2.8) that p is independent of z. Accordingly, integrating (2.7)
between y and h implies

p(x, y)− p(x, h) = Tyy(y)− Tyy(h) + g cos θ

∫ h

y

ρ(y)dy. (2.9)

We can express equation (2.6) in the following form

∂

∂y

(
Txy + g sin θ

∫ h

y

ρ(y)ddy

)
=

∂p(x, h)
∂x

. (2.10)

The only solution is found by noting that both terms of this equation must equal to a
function of z, which is denoted by b(z). Moreover, equation (2.8) implies that b is actually
independent of z; thus, in the following we shall note: b(z) = b. The solutions to equation
(2.10) are

p (x, h) = bx + c, (2.11)

Txy(h)− Txy(y)− g sin θ

∫ h

y

ρ(y)dy = b(h− y), (2.12)

where c is a constant that we shall determine. To that purpose, let us consider the free
surface. It is reasonable and usual to assume that the ambient fluid friction is negligible.
The stress continuity at the interface implies that the ambient fluid pressure p0 exerted
on an elementary surface at y = h (oriented by ey) must equal the stress exerted by the
fluid. Henceforth, the boundary conditions at the free surface may be expressed as

−p0ey = Σ · ey, (2.13)

which implies in turn that

Txy(h) = 0, (2.14)

p0 = p(x, h)− Tyy(h), (2.15)

Comparing equations (2.15) and (2.11) leads to b = 0 and c = p0 + Tyy(h). Accordingly,
from equations (2.12) and (2.9), we obtain for the shear and normal stress distributions

τ = Txy = g sin θ

∫ h

y

ρ(y)dy ≈ ρ̄g sin θ(h− y), (2.16)
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Σyy = Tyy − (p− p0) = −g cos θ

∫ h

y

ρdy ≈ −ρ̄g cos θ(h− y), (2.17)

in which we have neglected the variations in density. As a first approximation, the local
density is replaced by its mean value: ρ ≈ ρ̄. The shear and normal stress profiles are
determined regardless of the form of the constitutive equation. This property is of great
interest and motivates the use of flow down channel as a rheometric test. In many cases
(simple fluids), the shear stress is a one-to-one function of the shear rate: τ = f(γ̇). Using
the shear stress distribution (2.16) and the inverse function f−1, we find

γ̇ = f−1(τ). (2.18)

A simple integration leads to the velocity profile

u(y) =
∫ y

0

f−1(τ(ξ))dξ. (2.19)

A new integration gives the flow rate (per unit width)

q =
∫ h

0

∫ y

0

f−1(τ(ξ))dξ. (2.20)

The relationship between the flow rate and the flow depth is called the discharge equa-
tion. The measurement of the velocity profile and the calculation of its derivative can
provide rheological information on the tested material: since the shear stress distribution
is imposed and known, it is possible to relate this distribution and the shear rate profile,
and thus to obtain an estimate of the relationship: τ = f(γ̇). An alternative and simpler
method exists for getting information on the constitutive equation. When the discharge
equation has been inferred from experimental data, the inverse procedure may be used
to estimate the relationship between the shear rate and shear stress. Indeed, using an
integration by part, it is possible to express the flow rate in the following way

q = hug +
∫ h

0

f−1(τ(ξ))(h− ξ)dξ, (2.21)

where ug denotes the slip velocity, which is assumed to be zero. The shear stress distri-
bution is given by equation (2.16). Taking the partial derivative of q with respect to h,
we obtain

γ̇ = f−1(τ(h)) =
1
h

(
∂q

∂h

)

θ

. (2.22)

This relation allows us to directly use a channel as a rheometer. The other (normal) com-
ponents of the stress tensor cannot be easily measured. The curvature of the free surface
of a channelized flow may give some indications on the first normal stress difference. Let
us imagine the case where it is not equal to zero. Substituting the normal component
Σyy by Σxx into equation (2.7), we find after integration

