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bstract

The objective of this review is to examine how the concept of plasticity is used in geophysical fluid dynamics. Rapid mass movements such
s snow avalanches or debris flows involve slurries of solid particles (ice, boulder, clay, etc.) within an interstitial fluid (air, water). The bulk
ehavior of these materials has often been modeled as plastic materials, i.e., a plastic material yields and starts to flow once its stress state has
ignificantly departed from equilibrium. Two plastic theories are of common use in fluid dynamics: Coulomb plasticity and viscoplasticity. These
heories have little in common, since ideal Coulomb materials are two-phase materials for which pore pressure and friction play the key role in the
ulk dynamics, whereas viscoplastic materials (e.g., Bingham fluids) typically behave as single-phase fluids on the macroscopic scale and exhibit
viscous behavior after yielding. Determining the rheological behavior of geophysical materials remains difficult because they encompass coarse,

rregular particles over a very wide range of size. Consequently, the true nature of plastic behavior for geophysical flows is still vigorously debated.
n this review, we first set out the continuum-mechanics principles used for describing plastic behavior. The notion of yield surface rather than
ield stress is emphasized in order to better understand how tensorial constitutive equations can be derived from experimental data. The notion
f single-phase or two-phase behaviors on the macroscopic scale is then examined using a microstructural analysis on idealized suspensions of
pheres within a Newtonian fluid; for these suspensions, the single-phase approximation is valid only at very high or low Stokes numbers. Within
his framework, the bulk stress tensor can also be constructed, which makes it possible to give a physical interpretation to yield stress. Most of
he time, depending on the bulk properties (especially, particle size) and flow features, bulk behavior is either Coulomb-like or viscoplastic in
imple-shear experiments. The consequences of the rheological properties on the flow features are also examined. Some remarkable properties of
he governing equations describing thin layers flowing down inclined surfaces are discussed. Finally, the question of parameter fitting is tackled:
ince rheological properties cannot be measured directly in most cases, they must be evaluated from field data. As an example, we show that the

oulomb model successfully captures the main traits of avalanche motion, but statistical analysis demonstrates that the probability distribution of

he friction coefficient is not universal.

2006 Elsevier B.V. All rights reserved.
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Nomenclature

a particle radius
C torque
d tensor of strain rate
D2 second invariant of the strain-rate tensor
f friction coefficient
f yield function
g gravity acceleration
h flow depth
h0 position of the yield surface
H characteristic function
I1 first invariant of the stress tensor
I2 second invariant of the stress tensor
J2 second invariant of the strain-rate tensor
k unit normal
M reduced torque
mp particle mass
n density number
p pressure
P∗ pressure scale
Re Reynolds number
Rep particle Reynolds number
R1 radius of the inner cylinder
s extra-stress tensor (or deviatoric stress tensor)
s distance between the surface of two particles
St Stokes number
S dimensionless shear stress
t time
T temperature
u velocity
u′ velocity fluctuation
uf fluid velocity
up particle velocity
U∗ velocity scale
V volume of control

Greek letters
δ phase (Lode’s) angle
ε depth-to-height ratio
η bulk viscosity
γ̇ shear rate

Γ dimensionless rotational velocity
κ coefficient of permeability
μ dynamic viscosity
Ω rotational velocity of the inner cylinder (Couette)
φ solid concentration
φc critical solid concentration (percolating network)
φf solid concentration in fine (colloidal) particles
φm maximum solid concentration
φt total solid concentration (for bimodal mixtures)
Ψ particle energy potential
ρ density
ρf fluid density
ρp particle density
ρ̄ bulk density
ρ̄′ buoyant bulk density
σ extra-stress tensor
σ(f) solid contribution to the fluid stress tensor
σ(p) solid contribution to the bulk stress tensor
σf extra-stress tensor for a fluid phase
σp extra-stress tensor for a solid particle
σ normal stress
σ′ effective normal stress
τ shear stress
τb bottom shear stress
τc yield stress
ϕ bulk friction angle
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ζ similarity variable

. Introduction

A number of geophysical flows involve rapid gravity-driven
ass movements of solid particles within a fluid. Typical ex-

mples include snow avalanches (Fig. 1) [5], debris flows (Fig.
) [129], lava flows (Fig. 3) [103], and submarine avalanches
88,105]. These flows usually take the appearance of viscous
uids flowing down a slope and this observation has prompted

he use of fluid-mechanics tools for describing their motion.
owever, the impediments to a full fluid-mechanics approach
re many: a wide range of particle size (often in the 10−6 to
m range), composition that may change with time and/or po-

ition, ill-known boundary conditions (e.g., erodible basal sur-
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Fig. 1. Huge avalanche deposit in the Tarentaise valley (France). The chalets at
the top left corner gives a scale. The deposit thickness was approximately 10 m
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n the runout zone. The deposit width was approximately 300 m. This avalanche
ccurred in March 1995 after heavy snowfalls (Courtesy of M. Margot, Peloton
e Gendarmerie de Bourg-Saint-Maurice).

ace) and initial conditions, time-dependent flows with abrupt
hanges (e.g., surge front, instabilities along the free surface),
tc. Even with the construction of specifically devoted large
heometers [62,67,158,190], testing the rheometrical properties
f samples collected in the field remains difficult. To give ex-
mples of materials involved in rapid mass movements, Fig. 4
eports different types of snow observed in avalanche deposits.
ecause of particle size and thermodynamic alteration (snow

s highly sensitive to changes in air temperature), using clas-
ic rheometers with these materials does not make sense. All
hese difficulties pose great challenges in any fluid-mechanics
pproach for modeling rapid mass movements and have given
mpetus to extensive research combining laboratory and field ex-
eriments, theory, field observation, and numerical simulations
120,126].

