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Abstract

Increasing the reliability and accuracy of avalanche zoning method is of primary importance in heavily populated areas of

the Alps. This usually involves computing the characteristics of large return-period avalanches. Current tools (avalanche-

dynamics or statistical models) cannot achieve this objective properly. A new generation of models has emerged, which, by

combining statistical and deterministic viewpoints, can reduce a number of shortcomings in the original tools. This paper

explores the possibility of updating the Salm–Burkard–Gubler method by adding a probabilistic procedure for fitting

parameters to field data and using it in Monte Carlo simulations. The resulting model is intended to provide more accurate

results of extreme avalanches. It has been applied to a series of close avalanche paths in the French Alps. Despite their

similarities, these paths reveal some differences in their avalanche activity in terms of frequency and maximum run-out distance.

Therefore, in order to provide a fair description of the intensity/frequency relationship, the model parameters must be fitted for

each path, which leads to thinking that not all the important physical processes have been taken into account in this model.
D 2004 Elsevier B.V. All rights reserved.
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1. Introduction potential impact pressure for large periods of return,
The catastrophic avalanches of winter 1999 in

Europe (Montroc, France, 12 deaths; Evoléne, Swit-

zerland, 12 deaths; Galtür, Austria, 39 deaths) have

renewed the interest in developing scientific methods

for avalanche zoning. Basically, an engineer in

charge of avalanche zoning at a given site wishes

to estimate the avalanche deposit boundaries and
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typically equal to or larger than 100 years (Mears,

1992; Hopf, 1998).

In France, to determine the extent of extreme

avalanches, practitioners use empirical methods, based

on terrain analysis (study of vegetation for clues of

past avalanches, analysis of aerial photographs, etc.),

interview of residents, and archives. Like for any

process relying on the experience of a few individuals

(the experts), an approach of this kind suffers from

unavoidable shortcomings even though it remains an

indispensable step in any zoning: subjective character

of the outcomes, phenomenon quantification delicate

to obtain, etc. Lagging behind, scientific methods have

so far received less attention in applications though
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they would be helpful to improve the accuracy of

empirical methods.

The objective of this paper is to propose a simple

general framework for computing the magnitude–

frequency relationship, with specific attention paid

to extreme avalanches and the search for the largest

applicability in engineering. Such an objective is not

new since we count a large number of works devoted

to this topic (Hopf, 1998). Here the main originality is

that the magnitude–frequency relationship is deduced

by mimicking the avalanche activity in a given path

over long periods. To that end, we idealize the life of

an avalanche by describing the main stages from

snowfalls to run-out. This can seem more complicated

than the usual approaches that mainly focus on the

avalanche run-out but this makes it possible to intro-

duce times series of meteorological data (e.g., inten-

sity of snowfall, lag time between two snowfalls, etc.)

in the model as input variables, which undoubtedly

constitute the largest and widespread source of data to

explain and predetermine the occurrence of ava-

lanches. Using a more comprehensive framework for

computing the magnitude–frequency relationship is

largely justified by the failure of usual methods to

obtain this relationship.

First we will begin the paper by explaining why the

current avalanche models cannot provide proper eval-

uations of the magnitude–frequency relationship. We

will then present the framework that we have tested.

Most of the developments included in it are not new;

the general scheme has been drawn from the method

proposed by Salm et al. (1990), that we have adapted

and updated to make it compatible with a probabilistic

treatment. The calibration of the model parameter will

be explained shortly; the reader is referred to a recent

publication (Ancey et al., 2003). Finally, we will

present the results obtained when applying the method

to a series of avalanche paths in the Maurienne Valley

(French Alps).
2. An overview of practical methods used in zoning

In addition to naturalist methods, there are current-

ly two methods to deduce avalanches characteristics:

the deterministic models (avalanche-dynamics mod-

els) and the statistical models. We are going to briefly

present the two approaches. To illustrate the issues
encountered when one tries to apply them to ava-

lanche zoning problems, a typical example will also

be studied. Note that here the problem at hand is not

to test the reliability of general methods, such as the

deterministic model proposed by Salm et al. (1990) or

the statistical model developed by Lied and Bakkehøi

(1980), but to address how field data can be used to

deduce the behavior of extreme (usually not observed)

avalanches. To make a parallel with modern hydro-

logical treatments of rainfall data, our objective is to

develop a theoretical framework that is able to deduce

the behavior of extreme avalanches from the knowl-

edge of past events similarly to extreme value theory

for rainfall data (see Coles, 2001).

2.1. Deterministic models

Deterministic models reduce avalanche physics to

a set of equations of motion, usually involving mass

and momentum balance equations (Hutter, 1996;

Ancey, 2001). The main criticism made of the current

deterministic models is that they use ad hoc assump-

tions on the rheological behavior of snow (McClung

and Schaerer, 1993). Despite various attempts to find

physical justifications for their expressions (see, e.g.,

Salm, 1993), the constitutive relationships used so far

rely on analogy with other physical phenomena:

typical examples include the analogies with granular

flows (Savage and Hutter, 1989; Savage, 1989; Tai et

al., 2001), Newtonian fluids (Hunt, 1994), power-law

fluids (Norem et al., 1986), and viscoplastic flows

(Dent and Lang, 1982; Ancey, 2001). Nonetheless,

even though all these new developments appear

attractive from a physical viewpoint, from a purely

rheological point of view they still rely on a specula-

tive basis. Given the severe difficulties faced with

snow rheometry, the physical calibration of constitu-

tive parameters used in these models will remain

unfeasible for a long time.

An alternative approach to fitting parameters

involves comparing the model outputs and field data

such as the velocity at a given point and the point of

furthest reach (run-out distance) (Schaerer, 1974;

Buser and Frutiger, 1980; Dent and Lang, 1980).

The resulting fitted values have been proposed as

default values in engineering guidelines such as the

Swiss guidelines hereafter referred to as SBG method

(Salm et al., 1990) or the USGS handbook (Mears,
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1992). Although practitioners are generally confident

of these values, recent studies have pointed out

weaknesses in the values proposed by the current

guidelines. For instance, when comparing the predic-

tions of various deterministic models and field data on

five European sites, Barbolini et al. (2000) have found

that the friction parameter values could be very

different from the default values. Another shortcom-

ing when applying these models to avalanche zoning

is that they do not explicitly include the notion of

period of return, as is shown below. In the better

cases, the period of return is implicitly introduced by

setting the value of an input parameter to a given

quantile. However, in a multivariate random process

such as avalanches, the period of return should be

computed from the joint probability of all the random
Fig. 1. (a) Path profile of the Folmeyan site. (b) Variation in the path slope a

Have also been superposed: the run-out distance distribution for all events

function of the run-out distance P (in plot b).
variables involved in the problem and not exclusively

from one of these variables otherwise this can lead to

unrealistic return-period estimation (see Adamson et

al., 1999 in the field of floods). In Appendix A, we

provide evidence that, in the case of a sliding-block

model, there are substantial differences between the

periods of return computed on a single random

variable or a set of variables.