Txx = p + ρgy cos θ + N1 + c, (2.23)

where c is a constant. Imagine that a flow section is isolated from the rest of the flow
and the adjacent parts are removed. In order to hold the free surface flat (namely it will
be given by the equation y = h, ∀z), the normal component Σxx must vary and balance
the variations in N1 due to the presence of the sidewalls (for a given depth, the shear
rate is higher in the vicinity of the wall than in the center). But at the free surface, the
boundary condition (2.13) compels the normal stress Σxx to vanish and the free surface
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to bulge out. To first order, the free surface equation is

−ρgy cos θ = N1 + c. (2.24)

If the first normal stress difference vanishes, the boundary condition (2.13) is automat-
ically satisfied and the free surface is flat. In the case where the first normal stress
difference does not depend on the shear rate, there is no curvature of the shear free sur-
face. The observation of the free surface may be seen as a practical test to examine the
existence (and sign) of the first normal stress difference and to quantify it (by measuring
both the velocity profile at the free surface and the free surface equation).

In most cases where complex fluids are involved, the shear stress is not a one-to-one
function of the shear rate, since parameters of the constitutive equations Ψ may vary as
functions of the shear rate. A similar treatment to the one above is still possible but, if
it enlightens the rheological behavior of the tested material, it does not allow to fully
deduce the constitutive equation. We replace the constitutive equation τ = f(γ̇, Ψ(γ̇))
by the relaxed equation: τ = f(γ̇, Ψ(γ̇)) = g(γ̇). The function is not intrinsic to the
material and depends on the boundary conditions and channel geometry, but its main
characteristics are still expected to reflect the rheological behavior in a steady state. On
the basis of this approximation, it is possible to proceed as previously with f(γ̇).

2.4. Properties of steady non-uniform flows

The solution to the problem of steady uniform flow down channel can only provide limited
information on the rheological behavior. In practice, experiments are not carried out down
infinite inclined planes, but on the contrary down channels of finite size. The finite size
of the channel lead to difficulties, which demand care when merely using a channel as a
rheometer. However, in many cases, the deviation from the steady uniform flow solution
originates from the rheological behavior and the idea developed here is to interpret it
in terms of rheological properties. An example has been given above with the use of
the free surface curvature to estimate the first normal stress difference. To go further
in the investigation of the rheological properties, it is necessary to examine nonuniform
flow properties. Here, we shall address the issue of slightly nonuniform flows. Attention
is paid on gradually varied flows only, namely flows steady for the time interval under
consideration and with approximately parallel streamlines. In this context, the equations
of motion may be inferred in a way similar to the usual procedure used in hydraulics to
derive the shallow water equations (or Saint-Venant equations): it consists of integrating
the momentum and mass balance equations over the depth. As such a method has been
extensively used in hydraulics for water flow (Chow 1959) as well for non-Newtonian
fluids [see for instance Savage (1991) or Piau (1996)], we briefly remind the principle and
then directly provide the resulting governing equations. In contrast with hydraulics, care
must be paid here on the possible variations in the flow density. Let us consider the local
mass balance in a steady state: ∇ · (ρu) = 0. Integrating over the flow depth leads to

h(x,t)∫

0

(
∂ρu

∂x
+

∂ρv

∂y

)
dy =

∂

∂x

h∫

0

ρu(x, y, t)dy − ρ(h)
(

u(h)
∂h

∂x
+ v(x, h, t)

)
−ρ(0)v(x, 0, t),

(2.25)
where u and v denote the x- and y-component of the local velocity. At the free surface
and the bottom, the y-component of velocity satisfies the following boundary conditions

v(h) =
dh

dt
=

∂h

∂t
+ u(x, h, t)

∂h

∂x
, (2.26)



Flow down inclined channel 7

v(x, 0, t) = 0. (2.27)
We easily deduce

ρ(h)
∂h

∂t
+

∂hρu

∂x
= 0, (2.28)

where we have introduce depth-averaged values defined as

f̄(x, t) =
1

h(x, t)

h(x,t)∫

0

f(x, y, t)dy. (2.29)

The same procedure is applied to the momentum balance given in equation (2.4). Without
difficulty, we can deduce the averaged momentum equation