The idea of plastic behavior appeared very early in the en-
ineering literature to characterize the rheological behavior of

aterials involved in rapid mass movements [132,174]. At the

ery beginning, this idea was used to explain why bulk mate-
ials behave like solids when they are at rest and why, under

ig. 2. Deposit of a debris flow on an alluvial fan in the Pelvoux valley (France).
he house in the background gives an indication of scale. The deposit thickness
as approximately 30 cm. Photograph taken by the author in Pelvoux (France)

n July 1998.
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ig. 3. Lava deposit Montaña Blanca, Teide Peak, Tenerife. The deposit width
nd length were approximately 50 and 100 m, respectively. Courtesy of Dr. E.
ardou, University of Lausanne.

ome circumstances, they yield and start to flow like fluids. In
he meantime, over the last century, plastic behavior was exten-
ively studied for a wide range of materials including metals,
lloys, concrete, soils, ice, rocks, fiber composites, and many
ther brittle materials [48,110,169,201,234].

In soil mechanics, soils and geomaterials are most often satis-
actorily modeled within the framework of elastoplasticity with
strain softening/hardening yield surface and the non-associate
ow rule. Research on plastic behavior takes its roots in the
ioneering work of Coulomb [63], who described the stability
f piles and embankments, and in the seminal paper of Mohr
173], which contained the fundamentals of stress analysis.
ince then, both experimental and theoretical results have helped
larify the notion of plasticity by distinguishing elastic limit,
rreversible deformation (i.e., plastic deformation), dilatancy,
ielding (critical state), shear localization, and post-failure be-
avior [76,86,204,208,217,234]. Specific analytical tools based
n incremental mechanics and micromechanics analysis have
een used to explain the relationships between bulk and particle
ehaviors [60,176,234].

In the rheology of concentrated suspensions, the notion of
lasticity is far less consensual. Historically, this notion is in-
imately associated with the name of Bingham, who not only
oined the word “rheology”, but also proposed the first empiri-
al law including a yield stress in 1922: the Bingham law [43].
ontrary to solid mechanicians, for whom plasticity means loss
f reversibility in material deformations, fluid rheologists have
elated plasticity to solid/fluid transition: the yield stress of a
olid would be the stress at which the solid first starts to deform
ontinuously, i.e. to flow. In this perspective, the yield stress
arks the limit between solid-like (assumed to be elastic) and
uid-like (viscous) behaviors. The review by Bird et al. [44]
as documented a large number of everyday-life materials that
elong to the family of viscoplastic fluids: food products (e.g.,
ce cream, mayonnaise), blood, industrial slurries, household
onsumer products (e.g., lotions, spreads), etc. At the very be-
inning, defining the yield stress as the threshold for incipient

otion was widely accepted. A consistent tensorial formulation

f the phenomenological Bingham law was proposed by Prager
115,196] and Oldroyd [183] in a way that was very close to the
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ig. 4. Different types of snow observed in avalanche deposits. (a) Block of wet
ourse of the avalanche (the heap height was approximately 2 m). (c) Ice balls in
he typical diameter was 10 cm. (d) Sintered snow forming broken slabs (typica

reatment done for other continua at the same time (before the
950s). After the 1950s, the concept of plasticity evolved differ-
ntly in solid and fluid mechanics. While new concepts such as
onassociate flow rule or hardening emerged in solid mechanics
ver the period from 1950 to 1970, nothing seemed to modify
he belief of fluid rheologists in the yield-stress concept until
985, when Barnes and Walters stated in a provocative paper
31] that the yield stress does not exist. This paper was the start-
ng point of a long and intense debate within the fluid rheology
ommunity on the meaning of yield stress, with two tentative
onclusions:

For low shear rates, evidence has been accumulating, show-
ing that yielding and thixotropy are tightly interconnected
[28,71,72,74]. Indeed, yielding is associated with several
complex processes such as changes in the particle ar-
rangement and/or the dynamics of particle contact, which
are history-dependent processes. Several phenomenological
models have been proposed to describe yielding in a vis-
coplastic fluid; most constitutive models include a kinetic
equation governing the variations in a structural parameter
(i.e., describing particle arrangement within the suspension)
[41,192].
With increasing shear rates, the processes involved in the ma-
terial yielding are of decreasing importance. It is then possible

to define an apparent yield stress as the intersect of the flow
curve and the axis γ̇ = 0. Although this extrapolated yield
stress differs from the values measured in quasi-static condi-
tions [58,59], it can be easily and robustly evaluated, which

o
t
o
w

(size: 1 m). (b) Slurry of dry snow including weak snowballs formed during the
d in a huge avalanche coming from the North face of the Mont Blanc (France);
th: 40 cm, typical thickness 10 cm).

impelled some authors to state that yield stress was an engi-
neering reality [18,49,106]. Several empirical laws including
the Bingham, Casson, and Herschel–Bulkley are commonly
used to describe the flow curve [44].

It is worth noting that in fluid rheology, the question of plas-
icity boils down to the definition of yield stress and most vis-
oplastic laws are given in a scalar form and are valid for simple-
hear flows. Since Prager’s and Oldroy’s derivation, little work
as been done on the tensorial formulation of constitutive equa-
ions for viscoplastic materials and the notion of yield surface
i.e., the three-dimensional generalization of the yield stress in

stress space) [96]. To a large extent, this can be explained
y how difficult it is with fluids to properly run experiments in
ow geometries other than simple-shear flows. The other reason

s that it was not until the 1980s that it was possible to carry
ut experiments at very low shear rates and thus to explore the
olid/fluid transition [29].