Let us consider the case of the Folmeyan path in

the Tarentaise valley (France), which regularly pro-

duces avalanches of any size. The path is an open

north-facing slope whose starting zone is located on

the Mont Pourri glaciers; the starting zone exhibits a

complex structure, with at least three sub-basins that

can operate more or less independently under critical

conditions of snowcover unstability. The path is close
s a function of the distance from the starting point (continuous line).

in the avalanche database (in plot a) and the cumulative distribution
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to Val d’Isère and is characterized by high annual

snowfall rates (on average, 6.1 m from December to

April at 2000 m). Several avalanches deposited close

to a village (La Gurraz). The run-out elevation of large

avalanches as well as other features (damage, volume,

etc.) have been recorded since 1934. Fig. 1 reports the

path profile (Fig. 1a) and the variation of the path

slope with distance from the top point of the path (Fig.

1b). We have also superposed the recorded run-out

distance. In Fig. 1a, each dot presents the run-out

distance of each event recorded since 1934 while Fig.

1b reports the cumulative distribution of the run-out

distance. Uncertainty on the run-out elevation is large,

typically of the order of F 25 m for the older events

while nowadays it should be closer to F 10 m. There

is no guarantee as regards completeness of the data-

base, notably during the last world war, a few events

might be missing. Table 1 provides the dates and the

run-out elevations for the last 22 events, for which the

meteorological conditions before the release are

known; meteorological data come from the meteoro-

logical station situated at Arc 2000 (elevation 2050 m,
Table 1

Event features in the Folmeyan path

Date Run-out

elevation (m)

Distance

(m)

C3d

(cm)

l P̂

04/02/1980 1500 2740 115 0.26 0.70

05/01/1981 1600 2400 78 0.36 0.43

12/03/1981 1650 2275 30 0.35 0.13

31/03/1981 1500 2740 65 0.25 0.54

23/01/1984 1380 3195 67 no solution 0.95

25/02/1985 1600 2400 0 – 0.16

20/05/1985 1600 1400 ? ? 0.38

16/01/1986 1400 3115 31 no solution 0.93

14/02/1990 1380 3195 154 0.2 0.97

15/02/1992 1600 2400 49 0.35 0.29

06/04/1993 1500 2740 66 0.25 0.57

01/01/1994 1500 2740 37 0.24 0.51

10/04/1994 1600 2400 49 0.35 0.35

25/01/1995 1450 2925 98 0.24 0.76

15/02/1995 1500 2740 24 0.23 0.49

25/02/1995 1450 2925 147 0.25 0.79

09/02/1999 1600 2400 107 0.37 0.46

22/04/1999 1600 2400 21 0.35 0.18

25/12/1999 1600 2400 45 0.35 0.27

04/03/2001 1600 2400 36 0.35 0.24

21/03/2001 1600 2400 14 0.35 0.21

Dates, run-out elevation and distance, snow fallen during the

previous 3 days, and the fitted value of l (with n= 1000 m/s2), and

the cumulative distribution function P of the run-out distance.
2 km away from the starting zone). The table also

reports the empirical cumulative probability P̂ for

each event; it is evaluated by sorting the run-out

elevations (from smallest to largest). If i is the value

rank, n is the number of field data (here n = 22 from

1976), then P̂i=(i� 0.3)/(n + 0.4).

We are interested in applying a Voellmy-like meth-

od (see Section 3.4 for details) to deduce the traits of

extreme avalanches in the Folmeyan site. The first

task is to evaluate the two friction coefficients (l and

n) involved in this model. The first problem is that we

only dispose of one type of avalanche data (run-out

elevation) to adjust the two parameters. According to

the SBG scheme, in addition to the initial flow depth,

the only varying parameter is the friction coefficient l
since it is interpreted as something close to snow

viscosity while the second coefficient n reflects the

‘‘geometrical’’ resistance exerted by the path on the

avalanche and, thus, is independent of avalanches.

Thus, assuming n constant and setting it to a given

value, we can fit the parameter l for the computed

run-out elevation to match the observed value. This

can be done for different values of n in order to have

an idea of the sensitivity in the dependence of l on n.
Usually, if one keeps the range of values given in the

SBG guidelines (that is, 400V nV 1000 m/s2), this

dependence is weak.

Table 1 provides the values of l(C3djn= 1000) for
the avalanches occurred since 1976, where C3d

denotes the amount of snow fallen during the previous

3 days (not including the day where the avalanche

descended), which is computed by summing the

amounts of snow recorded daily (from 8:00 to 8:00

the day after). Fig. 2 shows the variation of the run-

out distance with the snow fallen during the previous

3 days C3d. On the whole there is no clear relationship

between the run-out distance xstop and C3d. If we

consider heavy snowfalls by limiting our attention to

snowfalls in excess of a given threshold, e.g. 70 cm,

the data define a trend which could be approximated

by eye as a rapid increase of the run-out distance with

C3d. However, possibly as a result of observation

inaccuracies (in the avalanche date, run-out distance,

and snowfall measurement), the data scatter so widely

that this increase represents only a gross qualitative

trend, from which a linear/nonlinear behavior cannot

even be made discernible. This trend is consistent

with the fact that the probability of observing long
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run-out distances increases with the amount of new

snow. In some cases, the avalanche travelled a very

long distance although the recent snowfall was low

(e.g., avalanche of 16 January 1986 in Table 1). This

may be seen as an odd behavior at first sight, but

various explanations can be evoked.

� If the variable C3d appears often as a critical

parameter in the assessment of avalanche activity,

there is no strict determinism between the release

probability and C3d because major avalanches can

be released after snowfalls that were not necessar-

ily intense but sustained over several days. For

instance, the avalanche of 16 January 1986

occurred at the end of a period of bad weather

conditions lasting a couple of weeks, for which the

sum of daily snowfalls reached 205 cm from 1

January to 16 January 1986, with a maximum of 34

cm/day recorded on 11 January 1986.
� Avalanche mobility varies substantially depending

on snow consistency, snowcover strength, path

smoothness, etc. Small volume avalanches can

exceptionally travel long distances when basal

friction and energy dissipation within the ava-

lanche are low. A typical example was provided by

the Daille path (Val d’Isère), a few kilometers

distant from the Folmeyan path, where three back-

country skiers were buried on 23 February 1996 by

a small avalanche naturally released after a light

snowfall (16 cm in 3 days, temperature ranging

from � 16 jC to � 10 jC) (Ancey, 1998). This
avalanche was exceptional because it travelled a

very long distance compared to its usual extent and

was the sole event observed in Val d’Isère over the

last 10 days.

In short, we failed to identify a one-to-one relation-

ship between the run-out distance and the snow falls

despite the evident influence of snowfall intensity on

the run-out distance for heavy snowfalls. If we look at

the C3d dependence of the friction coefficient l, we
arrived at the conclusion: there is no clear relation

between l and C3d. This means that the l dependence

on C3d should be expressed in probabilistic terms and

not through a deterministic relationship.

When taking a closer look at Table 1, we notice

that l takes its values over a finite set of possible

values; typically here, we have: l = 0.2, l = 0.24–

0.27, or l = 0.35–0.37. The fact that we do not find a

continuous distribution of l values can result from

preferential points of run-out (see Fig. 1a). Surpris-

ingly, the l probability distribution is smoother if a

Coulomb expression is selected for the frictional force

instead of the Voellmy expression (or, in other words,

if we set n = 0) (Ancey, in press).