∂hρu

∂t
+

∂hρu2

∂x
+ hρu∇ · u = ρ̄gh sin θ +

∂hΣ̄xx

∂x
− τp (2.30)

where we have introduced the bottom shear stress: τp = Txy(x, 0, t). Let us notice that the
third term in the left-hand side of equation (2.30) (hρu∇.u) does not exist in hydraulics
due to water incompressibility. In the present form, the equation system (2.30) and
(2.28) is not closed since the number of variables exceeds the number of equations. As
previously, a major simplification is brought by assuming that dilatancy only causes
slight variations in the bulk density and accordingly the bulk density can be replaced by
its mean value. Another simplification consists in introducing a parameter α (sometimes
called the Boussinesq momentum coefficient) which links the mean velocity to the mean
square velocity

u2 =
1
h

h∫

0

u2(y) dy = αū2. (2.31)

This leads to the following system of equations, put into a conservative form

∂S
∂t

+
∂F(S)

∂x
= G∗(S) ⇔ ∂S

∂t
+∇F · ∂S

∂x
= G∗(S), (2.32)

in which we have introduced

S =
[

h
ū

]
, G = ∇F =

[
ū h

(α− 1) ū2

h − 1
ρ̄h

∂hΣ̄xx

∂h ū(2α− 1)− 1
ρ̄h

∂hΣ̄xx

∂ū

]
, G∗ =

[
0

g sin θ − τp

ρ̄h

]
.

Another helpful (and usual) approximation, not mentioned in the system above, concerns
the computation of stress (Chow 1959). Putting ourselves in the framework of long wave
approximation, we assume that longitudinal motion outweighs vertical motion: for any
quantity m related to motion, we have ∂m/∂y À ∂m/∂x. This allows one to consider
that every slice of flow can be treated as if it was locally uniform. A way of justifying
this approximation is to consider the local equations of motion in a dimensionless form





ε
dũ

dt̃
= ε

∂Σ̃xx

∂x̃
+

sin θ

Fr2
+

∂τ̃

∂ỹ

ε
dṽ

dt̃
= ε

∂τ̃

∂ỹ
+

∂Σ̃yy

∂x̃
− cos θ

Fr2





, (2.33)

where ε is the ratio H/L, in which H and L are, respectively, the orders of magnitude of
the flow depth and length. The x-component of velocity (u) has been scaled by a reference
velocity U0. The mass balance equation implies that the y-component of velocity (v) must
be scaled by L. For stress, we have used the ratio Σ/(ρU2

0 ). Space and time dimensionless
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variables are chosen as follows: x̃ = x/L, ỹ = y/H, t̃ = tU0/L. We have also introduced
the Froude number: Fr = U0/

√
gH. Assuming that each stress field may be expanded

into a power series in ε (as follows: τ̃ = τ̃0 + ετ̃1 + ε2τ̃2 + ..., where τ̃0 corresponds to the
shear stress for a steady uniform flow) then collecting the powers of ε leads to a sequence
of differential equations for the functions (τ̃i). For instance, for terms of order ε1, we find

∂τ̃1

∂ỹ
= 0,

and
∂Σ̃yy|1

∂x̃
= 0.

Making allowance for the boundary conditions, we deduce that τ̃1 = 0 and Σ̃yy|1 = p̃0.
This means that, at least up to order 2, the expression of stress in a nonuniform regime
is similar to that found in a steady regime. It is therefore possible to relate the bottom
shear and normal stresses to the flow variables (h, ū). In most cases of interest, the
normal stress along the flow direction Σxx may be written as

Σxx = −p + µ
∂u

∂x
, (2.34)

where µ is a viscosity coefficient. A dimensionless expression of this stress shows that it
equals the pressure to leading order

Σ̃xx = −p̃ +
ε

Re

∂ũ

∂x̃
, (2.35)

where Re = U0H/µ is a generalized Reynolds number. In absence of difference in normal
stress, the normal stress Σxx may be approximated by a hydrostatic distribution.