In geophysical fluid mechanics, there have been many at-
empts to describe the rheological behavior of natural materi-
ls [22,125]. However, since rheometrical experiments are no
ay easy, scientists have to use proxy procedures to charac-

erize the rheological behavior of natural materials. Interpret-
ng the traces of past events (e.g., shape of deposits), running
mall-scale experiments with materials mimicking the behavior

f natural materials, and making analogies with idealized ma-
erials are common approaches to this issue. Because of a lack
f experimental validation, there are many points of contention
ithin the different communities working on geophysical flows.
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(i.e., the so-called dam-break problem and kinematic-wave ap-
proximation).

Finally, in Section 5, we will focus our attention on field
evidence. Interpreting the deposits of geophysical flows may
sometimes be instructive. A very common procedure is to as-
sume the form of the constitutive equation and then to adjust the
rheological parameters by matching certain flow features (e.g.,
the run-out distance) and field measurements. On rare occasions,
using velocity measurements makes it possible to derive rheo-
logical information. Statistical analysis can be used to check the
robustness of parameter fitting.

The reader can also refer to other review papers dealing with
constitutive equations and geophysical flows. In the context of
geophysical flows, Savage studied granular flows [211]. Hutter et
al. realized that most constitutive equations used for debris flows
were given in a scalar form (simple-shear flow). These authors
provided a unified framework based on continuum mechanics in
order to classify and generalize the existing phenomenological
laws [125]. More recently, Dartevelle reviewed the processes
and related constitutive equations for granular geophysical flows
[75].

2. Theoretical concepts

2.1. Continuum description

Plasticity and visco-plasticity are closely related to the pio-
neering work done by Coulomb [63] and Bingham [43], respec-
tively. In the earliest descriptions of simple-shear flow experi-
ments involving bulk materials, several concepts were drawn,
which are summarized here.

• Shear-rate dependence: in the Coulomb description, the shear
stress τ is independent of the shear rate γ̇ , whereas a Bingham
fluid exhibits a linear dependence on the shear rate γ̇ (see Fig.
5).

• Normal-stress dependence: the shear stress τ is a linear func-
tion of the normal stress σ for a Coulomb material, whereas
the shear stress τ is independent of the normal stress for a
Bingham fluid.

• Two-phase flow effects: a Bingham fluid typically behaves
like a one-phase homogeneous material, i.e., a single consti-
tutive equation is sufficient to describe the bulk properties. In
contrast, a water-saturated Coulomb material is a two-phase
C. Ancey / J. Non-Newtonia

typical example is provided by the debate around the most ap-
ropriate constitutive equation for describing sediment mixtures
obilized by debris flows [127]: a certain part of the debris-
ow community uses soil-mechanics concepts (Coulomb be-
avior) [128,129], while another part prefers viscoplastic models
65]. A third category merges the different concepts from soil
nd fluid mechanics to provide general constitutive equations
32,55–57,179,180,227].

The objective of this review is to examine how the concept of
lasticity is used in geophysical fluid mechanics. In the appli-
ations, we will focus on rapid gravity-driven mass movements
uch as avalanches and debris flows. We will first present the
heoretical concepts underpinning plasticity theory in Section 2.
n Section 2.1, we will explain, at a basic level, how a plastic flow
ule is built using the principles of continuum mechanics. Em-
hasis will be placed on the differences between Coulomb plas-
icity and viscoplasticity concerning not only the yield surface,
ut also the one-phase/two-phase character of flows associated
ith a plastic behavior. After this description of plasticity on the
ulk scale, we will examine the physical origins of plasticity by
xamining what happens on the particle scale. In Section 2.2,
e will start by deriving the equations of motion for an ideal-

zed suspension made up of spherical equal-size particles in a
ewtonian fluid. We will explain how the bulk stress tensor can
e defined from the particle behavior. In Section 2.3, we will
rovide a physical interpretation of yield stress for colloidal and
oncolloidal systems, while in Section 2.4 we will derive the
onstitutive equations depending on the flow regime. In Section
.5, we will outline the problems related to particle suspensions
hen the particle-size range is very wide, which is the usual case

or geophysical flows.
In Section 3, we will overview experiments focusing on the

heological determination of natural materials. A critical point
ompared to model suspensions is that the diversity of particle
izes and types gives rise to odd behaviors. We will especially
ddress the key issue of viscoplastic transition: when we in-
rease the fine-fraction content in a coarse-grained suspension,
e observe a radical change in behavior, marked by a transition

rom a Coulomb frictional regime to a viscoplastic regime. Both
heometrical and flume experiments provide evidence for this
ransition. We will also show that for poorly sorted materials,
he rheological properties are strongly time-dependent and, de-
ending on the typical flow timescale, the bulk can exhibit either
oulomb-like or viscoplastic properties.

In Section 4, we will examine how rheological information
an be used to derive the equations of motion for free-surface,
ravity-driven flows. As the governing equations express the
alance between inertia, pressure gradient, and friction, differ-
nt regimes may be achieved depending on the relative strength
f each process relative to the others. Attention is paid to slow
ows, for which the pressure gradient is balanced by viscous
issipation. In this case, analytical asymptotic solutions can be
erived. We will also spend some time on fast flows, for which

here is no dominant term in the governing equations. In that
ase, the Saint-Venant approach (i.e., depth-averaging the equa-
ions of motion) can be used to simplify the equations of motion.
nalytical solutions will be derived for some flow geometries

Fig. 5. Flow curve: material response for a Coulomb material (solid line) and
Bingham fluid (dashed line) when the material undergoes a simple shear flow.



n Fluid Mech. 142 (2007) 4–35 9

•

t
e
a
e
f
i
d
r
c
i
n
q
s
M
e
v
o
p
i
n
t

•

•

Fig. 6. Principal-stress space and interpretation of the representation in terms
of invariants. (a) Representation in a three-dimensional space. The trisectrix
represents equilibrium states. It has n = (1, 1, 1)/