We have been successful in fitting the Voellmy-like

model parameters for most avalanches occurred over

the last 20 years. How can this adjustment be used to

deduce the features of extreme avalanches? Due to the

absence of dependence between variables, we have no

sound argument for selecting a given value of l. Thus,
the Voellmy model cannot provide an accurate esti-
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mate of the run-out distance of the 100-year ava-

lanche. Note that this problem is avoided in the SBG

method by imposing that the 100-year avalanche

results from a 100-year snowfall (more precisely, an

increase in snowcover thickness over 3 days, whose

return period is 100 years).

2.2. Statistical models

In the black-box approach, no explicit attempt is

made to capture the physics of processes involved.

Approaches of this kind are quite common in hydrol-

ogy (O’Connell and Todini, 1996), but are less

frequent in snow hydrology. In this field, the basic

idea stems from the pioneering work of Lied and

Bakkehøi (1980): assuming a regional homogeneity

in avalanche behavior for a given mountain range,

they pooled the data from various paths in a common

database. In this way, using regression techniques,

they obtained the relationship between the run-out

distances and a number of key variables of the path

profile. This methodology has been applied to differ-

ent mountain ranges throughout the world (Bakkehøi

et al., 1983; McClung and Lied, 1987; Fujizawa et al.,

1993) and extended to introduce the period of return

as a parameter of the problem (McClung, 2000,

2001). In alpine countries, where most of the time

the avalanche paths of the same mountain range

exhibit no similarity in their shape, the fundamental

assumption of avalanche homogeneity on a regional

scale is doubtful (Ghali, 1996). A major drawback of

this approach is that it depends a great deal on the

quantity and quality of available data. Since most of

the time the only available information is the run-out

distance, this approach is unable to provide estimates

of the potential impact pressure. Moreover, in many

cases, the historical record of run-out distances is not

long enough and the resulting fitted probability dis-

tribution must be extrapolated to evaluate the run-out

distance of a long return-period avalanche. However,

extrapolation is far from easy and proper due to the

non-smoothness of the distribution and dependence of

run-out distance on path profile; here mathematical

theories such extreme value theory (Coles, 2001)

cannot be applied to extrapolate field data.

Let us illustrate this with the Folmeyan site example.

The avalanche database has been recording 22 events

for 25 years. We are interested in determining the run-
out distance of the 100-year avalanche. We admit that

the period of return of the avalanche Tcan be computed

from the run-out distance. The 100-year runt-out dis-

tance is the value (quantile) at which the cumulative

distribution function reaches P= 1� T� 1 = 0.99. In

Fig. 1, we have reported the variation in the empirical

distribution of xstop. By interpolating points corres-

ponding to the 22 events, we can obtain an estimate

of P in the range 0–0.97. A priori, it could seem easy to

extrapolate the empirical curve up to 0.99. This is,

however, a difficult task since the curve is step-shaped

and from a mathematical viewpoint there is no way to

properly extrapolate it.

This result is not surprising: it is well known in

hydrology that, in order to obtain correct statistical

estimates, one has to select physical variables, i.e.

variables independent of the path geometry. For

instance, in flood hydrology, a bad choice of statistical

variable would be the flow depth since it depends a

great deal on the river cross-section shape: if the river

sides are steep, any increase in water discharge leads

to a measurable increase in the flow depth but, if the

river flanks flatten out, the flow depth increase result-

ing from a discharge rise is low.

Here statistical methods are thus of little help for

zoning applications since they can interpolate data,

but cannot be used to predict rare events. Therefore,

unless one has very long series of data, it is not

possible to properly evaluate the 100-year avalanche

features.
3. A minimalist conceptual framework

In-between these two classic approaches has

emerged a new class of models that can be referred

to as conceptual models since they rely on an idealized

representation of avalanches and encompasses a num-

ber of varied tools coming from statistics, physics, and

naturalist knowledge of avalanches. Conceptual mod-

els are common in hydrological applications (O’Con-

nell and Todini, 1996); in this respect, it is worth

mentioning that our objective (determining the run-out

distance and pressure of avalanches using meteorolog-

ical data) is not so far from the one followed by the

methods of rainfall/flow-rate transformation (deter-

mining the water discharge in a stream from the rain

data). Thus, in the following, ‘‘idealized representa-
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tion’’ means that we do not pretend that our represen-

tation is systematically physical but merely that it

describes roughly what happens.

3.1. Outline

Conceptual models can be viewed as the combi-

nation of different modules (or sub-models) describ-

ing the different processes occurring from snowfalls to

avalanche deposition. Due to the large complexity in

the elementary processes and their interplay, this

combination is nothing but an idealized mathematical

description of the steps believed to be crucial in the

release and course of avalanches.

The structure of the model is conditioned by the

number and nature of the measurable physical data at

hand. To build up our conceptual model, we first need

to reply to the following basic questions:

� What are we looking for? The magnitude-frequen-

cy relationship of key dynamic variables of

avalanche at a given site, that is, the probability

of observing a given value of the key dynamic

variable(s). Therefore, our model must take

probabilistic aspects into account. The dynamic

variables of interest depend on the problem to treat.

In zoning, we are mainly interested in the deposit

extension and the maximum pressure variation

along the avalanche path. Since the avalanche

pressure distribution cannot be easily measured, we

need a practical way to evaluate it. Avalanche-

dynamics models are potentially good candidates

for this purpose.
� What kinds of data are usually available? In the

French Alps, the only continuous source of data

related to avalanches is constituted by the

meteorological databases. For a number of sites

in the heavily populated valleys, we have some

indications of the run-out elevation of past

avalanches. Exceptionally, for a few events, it is

possible to have an idea of the volume of snow

involved, maximum pressure, and velocities from

analysis of damage to forest, records, testimonies,

etc. Thus, for a model to be applicable in any site,

the input parameters must be related to the

meteorological data while other sources of infor-

mation can be used to adjust inner parameters of

the model.
Various combinations of modules have been ex-

plored by different authors (Keylock et al., 1999;

Barbolini and Savi, 2001; Bozhinskiy et al., 2001;

Chernouss and Fedorenko, 2001; Harbitz et al., 2001;

Keylock and Barbolini, 2001). Our opinion is that

when the objective is to mimic the avalanche activity

over long periods, conceptual models should be based

on Monte Carlo simulations and, at least, two sub-

models: one to quantify the occurrence of avalanche

release and another to compute the avalanche motion

and deposition. Here, we use classic hydrological

methods for describing the occurrence and intensity

of snowfall and, as regards avalanche motion, we

have adapted and updated the SBG method. The main

difference between the present framework and the

original formulation of the SBG method is that we

use a probabilistic method for fitting the parameters. If

a formal relationship between the probability density

functions of conceptual and observable variables can

be established, then the model can be easily calibrat-

ed. In this way, even short series of field data can be

used insofar as it is possible to properly define their

probability density function.