A first application of the governing equations to nonuniform flows concerns the flow
profile, namely the free surface profile (sometimes also called backwater curve in hy-
draulics) in a steady state. There are many reasons that motivate this examination.
First, flow uniformity is a condition which is not systematically fulfilled in experiments.
It is well known in hydraulics that the normal flow depth (i.e., the flow depth in a flow
section where the uniform regime is achieved) is reached for steady flow taking place
in sufficiently long channels. Conversely, in the case of short channels, the flow depth
varies uniformly from the entrance to the exit without the normal depth being reached.
Under these conditions, it may be rather delicate to evaluate the discharge equation.
In practice, after ensuring the existence of the normal depth, it is possible to evaluate
the discharge equation q = F (h, θ) and apply the reduction method [equation (2.22)]
in order to find the steady-state constitutive relationship between the shear stress and
shear rate. The reduction in flow depth in a finite size channel (downwards and upwards
from this uniform section) may be also worked out to get information on normal stress.
From equation (2.32) with ∂S/∂t = 0, we directly deduce that for a steady state

∇F · ∂S
∂x

= G∗(S) (2.36)

After rearranging the terms, we eventually find

dh

dx
=

τp − ρ̄hg sin θ

αρ̄ū2 + ∂hΣ̄xx

∂h − ū
h

∂hΣ̄xx

∂ū

. (2.37)

Naturally, we find that, for uniform flows, we have: τp = ρ̄hg sin θ, which corresponds
to the expression which can be deduced from equation (2.16). From the discharge equa-
tion, it is possible to deduce the relationship between the bottom shear stress and the



Flow down inclined channel 9

flow variables (h, ū) in a steady state. In order to express the intrinsic character of this
relationship (i.e., it is independent of the channel slope), we have to eliminate the incli-
nation in the discharge equation q = F (h, θ) by setting: sin θ = τp/(ρgh). By solving the
resulting equation, we eventually obtain the bottom shear stress expression: τp = J(h, ū).
This constitutive relationship holds true for a steady state but, within the framework of
long wave approximation, it is possible to use it in the gradually varying flow section up-
ward or downward from the uniform section. Thereby, using this equation and equation
(2.37), we find that

∂hΣ̄xx

∂h
− ū

h

∂hΣ̄xx

∂ū
=

J(h̄, u)− ρ̄hg sin θ

h′(x)
− αρ̄ū2. (2.38)

By measuring the (longitudinal) free-surface profile and estimating its local derivative, it
is possible to get information on the variation of the normal stress Σ̄xx. As this equation
does not give an accurate estimate of this quantity but only a quantity linked to it,
it is mainly useful as a test for evaluating a given constitutive equation. Coupled to
the transverse free-surface profile [equation (2.5)], it can provide a practical tool to get
insight into the normal components of the stress tensor, which are often hard to measure
by means of classical rheometers.

In most cases, the normal stress is negative (compression) and accordingly the de-
nominator can vanish. This occurs for Froude number (Fr = ū/

√
gh) equal to a critical

value

Fr2
c, s =

ū

αρ̄gh2

∂hΣ̄xx

∂ū
− 1

αρ̄gh

∂hΣ̄xx

∂h
, (2.39)

where the subscript s indicates that this equation holds a priori for a steady state only.
In absence of normal stress difference, the mean normal stress Σ̄xx equals the mean
normal stress Σ̄yy and thus is independent of ū. It is straightforward to deduce that
the critical Froude number is found to be equal to

√
cos θ/α. In these circumstances,

at a point where the denominator vanishes, the first derivative of the flow depth tends
towards infinity; in other words, the flow profile should be normal to the flow direction
at this point. The sudden change in the flow depth represents a discontinuity called a
hydraulic jump in hydraulics. It should be noted that, at or near this critical point, the
free surface is curved enough to cause significant deviations of the stream lines from the
parallel flow plane. The governing equations (2.32) cannot be used to describe such a
flow portion. A specific procedure must be used. An analysis similar to the one proposed
by Savage (Savage 1979) may be performed to predict the depth change in a jump. Let
us consider a control volume which includes both flow parts downstream and upstream
of the granular jump (see Figure 2). The slope is assumed to be constant (even though in
many practical cases, granular jumps are often caused by slope changes). The momentum
equation applied to this volume yields

2ρū1h1(ū2 − ū1) = P1 − P2 + W sin θ − Lτp, (2.40)

where the subscripts i=1 and 2 refer respectively to the flow parts upstream and down-
stream of the jump, W denotes the weight of the control volume, and L its length, Pi