√
3 as the unit vector in the

stress space. The distance OP is then given by computing OM · n = I1/
√

3.
The deviatoric stress is the departure from equilibrium state. It is represented
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√
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material, with a separate response from the interstitial fluid
and the solid phase. This observation leads to splitting the
normal stress as an effective stress σ′ and pore pressure p, a
decomposition known as Terzaghi’s decomposition principle
[182,234]:

σ = p + σ′. (1)

Yielding: when the shear stress is below a threshold τc,
Coulomb and Bingham materials behave like rigid or elas-
tic bodies. For shear stresses in excess of τc, the material
yields and starts flowing

γ̇ > 0 ⇒ τ = τc + μγ̇n,

γ̇ = 0 ⇒ τ ≤ τc,
(2)

with μ = 0 and τc = σ′ tan ϕ for a Coulomb material with
tan ϕ the bulk friction angle, whereasn = 1 and τc = constant
for a Bingham fluid. For viscoplastic materials, there are al-
ternative phenomenological expressions such as the Casson
model or the Herschel–Bulkley model [44].

Bingham and Coulomb materials are idealized representa-
ions of true materials. They have little in common except for the
xistence of a yield stress that separates a rigid/elastic domain
nd a fluid domain. These one-dimensional models are quite
asy to understand and require little mathematics to be properly
ormulated. In contrast, their three-dimensional representation
n the form of a tensorial expression needs much more work. In-
eed, there are a number of rules that must be checked for a tenso-
ial constitutive equation to be considered as admissible from the
ontinuum-mechanics point of view [123,184,230]. The most
mportant principle is material indifference: a physical law does
ot depend on a particular frame of reference. This leads to using
uantities that remain invariant under any frame change. For in-
tance, when referring to a particular stress state at a given point

within the bulk, we can use the principal stresses (i.e., the
igenvalues σi of the stress tensor at M) or the stress-tensor in-
ariants. Principal stresses and stress-tensor invariants are both
bjective quantities, but stress-tensor invariants are more appro-
riate to interpreting the stress state. There are three stress-tensor
nvariants that can be defined in various ways since any combi-
ation of invariants is in turn an invariant quantity. To interpret
hem physically, we define them as follows [78,234]:

The first invariant I1 = tr σ = σ1 + σ2 + σ3 represents the
mean stress multiplied by 3 (|OP| = I1/

√
3 in Fig. 6). Point P

is the orthogonal projection of the stress-state point M onto the
trisectrix. For a simple fluid, the first invariant coincides with
the fluid pressure (this statement does not hold for Coulomb
materials).
The second invariant I2 = (1/2)(tr(σ2) − (trσ)2/3) = (1/2)
tr(s2) can be interpreted as the deviation of a stress state

from the mean stress state (|PM|2 = 2I2 in Fig. 6) and is
accordingly referred to as the deviator. We have introduced
s = σ − I11/3, which is called the extra-stress tensor or
stress deviator.

a
i
p
i

rthogonal projection of the principal axes onto the deviatoric plane. The phase
ngle δ is reported.

The third invariant I3 = (1/3)tr s3 represents the angle in the
deviatoric plane (i.e., the plane orthogonal to the trisectrix at
M) of the vector PM with respect to the projection of a fixed
direction onto the deviatoric plane. This invariant is some-
times called the phase or Lode’s angle cos2 3δ = 27I2

3/(4I3
2 ).

et us assume that we apply an isotropic stress state to the
aterial. In the stress space, the stress point is a point M along

he trisectrix σ1 = σ2 = σ3. In this case, the material never
ails. If we now carry out simple shear experiments (see Fig. 5),
he stress tensor has the following components and invariants

=

⎡
⎢⎣

σ τ 0

τ σ 0

0 0 σ

⎤
⎥⎦ , I1 = 3σ, I2 = τ, and I3 = 0,

n a Cartesian frame (x, y). This means that we force the material
o depart orthogonally from the line σ1 = σ2 = σ3, when apply-
ng a deviatoric stress τ to the material. According to the exper-
mental observations, if the shear stress exceeds a critical value,
he material yields. The yielding condition must then be ex-
ressed, at least, as a function of the second stress-tensor invari-

nt I2. In the stress space (σ1, σ2, σ3), there is a surface delimit-
ng two possible mechanical states of a material element, as de-
icted in Fig. 7. The surface is referred to as the yield surface and
s usually represented by an equation in the form f (I1, I2, I3) =
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ig. 7. Yield surface delimiting two domains: f < 0 solid (rigid or elastic) do-
ain, f > 0 fluid domain. The equation f = 0 represents the yield surface.

, where f is called the plastic rule. When f < 0, behavior is gen-
rally assumed to be elastic or rigid. When f = 0, the material
ields. When f > 0, the material behaves like a fluid.