The avalanche-dynamics sub-model used is very

close to the Salm-Burkard-Gubler (SBG) model, ex-

cept that the approximate method of solving the

equations of motion has been replaced by an ordinary

differential equation, solved numerically. In its origi-

nal formulation, the Voellmy model belongs to the

class of sliding-block models, which present the

advantage of leading to simple ordinary differential

equations, but also the drawback of overly simplifying

the physics of avalanches. Disadvantages and advan-

tages offered by Voellmy-like models are discussed in

a number of recent papers and monographs (McClung

and Mears, 1995; Bartelt et al., 1997, 1999), to which

the reader can refer. More refined models have been

developed over the last two decades. Among others

Eglit (1983, 1984, 1998), Bartelt et al. (1997) and

Barbolini and Savi (2001) have included the Voellmy

frictional force in the flow-depth averaged equations

of motion (similar to shallow water equations used in

hydraulics), leading to a set of hyperbolic partial

differential equations. Several reasons have led us to

use a Voellmy-like model despite its limitations:

� First of all, this model, notably in the formulation

known as the Salm-Burkard-Gubler (SBG) model,
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is widely used in Europe for avalanche zoning and

engineering. Its success stems from this model’s

long history (the first sliding block-model seems to

date back to the 1920s, Mougin, 1922) and its

simplicity. The method proposed here provides the

practitioner with the means to tune the model

parameters from field data.
� Furthermore, the avalanche-dynamics model is an

element of the chain needed to model the physical

processes from snowfall to avalanche deposition.

At this stage, we are mainly interested in finding a

simple mathematical model rather than a sophisti-

cated model, which would be time-consuming and

involve many parameters. Based on an ordinary

differential equation and two mechanical parame-

ters, the SBG method plainly fulfills our objective.

More refined evolutions of this model, relying on

hyperbolic partial differential equations, are more

complicated to handle and a number of assump-

tions (long-wave approximation, stability, front,

etc.) limit their applicability.

3.2. Structure of the model

Our minimalist conceptual model includes two

modules (see Fig. 3):

� The first module describes what happens up to the

avalanche release. The avalanche release is largely

conditioned by the meteorological conditions
Fig. 3. Sketch of the concep
during the previous days, especially the amount of

new snow (McClung and Schaerer, 1993; Ancey,

1998). For many sites, the key meteorological

parameter explaining an avalanche activity is the

sum of the amount of snow fallen during the

previous 3 days C3d. Not all the sustained snowfalls

give rise to avalanche. Thus, for a given snowfall

C3d, one has to specify the probability of observing

an avalanche release p(releasejC3d). The 3-day

snowfall C3d and the lag between two snowfalls s
are random variables. Their probability density

functions pC(C3d) and ps(s) can be estimated using

classic hydrological methods (renewal, annual

series methods, etc.). Usually an extreme-value

distribution (Fréchet, Weibull, or Gumbel distribu-

tion) or an exponential distribution provides good

results while a Poisson law can be used to evaluate

the number of snowfalls per time unit exceeding a

given threshold. Evaluation of p(releasejC3d) is

simply achieved using logistic regression techni-

ques (Hosmer and Lemeshow, 1986).
� The second module describes avalanche motion

and deposition. Here we use an avalanche-

dynamics model. This takes the form of a set of

dynamical equations, basically the mass and

momentum balance equations describing the time

variations of dynamical variables of avalanche

motion, here the velocity u and flow depth h. The

equations of motion depend on a set of mechanical

parameters {l,n}, specified hereafter (Section 3.4).
tual model used here.
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With these two modules, we are able to compute

the run-out distance xstop provided that the initial

conditions are known and the mechanical parameters

are specified. This also implies that there is a known

dependence between the 3-day snowfall and the

initial conditions for the equations of motion. In

the following, we express the functional dependence

of the run-out distance xstop on {l,n} and C3d as

follows: xstop = Y(C3d;n,l).

3.3. Model calibration

Though conceptual models erase some of the

intrinsic disadvantages of fully deterministic and

statistical approaches, they must still cope with a

difficult problem: the calibration of parameters using

the scarce physical data available. For instance, due

to the lack of long series of data, Barbolini and

Savi (2001) and Barbolini et al. (2003) collected

data from several paths to deduce the probability

density functions of the two parameters involved in

their propagation sub-model. Alternative methods,

which are not based on a regionalization assump-

tion, can be used. Here we propose a probabilistic

method which tries to deduce the relationship be-

tween the probability distributions of input and

output variables.

The basic question in the inverse problem is:

given xstop and C3d, what are the values of the

mechanical coefficients {l, n}? If we can invert the

function Y, one can deduce a single mechanical

parameter from the field data xstop provided that

the other mechanical parameter is known: l =

Y � 1(xstop;C3djn). This simple technique requires

knowing xstop and C3d precisely for each event.

This difficulty can be alleviated if we consider the

problem differently. Indeed, rather than solving the

equation l =Y �1 (xstop;C3djn) for each event, we can

solve it globally. To be more specific, we now

formulate the inversion problem in the following

manner: given the probability distributions of xstop
and C3d, what is the probability distribution of the

coefficient l? We will refer to this formulation as

the indirect method.

To answer the question above, we shall consider

three different assumptions: (i) the random variables

l and C3d are independent, (ii) they are linked by a

one-to-one relationship in the form l =F(C3d), (iii)
they are correlated random variables. Theoretically,

the marginal density of the friction coefficient is

given by:

plðlÞ ¼
Z
Rþ

dxstop

Z
Rþ

dC3dP½lAxstop;C3d	P½xstop;C3d	

¼
Z
Rþ

dxstop

Z
Rþ

dC3dP½xstop;C3d	dðl � Y�1


 ðxstop;C3dAnÞÞ;

but this equation is to intricate to be used in

numerical computations. We proceed as follows.

Let us consider the marginal density of the run-out

distance:

pxðxstopÞ ¼
Z
Rþ

px;lðxstop; lÞdl ð1Þ

It is possible to remove the variable xstop in the joint

probability by making a variable change: (xstop,l)
to (C3d,l). We denote Jx the Jacobian of this

transformation:

Jx ¼ det

Bxstop=BC3d Bxstop=Bl

Bl=BC3d Bl=Bl

2
4

3
5

������
������ ð2Þ

Formally, we then obtain the marginal density of

xstop:

pxðxstopÞ ¼
Z
Rþ

px;lðxstop; lÞdl

¼
Z
Rþ

J�1
x pC;lðC3d; lÞdl ð3Þ

The next task is to extract the probability density of

l from this integral expression. Said differently, we

are trying to invert the integral term to provide an

expression of pl(l) as a function of px(xstop) and

pC(C3d). Different cases must be considered.

3.3.1. Case (i): independency of l and C3d

If l and C3d are independent random varia-

bles, then we have: Bl/BC3d = 0, Jx= jBxstop/BC3dj,
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and pC,l(C3d,l) = pC(C3d)pl(l). Thus the marginal

probability density function of the run-out distance is

obtained by integration:

pxðxstopÞ ¼
Z
Rþ

J�1
x pCðC3dÞplðlÞdl ð4Þ

If we further assume that xstop = Y(C3d;ljn) can be

inverted to yield C3d = Y
� 1 (l;xstopjn), we deduce that

the probability distribution pl satisfies a Fredholm

equation of the first kind:

pxðxstopÞ ¼
Z
Rþ

Kðxstop; lÞplðlÞdl ð5Þ

where K(xstop,l) = Jx
� 1pC (Y� 1(l;xstopjn)) is the ker-

nel function.