(i = 1, 2) are the mean normal forces −hΣ̄xx acting on the flow sections. Similarly, the
mass balance equation may be written as

ū1h1 = ū2h2. (2.41)

Following Savage’s idea, we may express the weight of the volume control per unit width
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θ

h1

L

h2
u1

 Figure 2. Sketch of a ’hydraulic’ jump.

as:

W = κρ̄gL
h1 + h2

2
, (2.42)

where κ is a profile coefficient to account for the jump geometry (κ = 1 for a trapezoidal-
shaped jump). Incorporating equations (2.41-2.42) into equation (2.40), we find that the
normal stress Σ̄xx satisfies the following equation (to leading order)

Σ̄xx,1 − ξΣ̄xx,2

ρ̄gh1
= κZ

1 + ξ

2
sin θ − Z

τp

ρ̄gh1
− 2Fr2

1(
1
ξ
− 1), (2.43)

where ξ = h2/h1 is the flow depth ratio, Fr1 =
√

ū1/gh1 is the upstream Froude number,
and Z = L/h1. By measuring the various involved parameters (Z, θ, κ, Fr1) and the flow
depth ratio ξ, it is possible to estimate the variation of the normal component of the stress
tensor Σ̄xx with the flow depth. Conversely, if the normal stress is assumed to be known,
it is possible to test the predictions of constitutive equations by solving the resulting
polynomial and comparing the theoretical flow depth ratio to experimental data.

In hydraulics, the development of a jump pertains to the existence of two flow regimes:
the supercritical (Fr > 1) and subcritical (Fr < 1) regimes. It is well known that specific
properties are associated with each regime. Examples include the propagation direction
of small gravity waves that occur in shallow water as a result of any momentary change
in the local depth of the water: a gravity wave can be propagated upstream in water of
subcritical flow but not in water of supercritical flow. Such a partitioning into flow regimes
may be adapted to the present context. To that end, we are looking for the eigenvalues
of the governing equations (2.32), which represent the velocity of small gravity waves.
Using the Cayley-Hamilton theorem, we find that the eigenvalues are solutions to the
following second order polynomial: λ2 − (trG)λ + detG = 0, whose discriminant is

D = 4ū2α +
1
ρ̄h

∂hΣ̄xx

∂ū

(
1
ρ̄h

∂hΣ̄xx

∂ū
− 4(α− 1)ū

)
− 4

1
ρ̄

∂hΣ̄xx

∂h
. (2.44)

We assume at this stage that D is always positive and therefore there are two eigen-
values

λ1,2√
gh

= αFr − 1

2ρ̄
√

gh3

∂hΣ̄xx

∂ū
±

√
D

4gh
. (2.45)
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In contrast to the Saint-Venant equations for which the eigenvalues are
√

gh(Fr ± 1)
(Chow 1959), we found that in our case the eigenvalues are generally complex functions of
the normal stress, except in the case where there is no normal stress difference. Depending
on their sign, these small disturbances of the free surface may be propagated upstream or
downstream. To specify the propagation direction, it is helpful to examine the existence
of a critical Froude number corresponding to a vanishing eigenvalue (λ = 0). Equalling
equation (2.45) to zero and rearranging the terms, we finally deduce

Fr2
c = Fr2

c,s (2.46)

The critical Froude number for gradually varying flows equals the value found for the
steady uniform flow. This result, holding true in hydraulics, is thus very general. In a
similar way to the partitioning into fluvial and torrential regimes used in hydraulics, we
can define
• a subcritical regime (Fr < Frc,s), where the two values have opposite signs. In this

case the velocity of small perturbations may be lower than the mean velocity. Accordingly,
the flow at a given point is controlled by both the downward and upward boundary
conditions.
• a supercritical regime (Fr > Frc,s), where the two eigenvalues are positive. In this

case, the velocity of small perturbations is larger than the mean flow velocity. Accordingly,
the flow at a given point is controlled only by the upward boundary conditions.
The simple perturbation of the free surface with a pen and the subsequent observation of
the disturbances can give information on the flow regime. If it is experimentally possible
to find the critical Froude number separating supercritical from subcritical flows, then
information on the form of the constitutive equation may be brought. For instance, if
the critical Froude number is equal to