In plasticity, the simplest yield criterion is the von Mises
riterion, stating that yield occurs whenever the deviator exceeds
critical value (whose root gives the yield stress):

(I2) = √
I2 − τc.

s depicted in Fig. 8, the yield surface is a cylinder of radius
c centered around the axis σ1 = σ2 = σ3. The simplest plastic
ule consistent with the one-dimensional Coulomb law is the
rucker–Prager rule, for which the yield surface is a cone around

he trisectrix σ1 = σ2 = σ3, with its apex at the origin O

(I1, I2) = √
I2 − kI1,

ith k = (1/3) sin ϕ > 0 a constant. In the Drucker–Prager rule,
he yield surface is axisymmetric. There are more complicated
ules, in which the third invariant plays a role, such as the Mohr–
oulomb plastic rule, the representation of which in the stress

pace is an irregular hexagonal pyramid [234]:

(I1, I2, I3) = √
I2

[
sin
(
δ + π

3

)
k
√

3 cos
(
δ + π

3

)]
− kI1,

here we have expressed the third invariant in terms of Lode’s
ngle δ.
We have so far answered to the question: for which stress
onditions does the material yield? We now have to respond to
he question: what does it happen after yielding? We assume
hat, after yielding, the following principles hold.

ig. 8. Representation of the yield surface in the principal stress space. (a) Von
ises yield surface and (b) Drucker–Prager yield surface.
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(i) Coaxiality principle: the principal directions of the extra-
stress and strain-rate tensors coincide since the material
moves in reaction to the solicitation.

ii) Associate normal flow rule: the strain-rate tensor is directly
proportional to the surplus of stress, that is, the distance
between the point representing the stress state and the yield
surface, i.e.

√
I2 − τc.

ranslated into mathematical terms, principles (i) and (ii) lead to:
= λ(

√
I2 − τc)∇f , with λ a proportionality coefficient (La-

rangian multiplier), when f > 0. We obtain

d = λ

2

(√
I2 − τc

) s√
I2

when f > 0,

= 0 when f ≤ 0.

(3)

Note that in plastic potential theory, we could also imagine
ther flow rules, e.g., once the material has yielded (f = 0),
he deformation derives from a potential F that differs from f;
n that case, the flow rule is said to be non-associate and d =
∇F . Here, we have used the simplest arguments to reply to

he question above, as Prager [115,196] and Oldroyd [183] did
or Bingham fluids. It should, however, be remembered that the
ehavior of true materials is usually much more complicated
153].

We can invert Eq. (3) by computing d · d and then taking the
race. We obtain tr(d2) = λ2(

√
I2 − τc)2/2. Defining the second

nvariant of the strain-rate tensor as J2 = (1/2)tr(d2), we then
erive

= 1

λ

√
J2 + τc√

J2
d when f > 0.

or this equation to be consistent with the phenomenological
elation (2), we must set λ−1 = μ. We finally obtain the consti-
utive equation in a tensorial form for a Bingham fluid

s =
(

2μ + τc√
J2

)
d when f > 0,

s = 0 when f ≤ 0.

(4)

The same exercise can be repeated for the Drucker–Prager
ield surface. We obtain

= λ

2

(
s√
I2

f − 2fk1
)

when f > 0,

ith f = √
I2 − kI1. We can notice that the first invariant of

he strain-rate tensor is nonzero since J1 = −trd = 3fλk > 0,
hich implies that the bulk volume increases indefinitely with

ime (dilatancy of the material), which is not realistic. The sec-
nd invariant of the strain-rate tensor is J2 = (1/2)tr(d′2) =
λ/2)2f 2, where we split the strain-rate tensor into a deviatoric
traceless) contribution d′ and an isotropic term d′′. We can then
elate the deviatoric contributions of the stress tensor and the
eviatoric part of the strain-rate tensor( ) ′

= kI1 + J1

3λk

d√
J2

when f > 0. (5)

e verify that, when an isochoric simple shear is applied to the
aterial (i.e., J2 = γ̇ and J1 = 0, see Fig. 5), the shear stress
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C. Ancey / J. Non-Newtonia

s linearly dependent on the normal stress and independent of
he shear rate: τ = 3kσ, consistently with the phenomenologi-
al Coulomb law. It is worth noting that this derivation of the
ulk stress tensor in Eq. (5) is purely formal since the bulk stress
ensor conflicts with experimental observations, except for the
rediction of a Coulomb behavior for simple-shear flow condi-
ions. Indeed, an obvious shortcoming has been seen just above
ith dilatancy, which imposes modifying the yield function f to

ake material compressibility into account [75,89,160,234].
The last point in this presentation of continuum-mechanics

ools concerns fluid–solid coupling. For viscoplastic materials,
he coupling is complete since the suspension behaves as a whole
n the bulk scale. On the contrary, fluid-saturated coarse-grained
oulomb materials behave as two-phase materials on the bulk

cale, i.e., the solid and interstitial-fluid phases may move sep-
rately at different velocities. The Terzaghi principle states that
he bulk stress tensor can be divided into a fluid contribution
pore pressure) and a solid contribution (reflecting the force dis-
ribution within the granular skeleton) (see Eq. (1)). Most often,
he viscous effects of the interstitial fluid can be neglected so
hat the fluid action reduces to a pressure term. This pressure
an be hydrostratic if the relative velocity v between the two
hases is zero or nearly zero. When v is slightly nonzero, there
s a pressure gradient within the bulk due to the fluid sewage,
hich can be described using the linear Darcy law

p = −μ

κ
v,

here κ is the permeability coefficient, which is a function of
oth the particle radius a and the solid concentration φ. The
ozeny–Carman relation can be used to evaluate this coefficient:
= a2(1 − φ)/(45φ2), with φ the solid concentration (φ is the

olume occupied by particles to total volume). This relation
hows that the pore pressure is sensitive to the particle size and
hanges in the solid concentration. Note also that shearing a
oarse-grained material usually leads to a bulk volume increase
dilatancy), which induces a decrease in the solid concentration,
hus an increase in the permeability coefficient κ. For materials
igorously sheared, a more complex diffusion equation must be
sed [128,129,213]. This equation relates the pressure gradient
nd the total derivative of the solid concentration

μ

κφ

dφ

dt
= −

(
φ∇ − ρf

ρ̄
∇φ

)
· ∇p, (6)

ith ρ̄ = φρp + (1 − φ)ρf the bulk density. As pointed out by
verson [128,129], this equation is crucial since it shows how
igh fluid pressure can be generated in a dilating/contracting
ranular material and how this alteration in the pore pressure
nfluences the frictional behavior (see Eq. (1)).