3.3.2. Case (ii): deterministic dependency of l on C3d

If there is a one-to-one relationship between l and

C3d in the form l =F(C3d), the result is straightforward:

plðlÞ ¼
1

AFVBF�1ðlÞA pCðF�1ðlÞÞ ð6Þ

3.3.3. Case (iii): correlated behavior of l and C3d

Instead of a deterministic relationship between l
and C3d, we can imagine that the two variables are

correlated. We follow the same line of reasoning as

above, except that we consider conditional probability

densities:

pxðxstopAC3dÞ ¼
Z
Rþ

P½xstop; lA C3d	dl

¼
Z
Rþ

P½xstopAl;C3d	P½lAC3d	dl

Using the fact that P[xstopjl,C3d] = d(xstop� Y(l,
C3d)), we can write:

pxðxstopAC3dÞ

¼
Z
Rþ

Kðxstop; lAC3dÞP½lAC3d	dl ð7Þ

where K(xstop,ljC3d) = d(xstop� Y(l, C3d)) is the

kernel function. In this case, we do not compute

pl, but the conditional probability P[ljC3d].
3.3.4. Summary and numerical solving

Except for case (ii), where the probability density

of l is directly inferred from that of C3d, we have

found that the marginal density of l [see case (i)]

or the conditional density P[ljC3d] [see case (iii)]

are solutions to a Fredholm equation in the form:

px = m dl K (l,xstop)Pl.
There is usually no analytical solution to this

equation. To solve numerically this equation, the basic

idea is to discretize the integral equation to obtain a

matrix form that can be inverted: pl =K
� 1Px. Differ-

ent numerical methods can be used to discretize and

solve a Fredholm equation (e.g. see Kirsch, 1996). We

have used the Tikhonov regularization method, which

reduces fluctuations of the discretized solution by

imposing a constraint on the smoothness of the

solution. The complete numerical implementation is

explained in a recent paper (Ancey et al., 2003). In the

Tikhonov method, we can use different regularization

methods: for instance, we can constraint the curve to

be smooth (denoising process) or limit overly large

fluctuations. In this method, there is also an adjustable

factor that controls the extent to which the resulting

curve is smooth or close to experimental data. In

practice, this free parameter allows one to find a good

compromise between agreement and smoothness (or

stability relative to variations in the data).

The major problem of Tikhonov regularization

methods is the robustness and sensitivity of results

to the choice of the smoothing operator and mea-

surement errors. An alternative is to use Markov

Chain Monte Carlo simulations to obtain a sample of

values drawn from the marginal density pl; Ancey

(in press) used such a method to deduce the prob-

ability density of l for various paths in the French

Alps.

In the remaining of the paper, we will use the

assumption that l and C3d are independent random

variables [case (i)].

3.4. The avalanche-dynamics model

In the computations presented here, we have used

the Salm-Burkard-Gubler formulation of the Voellmy

model. The SBG model relies on momentum and mass

balance equations for describing avalanche motion

(Salm et al., 1990; Salm, 1993). Motion is described

within the framework of rigid-body mechanics. The

nd Technology 39 (2004) 161–180
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momentum equation is expressed as follows: mu̇ =

mgsinh�F, where the dot means the time derivative,

h is the path inclination, m is the avalanche mass, u its

velocity, and F is the friction force experienced by the

avalanche. For an unconfined avalanche, this force has

the form: F = lmgcosh +mgu2/(nh), where h refers to

the flow depth, n and l are two friction coefficients.

The mass balance equation expresses that the mass

flow rate Q holds constant throughout the run:

Q = qlhu = q0l0h0u0, where the subscript 0 refers to

the initial conditions (i.e., at the end of the release

phase), l denotes the avalanche width, and q its density.

For confined flows, the flow depth must be replaced by

the hydraulic radius Rh= S/v (where S denotes the flow

cross-section area and v is the wetted perimeter, namely

the length of the cross-section border at the interface

between the avalanche and the ground/snowcover) in

the frictional force expression above.

The SBG method involves four input parameters:

� the initial conditions h0 and u0,
� the friction parameters n and l.

It is assumed that the initial velocity (at the end of

release phase) is: u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nh0cosh0ðtanh � lÞ

p
(Salm et

al., 1990), where h0 denotes the mean slope of the

starting zone. The initial flow depth h0 corresponds

to the thickness of the released snow layer. Here it is

assumed that this thickness is directly correlated with

the amount of snow fallen during the previous 3

days C3d: h0 = f(h0)C3d, where f(h0) = 0.291/(sinh0 �
0.202cosh0); this expression differs slightly from the

original proposed by Burkard and Salm (1992) in that

it takes into account C3d and not the growth rate DH3d

of the snowcover over 3 days (the difference in snow-

cover thickness over 3 days). Burkard and Salm (1992)

also suggested increasing DH3d to account for possible

wind effects and/or elevation difference between the

starting zone and the meteorological station.

The friction coefficient n reflects the effect of

path roughness. It is assumed to range from 400 to

1000 m/s2 and be intrinsic to the path, that is, it is

constant for each avalanche run in a given path. In

contrast, l pertains to snow fluidity. This parameter

may depend on the avalanche size and/or other

parameters. Its lower value given in the literature is

0.155 and corresponds to extreme avalanches (Buser

and Frutiger, 1980).
In short, we have three effective input parameters

(n,l,C3d), two of which can be considered as random

variables (l,C3d) while the third (n) can be assumed to

be constant (for a given site).We found no clear

evidence in the literature for the last assumption. We

have found that, insofar as we are involved in working

with xstop and we constrain n to lie within the prescribed
range of 400–1000 m/s2 (Salm et al., 1990), the precise

determination of n is of less importance since xstop
usually depends weakly on n. Therefore, as a first

approximation, it is permissible to make the calculation

as if l were really independent of n. However, if one
leaves the SBG framework, that is, if n can take any real
value, the indirect inversion method will provide the

conditional probability density function pl(ljn).

3.5. Practical use

In practice, the proposed method can be broken

down into different steps (see Fig. 3):

(1) Calibration step: field data (snowfall, run-out

distances, etc.) are used to obtain the release

probability and the probability distribution of

the friction coefficient l. Release probability

can be estimated using regression logistic tools.

The density distribution of l can be evaluated

using the indirect method presented here. This

method benefits from posing the inverse

problem in a probabilistic perspective. More-

over it allows us to compute the coefficient l
even though we have partial series of xstop or

C3d. Finally, it is especially suitable for Monte

Carlo simulations, for which the l values are

generated from their probability density func-

tion pl(l). Its major inconvenience lies in the

excessive sensitivity of results to measurement

errors. An alternative is to use Markov Chain

Monte Carlo simulations to generate pl (see

Ancey, in press).

(2) Simulation step: Monte Carlo simulations are

used to reproduce the avalanche activity:
. The snowfalls are randomly generated: we

draw the lag s between two snowfalls from its

distribution pH and the snow fall intensityC3d

from pC.
. The probability release p(releasejC3d) is

estimated. A random number r is drawn
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from a uniform distribution p[0,1]. If r>p

(releasejC3d) there is an avalanche release. If

there is no release, we go back to the first

stage of the loop.
. The friction coefficient l is drawn from its

empirical distribution (this may be a difficult

task, involving specific methods such as the

rejection sampling algorithm, see Press et

al., 1992; Gilks, 1996; Robert, 2001). An

avalanche-dynamics model is used (such as

the Voellmy-like model presented here). The

dynamical features of the avalanche are

stored.
. The process is iterated as long as is required.