√
cos θ/α, then there is likely no normal stress

differences.
We can further draw the analogy with hydraulics to assess the stability domain of

gravity-driven flows. It is well-known in hydraulics that the non-linear advection terms
in the equations of motion cause the development of instability. For free surface flows
down steep channels, this instability takes the form of small disturbances evolving towards
successive steep waves separated by bores, which are called roll waves. As the structure of
equations of motion studied here is similar to the shallow water equations, it is of interest
to evaluate the conditions for which a flow (down an inclined channel) is stable. The
present study differs from previous studies on the same subject, which examined stability
using a perturbation analysis based on the local equations of motion. Here we prefer to
use linear stability analysis of the flow-depth averaged equations (2.32) in a similar way
to the global approach followed by Trowbridge (1987) for various types of fluids or Savage
(1989) for granular flows. As the constitutive equations studied here may significantly
differ from that of simple fluids, the instability criterion obtained by Trowbridge cannot
be applied in the present context. We shall adapt Trowbrige’s procedure to account for
complex fluid specificities (notably effect of normal stresses). We assume that a steady
uniform flow takes place, in other words there is a unique set (H, U) of normal flow depth
and mean flow velocity values, which satisfies the equations of motion (2.32). We now
consider small perturbations about the above solutions

S = S0 + S′, (2.47)

with the normal solution S0 = (H, U) and the vector S′ = (η, κ), where κ and η are
respectively small disturbances of the mean velocity and flow depth. Substituting these
terms in the equations of motion (2.32) and only keeping first-order terms, we obtain the
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following linearized equations for the perturbation quantities

∂S′

∂t
+ G(S0)

∂S′

∂x
= G∗(S′). (2.48)

Here we will examine the stability of modes of the following form

η = Re(∆ei(nx−ct)), κ = Re(Xei(nx−ct)), (2.49)

where ∆ and X are the complex amplitudes respectively of flow depth and discharge,
n is the wave number (which is a real positive number), and c a complex constant to
be determined. The symbol i denotes the imaginary unity. The real part of c may be
interpreted as the propagation velocity of the spatially periodic disturbances and its
imaginary part reflects the growth (or decay) rate of the disturbance amplitude. Within
the linear stability framework (Drazin & Reid 1981), the flow is considered as unstable as
soon as it is possible to exhibit a solution to the system (2.48), for which the imaginary
part of c is positive. Substituting the complex forms (2.49) into (2.48) yields a linear
equation linear system

[
nG11 − c nG12

nG21 − i
∂(τp/ρ̄H)

∂H nG22 − c− i
∂(τp/ρ̄H)

∂U

] [
∆
X

]
= 0, (2.50)

where Gij denotes the (i, j) component of the matrix G [see equation (2.32)]. This system
has no trivial roots provided that its determinant is zero. Computing the determinant
and equalling it to zero, we obtain the dispersion equation that we can put into the form
of a second order polynomial in c

c2 − 2αc− β = 0, (2.51)

with

α = αr + iαi = n
G22 + G11

2
− i

1
2

∂(τp/ρ̄H)
∂U

,

β = βr + iβi = n

[
n (G12G21 −G22G11) + i

(
G11

∂(τp/ρ̄H)
∂U

−G12
∂(τp/ρ̄H)

∂H

)]
.

We are now looking for a solution to (2.51) rearranged in the form

(c− α)2 = reiΘ. (2.52)

The imaginary part of the solution to Eq. (2.52) may be written as

c = α±√reiΘ/2 ⇒ ci = Im(c) = αi ±
√

r sin
Θ
2

. (2.53)

The largest imaginary part is

ci = αi +
√

r

∣∣∣∣sin
Θ
2

∣∣∣∣ . (2.54)

We are searching the domain in which this number takes positive values: ci > 0. By taking
the square of the two sides of this inequality, then taking into account that 2α2

i + r cosΘ
is always positive and after rearranging the terms, we obtain:

r > 2α2
i + r cosΘ ⇔ β2

i > 4αi(βrαi − βiαr). (2.55)
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We eventually deduce the instability criterion:
(
H