.2. Averaged balance equations

We are now seeking why some granular materials behave like
one-phase material on the bulk scale and why there are different
ypes of yield surface. For this purpose, we consider suspensions
f equal-size, spherical particles and outline the basic elements
n microstructural theories of particle suspensions needed for
eriving the governing equations and the bulk stress tensor.

•
•

Fig. 9. Idealized suspension of spherical particles in a Newtonian fluid.

In any microstructural approach to particle suspensions, the
tarting point is to examine the behavior of individual compo-
ents on a particle scale, then to infer the bulk rheological be-
avior by using an appropriate average process. In order to avoid
verly general explanations, we assume that (see Fig. 9)

1) the interstitial fluid is Newtonian, with viscosity μ and den-
sity ρf;

2) the particles are rigid, spherical, and of equal size (radius a,
density ρp).

he suspension is assumed to be statistically homogeneous.
he number of particles per unit volume (density number) is
and is related to the solid concentration φ since we have
= φ/(4πa3/3).
Interstitial fluid motion is described by the Navier–Stokes

quations

∂uf

∂t
+ (uf · ∇)uf = − 1

ρf
∇p + 1

ρf
∇ · σf, (7)

· uf = 0, (8)

here uf is the fluid velocity, p the generalized pressure (includ-
ng the fluid pressure and gravity potential), and σf is the stress
ensor (here σf = 2μd where d denotes the strain-rate tensor).
he equation of motion for the particle can be written in the

ollowing Lagrangian form

dup

dt
= g + 1

mp
F(up, uf), (9)

here F(up, uf) is the force field resulting from the interaction
etween the fluid and the particle, mp the particle mass, and up
he velocity of the mass center. The boundary conditions at the
olid/fluid interface reflect non-penetration and fluid adherence:
f · k = 0, where k denotes the outwardly-oriented unit normal.
ote that
the force field F(up, uf) is not yet defined;
when expressing the dependence of F on the flow variables,
we assume that it depends on the instantaneous particle ve-
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2 C. Ancey / J. Non-Newtonia

locity and the (Eulerian) velocity field (given by the Navier–
Stokes equations).

o obtain a more physical picture of the fluid/particle interplay,
e introduce dimensionless numbers and transform the equa-

ions above into dimensionless expressions. Let us introduce a
elocity scale U∗ for the fluid. The timescale for the fluid mo-
ion near the particle is then: tf = a/U∗. The characteristic time
or the particle is defined as a relaxation time, that is, the time
eeded for its velocity to vary substantially as a result of the
uid action. If F is the order of magnitude of the fluid–particle

nteraction, examining Eq. (9) leads to selecting: tp = mpU∗/F .
he equations of motion can now be written in dimensionless

orm as follows (dimensionless variables have a tilde)

ep

(
∂ũf

∂t̃
+ (ũf · ∇)ũf

)
= −P∗ρfa

μU
∇p̃ + �ũf, (10)

here P∗ is the pressure scale [here P∗ = μU∗/(ρfa)] and

ep = ρfU∗a/μ,

s the particle Reynolds number. For the particle, one obtains

t
dũp

dt̃
= mp

F
g + F̃(ũp, ũf), (11)

here

t = tp

tf
= mpU

2∗
Fa

,

s called the Stokes number. Two asymptotic regimes can be
chieved depending on the value of the Stokes number:

St � 1. The fluid has no time to adjust its velocity to the vari-
ations in the particle velocity and, conversely, the particle is
not affected by the rapid variations in the fluid velocity (but
naturally it continues to be affected by the slow variations).
In practice, this means that the fluid and the particle evolve in
a quasi-autonomous way and, therefore, their motion can be
considered separately. On a macroscopic scale, such suspen-
sions retain a genuinely two-phase character and the equa-
tions of motion take the form of two interrelated equations
(one for each phase).
St → 0. The particle has time to adjust its velocity to any
change in the fluid velocity field. One sometimes says that
the particle is the slave of the fluid phase. On a macroscopic
scale, this means that the suspension behaves as a one-phase
medium.

rom this discussion, one must keep in mind that, if any particle
uspension is a two-phase material on a particle scale, the sus-
ension can behave as a one-phase fluid on a macroscopic scale.
n addition, the only asymptotic regimes for which it is possible
o deduce the fluid–particle interaction in a completely theoreti-
al way are the regimes St → 0 and Rep → 0 and St → ∞ and

ep → ∞ [35,143,226].
After outlining the coupling between the solid and fluid

hases, we derive the governing equations (mass and momentum
alance equation) by averaging the local equations of motion.

t
d

id Mech. 142 (2007) 4–35

e will emphasize the flow conditions for which it is possible
o provide a rheological description within the framework of
ne-phase fluids. Another important point is the derivation of
he bulk stress tensor.

.2.1. Bulk mass balance equation
The approach involves taking the volume average of the local

quations of motion (volume averaging). The operator “volume
verage” is constructed by taking a control volume V assumed
o be sufficiently wide to contain a large number of articles, but
n the meantime sufficiently small with the respect to a typical
engthscale of the bulk for it to be considered a continuum.