(3) Extreme avalanche estimation: since we have

generated long time series of avalanche data, it
Fig. 4. Avalanche map of Bessan
is possible to compute the period of return based

either on the marginal density of the run-out

distance or any combination of input/output

variables.

This scheme presents obvious similarities with

other Monte Carlo models (Harbitz et al., 2001;

Barbolini et al., 2003; Meunier and Ancey, in press).

Compared to these models, the presented framework

aims at reproducing the different processes from

snowfall to avalanche deposition, including meteo-

rological conditions, snowcover stability, and ava-

lanche dynamics. The sub-models are independent,

which makes it possible to easily adapt the frame-

work. For instance, if air temperature is assumed to

be a critical parameter in avalanche release, it is
s. n Cemagref-IGN (1992).
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possible to account for it in the simulations. Another

advantage of this framework is the possibility to vary

the path profile with time. Indeed, a number of

fatalities result not from the occurrence of a single

event, but from the close occurrence of several

events, each avalanche leading to a significant mod-

ification in the path profile. The deposit of a previ-

ous avalanche can smooth the path profile or deviate

the flux of another avalanche. Such an ingredient can

be taken into account here since each simulated

event is associated with an occurrence date.
4. Application

We have applied the proposed method to a series

of paths at Bessans in the Maurienne valley (French

Alps, Savoie). We have selected these sites because

they have experienced a large avalanche activity over

the last century. The avalanche database is called the

Enquête Permanente des Avalanches (permanent

avalanche survey). Fig. 4 is drawn from the Carte

de Localisation des Phénoménes d’avalanches

(CLPA) [avalanche phenomenon localization map]

and shows the avalanche paths surrounding Bessans

and Table 2 provides the main features of the

selected paths.

We will begin by presenting the typical results

obtained with a single path. We will then summarize

the results obtained on all the paths studied here. Only

the results related to the calibration step will be

presented in this section.
Table 2

References and main characteristics of the studied avalanche

EPA

ref.

CLPA

ref.

Orientation Event

number

Elevation

range (m)

12 41 south 109 1700–3000

13 35 south 59 1700–3000

14 34 south 65 1700–2700

15 33 south 95 1725–3250

16 32 south 127 1700–3100

17 30 south 101 1700–3050

27 14 north–west 68 1700–2900

38 22 north 52 1700–2825

46 28 south–east 56 1750–3250

Here are provided the EPA reference, the CLPA reference, the

overall orientation to the sun, the number of events occurred since

1901, and the range of elevation above the sea level.
4.1. Detailed analysis of a path

The test site is path EPA 16, in the south-eastern

face of Pointe de Claret. The path extends between

3150 and 1700 m in elevation for a total length

exceeding 2.1 km. The cross-section is very irregular:

the middle part of the path is confined in a steep and

curly gully while both the starting zone and the

deposition are wide unconfined surfaces. Since

1901, 127 avalanches have been documented. Fig. 5

reports the empirical cumulative distribution function

of the run-out distance together with the path slope

profile. The meteorological station (1710 m), 2.5 km

from the starting zone, has been recording snow data

since 1981. Using the peak over threshold method

(Coles, 2001), we have found that the probability of

observing a snowfall C3d over 3 days is:

pCðC3dÞ ¼ exp � 1

17:95

C3d � 47:5

18:6

	 

ð8Þ

The maximum 3-day snowfall is described by:

C3d = 47.5–18.6 ln(� ln(1� T� 1) (C3d expressed in

centimeters, T in years). The release probability was

found to be:

pðreleaseAC3dÞ ¼
expð�5:0450þ 0:039C3dÞ

ð1þ expð�5:0450þ 0:039C3dÞÞ
ð9Þ

The logit function is expressed as: ln( p(releasej
C3d)/(1� p(releasejC3d))) =� 5.0450 + 0.039C3d. The

Hosmer-Lemeshow test yields 0.69 while the Pear-

son test provides 0.98.

We have also examined other combinations of

meteorological parameters to provide better correla-

tions between the meteorological conditions (during

the days preceding the avalanche) and the avalanche

occurrence. As meteorological indicators, we have

used: the amount of snow fallen during the previous

3 days (not including the avalanche day) C3d, the

amount of snow fallen the day before the avalanche

C1d, the maximum temperature (recorded at 1700 m

during the avalanche day) Tmax, the average temper-

ature Tmean, the minimum temperature Tmin, the max-

imum speed velocity (recorded at 1700 m) vmax. For
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Fig. 5. Variation in the path slope as a function of the distance from the starting point (continuous line) along with the cumulative distribution

function of the run-out distance for path EPA 16.
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path EPA 16, the only parameter that increases the

statistical test scores is the wind speed (see Table 3).

For the period for which the meteorological

station has been in operation, it is possible to directly

find the values of the coefficient l for each ava-

lanche run recorded in the database. For each event,

we sought the amount of snow fallen over the
Table 3

Expression of the logit function for the different avalanche paths

Number Model Hosmer-

Lemeshow

Pearson

12 � 5.0450 + 0.0390C3d 0.5594 0.9505

� 3.9543 + 0.0470C1d 0.2402 0.9816

15 � 4.9590 + 0.0290C3d 0.6301 0.8015

� 3.9533 + 0.0397C1d 0.6743 0.8003

16 � 4.7180 + 0.0407C3d 0.6900 0.9894

� 3.8710 + 0.0420C1d +

0.1025vmax

0.7657 0.6896

17 � 4.8630 + 0.0420C3d 0.8196 0.9810

� 3.5570 + 0.0475C3d +

0.1211Tmean

0.8196 0.9810

�3.0327 + 0.0437C3d +

0.0902Tmin

0.8806 0.9931

� 2.9142 + 0.0545C1d +

0.1099Tmean

0.9054 0.9931

� 3.5570 + 0.0506C1d +

0.0906Tmin

0.5677 0.9073

27 � 4.7270 + 0.0460C3d 0.2696 0.9086

� 2.7651 + 0.0458C1d +

0.0811Tmin

0.7078 0.9523

46 � 4.9490 + 0.0280C3d 0.4909 0.8822

� 4.3274 + 0.0270C1d +

0.1128vmax

0.5860 0.4640
previous 3 days C3d in the meteorological database.

When this quantity was non-zero, we computed the

value l = Y� 1 (xstop,C3d;n). Here, 24 events were

recorded over the period 1980–2001 and 21 events

were consecutive to snowfalls. After deducing the l
values, we computed the cumulative distribution

function of l.
Fig. 6 shows the histogram of the values

obtained using the direct inversion method. The

histogram does not define a regular curve but a

step-shaped curve, with a first step at l = 0.31 and a

second step at l = 0.49. This implies that the prob-

ability density function pl is not a uniformly

varying function over the interval [0,1], but on the

contrary varies abruptly near the two values l = 0.31

and l = 0.49. Sensibility tests have shown that the

structural features of the l distribution depend a

great deal on the uncertainty on the run-out distance

but, on the whole, the Voellmy-like sub-model leads

systematically to a distribution of l values around a

finite set of values. We have also checked that the

results are not substantially influenced by the pri-

mary choice of the n value. This is a helpful result

in the present context: it shows that we can con-

sider n as an independent parameter that we can

adjust if we have information on the velocity

reached by the avalanches at certain points of the

path profile.