∂(τp/ρ̄H)
∂H

)2

+
(
2UH(α− 1)− 1

ρ̄
∂HΣ̄xx

∂U

)
∂(τp/ρ̄H)

∂U
∂(τp/ρ̄H)

∂H >
(
(α− 1)U2 − 1

ρ̄
∂HΣ̄xx

∂H

)(
∂(τp/ρ̄H)

∂U

)2 . (2.56)

In many cases, when there is no normal stress difference, this condition may be simplified
into:

(
H

∂τp

∂H
− τp

)(
H

∂τp

∂H
− τp + 2U(α− 1)

∂τp

∂U

)
>

(
(α− 1)U2 + gH cos θ

) (
∂τp

∂U

)2

(2.57)
It may be shown that the source of energy for instability is work done on the perturbed
flow by gravity and that the flow is linearly unstable if the rate of working by gravity
exceeds the rate of energy dissipation by boundary friction (Trowbridge 1987). Equation
(2.56) or (2.57) can hardly serve to get insight into the constitutive equation, but it is
very useful to test the consistency of a constitutive equation by comparing the theoretical
domain of stability and the limits estimated from experimental data.

3. Application to a simple case: the newtonian constitutive equation
For a Newtonian fluid, the constitutive equation is written: Σ = −p1 + 2µD. Since

the stress tensor is a linear function of the strain-rate tensor, there is no normal stress
differences. For a simple shear flow down an inclined channel, it is straightforward to
deduce the velocity profile

u(y) =
sin θ

µ
ρgy

(
h− y

2

)
. (3.1)

The Boussinesq coefficient α is equal to 6/5. The discharge equation is found by a simple
integration of equation (3.1): q = ρg sin θh3/(3µ). Using equation (2.22) yields

γ̇ = τ/µ (3.2)

which corresponds well to the Newtonian constitutive equation in a steady-state simple-
shear flow. From the discharge, we deduce that: sin θ = 3µ ū/(2ρgh2) and thus the bottom
shear stress may be written as: τp = J(h, ū) = 3µ ū/(2h). As there is no normal stress dif-
ferences, the critical Froude number (separating the supercritical and subcritical regimes)
is equal to

√
5 cos θ/6. From the instability criterion given by equation (2.57), we find

that Newtonian flows down infinite channel are unstable as soon as:

Fr >

√
cos θ

3
≈ 0.577 + O(θ2) (3.3)

This is to be compared to the value obtained by Benjamin (1957) and Yih (1963) using a
more rigorous analysis on the stability of local equations of motion for Newtonian fluids:√

5/18 ≈ 0.527. It is worth noticing that the critical Froude number pertaining to the
loss of stability is lower than the Froude number corresponding to the appearance of the
supercritical regime. This means that for laminar Newtonian fluids, no hydraulic jump
may be observed.

4. Conclusions
In this paper, emphasis has been given on the relationship between bulk behavior

and local properties of flows down inclined channels. Besides the determination of the
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constitutive equation in a steady-state simple-shear flow τ = f(γ̇), channel experiments
are very helpful to infer another rheological parameters such as the first normal stress
difference. Such experiments may be seen as discriminating since they can serve to test
constitutive equations proposed in the literature or to get information on the form of
the constitutive equation suitable for the studied materiel as well. For instance, the form
of the transverse free-surface profile or the value of the critical number separating the
supercritical and subcritical regimes can provide evidence on the existence of normal
stress differences.

In comparison with other laboratory rheometers, a channel-type channel possesses
many advantages, which make it very suitable for testing various kinds of materials. For
instance, for suspensions of coarse particles, parallel plate rheometers or Couette cylinder
are not always appropriate due to their limited gap with respect to the particle size.
Fracture, depletion, migration, etc. are disturbing effects which may significantly affect
rheometrical measurements. In contrast, even though these effects are still existing, their
influence is often less pronounced. The basic principle of rheometry is to achieve (as much
as possible) viscometric flows (i.e. flows in which the stress and velocity distributions are
imposed). Here, only the stress distribution for the steady uniform regime is known
whatever the type of constitutive equation. Information is taken both from uniform and
nonuniform flows.
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