For the solid and fluid phases, the local mass balance equation
s in the form
∂ρi

∂t
+ ∇ · (ρiu) = 0,

ith i = p (particle) or i = f (fluid) and where u denotes the local
elocity coinciding with fluid velocity within the continuous
hase and the solid velocity within a particle. We define the
ulk (volume-averaged) density as ρ̄ = φρp + (1 − φ)ρf with φ

he solid concentration. We also define a characteristic function
154]

H(x) = 1 if x is inside a particle,
H(x) = 0 if x lies within the fluid.

he characteristic function is locally discontinuous (at the
uid/solid interface) and must be considered as a generalized
unction. Using distribution theory, we can show that

∂Hi

∂t
+ u · ∇(Hi) = 0, (12)

ith i = f or p and where the following short-hand notations
p = H and Hf = 1 − H have been used. This equation is

ometimes referred to as the topological equation [85]. Note
hat we have

∫
V H dV = φV.

We call Vp the sub-volume of V containing the particles and
p the surface bounding Vp. Multiplying the mass equation for

olid particles by the characteristic function H and the mass
quation for the continuous phase by 1 − H and integrating over
he control volume V, we obtain∫
V

(
H

∂ρp

∂t
+ (1 − H)

∂ρf

∂t
+ H∇ · (ρpu) + (1 − H)∇ · (ρfu)

)
dV = 0,

hich can be transformed into∫
V

(
∂ρ̄

∂t
+ ∇ · (ρ̄u) − ρp

∂H

∂t
− ρf

∂(1 − H)

∂t
− ρp∇ · (Hu)

−ρf∇ · ((1 − H)u)

)
dV = 0.

hen, applying the Gauss and Leibnitz rules to interchange the

ime/space derivatives with the volume averaging operator, we
educe the bulk mass equation

∂ρ̄

∂t
+ ∇ · (ρ̄u) = 0.
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C. Ancey / J. Non-Newtonia

s expected, this result shows that the bulk mass balance equa-
ion satisfies the same classic law as the solid and fluid phases
o.

.2.2. Bulk momentum balance equation
Multiplying Eq. (7) with 1 − H , then integrating it over the

ontrol volume V, making use of the topological Eq. (12), the
elation ∇H = k over Ap with k the unit outward normal to

p (and ∇H = 0 otherwise), and the Reynolds decomposition
f = ūf + u′

f, we eventually obtain

f

(
∂ūf

∂t
+ ∇ · ūfūf

)
= −∇p̄ + 1

V
∫
Ap

(σf − p1) · k dA

+ ∇ · 1

V
∫
Vf

(σf − ρfu′
fu

′
f) dV. (13)

n this equation, the mean fluid velocity is

¯ f(x, t) = 1

V
∫
V

(1 − H(x, t))uf(x, t) dV = 1 − φ

Vf

∫
V

uf(x, t) dV,

here we used
∫
V (1 − H) dV = (1 − φ)V. Here, the mean fluid

elocity is 1 − φ the mean bulk velocity.
For the solid phase, we have to transform the Lagrangian

quation of motion (9) into an Eulerian equivalent. The rigid-
phere assumption implies that the solid kinematic field is:
p(x, t) = up(y, t) + ωp × (x − y), with y the position of the
enter of mass and ωp the rotation velocity. Since the gradient
f a rotational field is zero, the local equation is for a solid parti-
le: ρp∂up/∂t = ρpg + ∇ · σp, with the following difficulty: the
article being rigid, the stress field is undetermined. This is in
act a minor issue since we will integrate the stress field over
he particle volume and the Green–Ostrogradski allows us to
onnect this field to the forces acting on the particle surface.
roceeding as earlier by multiplying the equation above by H,

hen integrating it on V, we find

p

(
∂ūp

∂t
+ ∇ · ūpūp

)
= φρpg + ∇ · (σ̄p − ρpu′

pu′
p)

− ∇ · 1

V
∫
Ap

σp · k dA, (14)

here again we used the Reynolds decomposition up = ūp +
′
p. Since at the particle surface we have σp · k = (σf − p1) · k,

he last term on the right-hand side in Eq. (14), representing the
tresses exerted on the particle surface, is equivalent to the term
n Eq. (13). These terms reflect momentum transfer between the
wo phases through their interface.

The local bulk velocity is defined as follows: u(x, t) =
up(x, t) + (1 − H)uf(x, t). The bulk volume-averaged veloc-

ty is then: ū(x, t) = ūp(x, t) + ūf(x, t). We can also define a
ulk velocity based on mass averaging (rather than volume):

¯ ūm = ρpūp + ρfūf, with ρ̄ = φρp + (1 − φ)ρf. The two veloc-
ties coincide when the solid and fluid densities are equal. A
elpful approximation can be used when one of the densities

s very low compared to the other and the velocities of each
hase are of the same magnitude. Using the same dimensional
rgument as earlier, we can show that we meet this case for a
uspension of particles within a gas with St � 1 and ρp � ρf;

o

a
t

id Mech. 142 (2007) 4–35 13

he same situation is met with emulsions (ρp � ρf and St → 0).
ote that the mass conservation is satisfied ∇ · ū = ∇ · ūm = 0

φ is assumed to be constant).
Summing (13) and (14) leads to the bulk momentum equation

¯

(
∂ūm

∂t
+ ∇ · ūmū

)
= −∇p̄� + ∇ · 1

V
∫
V

(σ − ρu′u′) dV,

(15)

ith p̄� = Φ̄ + p̄f (where ∇Φ̄ = −ρ̄g). This equation is not
ery helpful as long as we are not able to transform it into the
lassic form of a momentum balance equation for a continuum;
ere this means that we must have ūm ≈ ū so that the terms
n the left-hand side of Eq. (15) can be identified as a material
erivative. If this condition is satisfied, then we can identify the
erm on the right-hand side under the divergence operator as a
tress tensor. We refer to it as the bulk extra-stress tensor

¯ = 1

V
∫
V

(σ − ρu′u′) dV, (16)

hich is the definition used by [34] for the bulk stress tensor.
urther computation reveals that this stress tensor can be divided

nto a fluid contribution [14,34]

¯ (f) = 2μd̄ − 1

V
∫
Vf

ρfu′u′ dV, (17)

nd a solid contribution [14]

¯ (p) = 1

V
∫
Ap

σ · xk dA − 1

V
∫
Vp

ρpu′u′ dV + G(ωp), (18)

here G(ωp) represents an antisymmetric function ωp, which is
ot detailed here because in most cases of practical interest, G
anishes [14,34,198].