In parallel to the direct inversion method, we have

also applied the indirect method presented in Section

3.3. On the same plot (Fig. 6), the resulting probabil-

ity density function of the coefficient l has been



Fig. 6. Empirical probability density function of the coefficient l for path EPA 16. The histogram (thin line) has been obtained by numerically

solving the equation xstop = Y(C3d,ljn) with n= 800 m/s2 and binning values into categories. The solid bold line stands for the probability density

function evaluated using the indirect inversion method applied to the reduced set of run-out distances. The dashed line represents pl when all the

events of the database are considered. In inlet we have reported the probability density function of the coefficient l when all the events of the

avalanche database are considered and when the regularization operator in the Tikhonov method is the second-order difference operator (for

details, see Ancey et al., 2003).
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superposed to the histogram: the long-dashed line

represents the curve obtained with the full set of

run-out distances (1901–2002) while the solid lined

stands for the reduced set (1981–2002). Since the

distribution of l values is discrete, we have selected a

regularization operator that overly limits large fluctu-

ations (Ancey et al., 2003). The choice of another

operator substantially modifies the final result; the

inlet in Fig. 6 shows the sensitivity of pl(l) when the

regularization operator used in the Tikhonov method

is replaced by a denoising process, which tends to

smooths out the peaks in the l distribution.

An encouraging result is that the indirect inversion

method provides l values that are fairly close to those

obtained by directly solving l = Y� 1(C3djn). The

main difference appearing in Fig. 6 is that the first

peak at l = 0.31 is found with a wider foot. Differ-

ences between the curves obtained using the indirect

inversion method on the full and reduced samples are

also small; the main difference is that the wide peak

around l = 0.31 observed for the reduced sample

(1980–2002) is split into two peaks for the full

sample (1901–2002), the first at l = 0.21 and the

second at l = 0.31.
4.2. Summary of results obtained on other paths

The same exercise was repeated for other ava-

lanche paths above Bessans. Table 3 summarizes the

expressions of the logit function for each path. Dif-

ferent combinations of meteorological parameters

have been studied. Here we have reported the combi-

nations that yield the best scores (Hosmer-Lemeshow

and Pearson tests).

It is seen that close avalanche paths with similar

characteristics do not respond in the same way to

meteorological conditions. For instance, after a snow-

fall of 100 cm (C3d = 100 cm), the release probability is

11% for path EPA 15 against 34% for path EPA 16.

This response difference is expected because the topo-

graphic features of the starting zone play a key role

(Maggioni and Gruber, 2003). In Table 4, we have

reported the l values corresponding to peaks in the l
probability density function. The l distribution differs

from one path to another one, but note that for 6 (out of

9) paths the first peak is located at l1 = 0.16–0.17,

which shows a certain consistency of the results and a

regional character for l1. There are, however, three

paths exhibiting a slightly different behavior. For



Table 4

l values corresponding to the first, second, and third peak in the

probability density function of l

EPA ref. l1 l2 l3

12 0.24 0.31 0.34

13 0.17 0.24 0.28

14 0.17 0.39 0.43

15 0.17 0.21 0.26

16 0.20 0.31 0.36

17 0.16 0.26 0.41

27 0.16 0.41 0.47

38 0.18 0.24 0.47

46 0.16 0.27 0.32

Results obtained using the indirect inversion method over the full

sample (1901–2002). For all avalanche paths, we took n= 800 m/s2.
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instance, for similar paths EPA 12 and 15, the first peak

in the probability distribution function of l is located at

l = 0.17 for EPA 15 against l = 0.24 for EPA 12.

Different explanations can be put forward. First of

all, as explained in Section 2.1, the friction coefficient

could exhibit a strong dependence on avalanche vol-

ume (Ancey, in press) and, in the meantime, could be

weakly dependent on C3d because avalanche volume

results from many other parameters such as starting-

zone area and features, snow entrainment along the

path, snowcover instability, etc. Second, the difference

in the l values between paths EPA 12 and 15 (despite

their apparent similarities) may be a consequence of the

difference in their release probability. In that case, this

would mean that important processes taking place in

the starting zone have been discarded in our treatment.

Other formulations (e.g. Bozhinskiy et al., 2001)

have admitted that the probability density function of

l is a regularly increasing function. This assumption

is not supported by the results presented here. On the

contrary, the present work demonstrates that, in a

SBG-like model, the coefficient l is a discrete random

variable rather than a continuous random variable.

In the present formulation of the model, there is

little hope to arrive at a unique probability distribution

function of the mechanical parameter l. The model

can be applied to paths for which past events and

meteorological conditions are known but not to paths

for which no information is available. In this respect,

if we remind that one of our objectives is the search of

the largest applicability in engineering, the gain might

be seen as low since there is not a systematic regional

character in l, but the results presented in Table 4 are
not too bad since 66% of the paths exhibit a very close

l1 value. Further research is needed to better under-

stand the behavior discrepancy of some paths in line

with their topographic features.
5. Concluding remarks

In this paper, we have explored the possibility of

updating the SBG method by using it in a conceptual

framework with the objective of mimicking avalanche

activity in a given path over a long period. Thus, our

approach lies somewhere between purely determinis-

tic (physically based) models and statistical (black

box) models and, in this respect, is not very different

from the conceptual catchment models used in hy-

drology. Since our primary objective is to compute the

run-out distance of extreme avalanches, our use of a

Voellmy model appears licit; it is, however, unclear

whether the method can also be applied to compute

avalanche velocities and pressures with the same

degree of confidence since no field data concerning

these variables have been used. At this stage, our

results do not support the idea according to which the

friction coefficient l is a general parameter indepen-

dent of the site; the friction coefficient l is likely to be

independent of the amount of snow fallen during the

days preceding the avalanche release. This can merely

mean that the C3d variable is not the most appropriate

indicator of the mobilized avalanche volume. More-

over, the coefficient l can be approximated as a

discrete random variable if, in the avalanche-dynam-

ics model, we use the Voellmy frictional force.

Compared to other inversion methods (e.g.,

Bayesian approaches), the probabilistic method pre-

sented here used for fitting parameters limit the

amount of a priori information on the system param-

eters since only one parameter remains unevaluated

(the friction coefficient n). However, they do not

cope with uncertainty in the run-out distance distri-

bution. This is probably the major drawback of these

two methods since the l probability density function

is affected to a varying extent by the uncertainty on

xstop. When discussing the intrinsic nature of the

coefficient l, it will be necessary to determine

whether the disparities in the l distributions at

different sites reflect the uncertainty of the run-out

distance or a regional effect.
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Compared to classic methods used in zoning, the

proposed framework benefits from providing proper

estimations of the run-out distance of long-return

period avalanches for site where both meteorologi-

cal and avalanche databases have been collected

data over a sufficiently long time. The fact that

the l distribution has not a systematic regional char-

acter could be explained by one of the following

explanations:

� Our framework is not refined enough (notably in

the relationship between meteorological conditions

and avalanche release).
� The Voellmy expression of the frictional force is too

crude. In a back-analysis of 15 well-documented

events in the world, we do not find any dependence

of the frictional force on the square velocity (Ancey

and Meunier, 2004). Moreover, if we set n = 0 (in

other words, the Voellmy model is replaced by a

Coulomb model in the frictional force expression),

significant changes in the l distribution are obtained

(Ancey, in press).
� It is necessary to use more sophisticated element of

comparison to test the similarities between two

paths. As suggested by Barbolini et al. (Barbolini

and Savi, 2001; Barbolini et al., 2003), paths of a

same mountain range have to be categorized into

different groups according to certain topographic

features. Comparison between paths would make

sense only if paths belong to the same group.
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Appendix A

We consider an avalanche with a mass m. We

consider an idealized path profile along which the

avalanche is released without velocity. The path

profile can be split into two parts:

� the upper part is a straight line inclined at an angle

h with respect to the horizontal. The length is L;
� the lower part is a horizontal semi-infinite line.

The lag between two avalanches is assumed to be

constant and corresponds to an arbitrary unit of time.

The more realistic case, where the time interval

between two releases is randomly distributed, can be

easily addressed using hydrological methods (Coles,

2001; Reiss and Thomas, 2001).

The mass of the avalanche varies from one event to

another. We denote pm the probability density function

of the mass. An avalanche is assumed to experience

two types of force from the plane surface:

� a Coulombic friction force with a coefficient f,
� a dynamic force which is a quadratic function of

the velocity: av2, where a is a constant coefficient.

The friction coefficient ranges typically from 0 to 1;

here we also assumed that the value of f varied from

one event to another according to a probability density

function pf. The basic problem is the following: given

the probability density functions pm and pf, which are

the probability density functions of variables pertain-

ing to avalanche motion?

To that end, it is first necessary to compute the

value of these variables for a given set (m, f ). Here we

will focus on two variables of interest: the kinetic

energy at a given point A and the run-out distance. It

can be easily shown that the kinetic energy at A is:

EA ¼ m2bðtanh � f Þd ð10Þ

where b = g cos h/(2a) and d(m) = 1�e�2aL/m while

the run-out distance is:

xstop ¼ � m

a
lnðcoscÞ ð11Þ

where c ¼ arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2adðmÞbðtanh � f Þ=ðfgÞ

p
. We are

now looking for the probability density functions
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associated with the kinetic energy at A and the run-

out distance xstop. Referring to these quantities to as

Z and to F as the function relating Z to f and fm, we

can express the marginal density distribution as:

PZðZÞ ¼
Z

dm

Z
df pf ;mðf ;mÞP½XAf ;m	

¼
Z

dm

Z
df pf ;mdðZ � Fðf ;mÞÞ

where pf,m is the joint density probability of f and m

and P[Xjf,m] is the conditional probability of observ-

ing Z given f and m. The strategy for integrating the

last equation is to use (i) the independence of

parameters f and m and (ii) the transformation

(EA,m) to (f,m) to remove the Dirac term. The

Jacobian of this transformation is:

JE ¼ AEA

Af

����
���� ¼ mb2d

since Bm/Bf = 0. For the run-out distance, we find:

Jx ¼ ABxstop=Bf A ¼ mbdtanhðf 2ðg � 2bdaÞ

þ 2f bdatanhÞ�1

For the kinetic energy EA, we obtain the following

marginal density probability:

pEðEAÞ ¼
Z

J�1
E pmðmÞpf ðtanh � EA=ðm2bdÞÞdm

ð12Þ

while for the run-out distance, we obtain:

pxðxstopÞ ¼
Z

pmðmÞpf ðf ðxstop;mÞÞJ�1
x dm ð13Þ

A new integration leads to the cumulative distri-

bution function, that is, the probability that the vari-

able at hand does not exceed a given value:

PE(E) = Pr(EAVE). The probability that the value E

is exceeded is then 1�PE(E). An alternative way of

expressing this is to say that, on average, the time

span for observing an avalanche in which the value E

is exceeded is n=(1�PE(E))
� 1.
In our context, where the interval of time corre-

sponds to a fixed arbitrary unit of time, this number

defines a characteristic time that is usually referred to

as the period of return. Thus, here, TE =(1�PE(E))
� 1

is the average time required to observe an avalanche

in which E is exceeded. The same definition applies to

other variables in the problem and thus there are as

many periods of return as variables in the problem.

Likewise, the order of magnitude of TE does not

match that of Tx. Indeed, using Eqs. (10) and (11),

then eliminating the friction coefficient, we deduce

the variation in the run-out distance as a function of

the mass and the kinetic energy at A:

xstopðm;EAÞ

¼ � m

a
ln cos arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2aEAdðmÞb

ðdðmÞm2btanh � EAÞg

s !

ð14Þ

From this equation it can be seen that for the

distance to be a real, the kinetic energy EA cannot

exceed a threshold Ec: EAVEc (m,h) = d(m)m2btanh.
For a given value of the kinetic energy and under the

condition E0VEc, Eq. (14) defines a diffeormorphism

from R+ to R+, which we denote X: xstop =X(m). A

direct consequence is that the conditional probability

of observing a given run-out distance (knowing that

the kinetic energy at A is EA) is given by the

expression:

paðxstopAEAÞ ¼
pmðX�1ðxstopAEAÞÞ
Ẋ ðX�1ðxstopAEAÞÞ

ð15Þ

where Ẋ denotes the derivative of X according to m.

Thus the two density probability functions pE and

px are linked together through the following rela-

tionship: pxðxstopÞ ¼ mEAVEc
paðxstopAEAÞpEðEAÞdEA.

Using the fact that ṗE = ṪETE
� 2 (where ṪE = dTE/

dE), we finally deduce the relationship between

the return periods TE and Tx:

Tx ¼
 
1�

Z
Rþ

dxstop

Z
EAVEc

paðxstopAEAÞṪEðEAÞ


 T�2
E ðEAÞdEA

!�1

ð16Þ
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Thus, it is found that the return period associated

with the run-out distance is linked to the return period

related to kinetic energy, but in a non-trivial way due

to strong non-linearity in the problem. It follows that

in this example, there is little hope of finding a single

variable on which a consistent return period can be

computed.

What can now be done if we still want to define a

return period? Different strategies can be applied to

define a period of return of an avalanche. A first

strategy is to directly relate this period to that

corresponding to an input parameter of the problem

(e.g., the mass or the friction coefficient); that is in

fact the procedure followed in the SBG method. But

such a strategy is not very helpful if one is interested

in what happens in the lower part of the track (here on

the horizontal plane). A second strategy involves

considering a single variable such as kinetic energy

(or impact pressure) or the run-out distance. However,

a strategy of this kind would unavoidably produce

paradoxical results in that under some circumstances,

the avalanche can move over a very long distance

with a low kinetic energy (typically for small mass

and friction coefficient values) and under other con-

ditions (typically for large mass and friction coeffi-

cient values) its motion can be characterized by a

large kinetic energy value at A and a short run-out

distance. This problem can be avoided by considering

the joint probability of observing both a run-out

distance and kinetic energy (or a conditional proba-

bility of observing a run-out distance given the energy

at a point): TE,x=(1�PE,x(EA,x))
� 1. In this case, a

major problem is that there is infinity of couples

(EA,x) associated with the same return period of an

avalanche.
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