.3. Constitutive equations: physical origin of the yield
tress

In the derivation of the bulk momentum equation, we have
ound that the solid contribution in Eq. (18) can be defined as

¯ (p) ≈ 1

V
∫
Ap

σ · xk dA = a

V
∫
Ap

fk dA, (19)

here f = σ · k is the stress at the particle surface, when the
nfluence of particle velocity fluctuations can be neglected. This
efinition is quite general and can be found in soil mechanics
60,109,176], homogeneization theory [51,52], and rheology of
article suspensions [14,34]. For concentrated particle suspen-
ions, the stress state at the particle surface is directly related
o interparticle interactions. Flow initiation or yielding is then
irectly a consequence of changes in these interactions. In rheol-
gy, three classes of particle interaction are usually considered:
olloidal interaction, lubricated contact, and direct (frictional
nd/or collisional) contact [1,66]. Here, we address the specific
ssue of the yield stress computation for suspensions made up

f particles with nearly the same size.

For colloidal interactions, a vast literature has been published
bout the influence of colloidal interactions on the bulk constitu-
ive equation [205,206]. For dilute and moderately concentrated
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4 C. Ancey / J. Non-Newtonia

uspensions and low Péclet numbers, Pe = Φ/kT , with Φ the
article energy potential (depending on electrostatic forces and
unction of arrangement, ionic strength, Debye length, solid frac-
ion, etc.), k Boltzmann’s constant, and T absolute temperature,
olid particles are permanently fluctuating and never reach an
quilibrium position because of Brownian effects. In this case,
he bulk behavior is close to that of a dilute suspension of non-
olloidal particles; there is no yield stress [37,46,233]. At high
éclet numbers, the particles find an equilibrium position (at

east after a possibly long rest period) and cannot easily move
way from each other. In that case, the suspension exhibits a
ield stress since flow can be obtained only if a finite energy is
rovided to the system to extract each particle from its instanta-
eous local potential [135].

For a number of colloidal suspensions including natural ma-
erials, the situation is somewhat different because particles are
ot electrically stabilized and form aggregates (or flocs), which
akes their rheological characterization more difficult [240].
otanin et al. [193,194] developed a phenomenological fractal
odel to determine bulk behavior of weakly aggregated disper-

ions. They assumed that particles form aggregates which in turn
re connected into a network. Thus they interpreted bulk yield
tress as a consequence of chain breakup due to thermal fluctua-
ions and rupture under compressive force. Another conceptual

odel inspired by glassy dynamics has been proposed by Sol-
ich et al. [91,224,225]. They showed that the bulk mechanical
roperties can be related to the internal structure (described in
erms of the particle energy distribution). To date such mod-
ls are able to mimic bulk behavior over a wide range of flow
onditions, but cannot specify the effects of particle size, size
istribution, or solid concentration on the yield stress of a par-
iculate fluid. Kapur et al. [138], and then Scales et al. [215]
roposed a mean-field theory for particles governed by the van
er Waals attractive forces. The input values of the model were
he Hamaker constant A, the coordination number CN , the mean
article diameter 2a, and an interparticle separation parame-
er s0, which must be fitted from experimental data. The yield
tress is computed as the summation of all pairwise interparticle
orces (per unit area). More recently, on the same basis, Zhou
t al. improved this model by taking into account a broader size
istribution of particles, but limited their attention to systems at
he isoelectric point [247]. They found that the maximum yield
tress can be written as

k(φ) = K

(
φ

1 − φ

)c 1

(2a)2 (20)

here K = 3.1Ab/(24πs0), and b and c are two parameters to
e fitted from experimental data. They proposed the following
xplanation for the variation in yield stress with increasing solid
oncentration. A weakly flocculated dispersion may be seen as
series of weakly interconnected aggregates (flocs) made up of

trongly interacting particles. At low solid concentrations, yield-
ng results from the breakdown of the weak links between flocs.

t high solid concentrations, yielding is a consequence of the

upture of interparticle bonds and resistance to the deformation
f networks. This means that a critical solid concentration φc
eparating the two domains should exist.

c
t
t
n
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When φ < φc, structural effects due to weak links between
flocs prevail over those due to geometric resistance and the
yield stress varies with a solid concentration such as τk ≈
Kφc/d2. This effect is included in Eq. (20) since it can be
derived from Eq. (20) by taking a series expansion to the
chief order at φ = 0.
When φ > φc, the geometric resistance becomes more pro-
nounced, resulting in a much higher dependence on the solid
concentration τk ≈ Kφc′

/d2, with c′ > c. Zhou et al. consid-
ered that from a microstructural point of view, the geometric
resistance enhancement is reflected by the increase in parti-
cle contacts. Assuming that the coordination number is given
by Rumpf’s expression (CN = 3.1/(1 − φ)), they arrived at
the conclusion that the yield stress may be scaled as a power
function of φ/(1 − φ). The series expansion at φ = 0 implies
that the exponent must be c. Moreover, their experiments with
alumina suspensions showed that the critical solid concentra-
tion ranged from 0.26 to 0.44 and depended on the particle
diameter.

n noncolloidal systems, particles experience direct (i.e., sus-
ained frictional) or lubricated contacts. When particles experi-
nce sustained frictional contacts, particle friction gives rise to
he Coulomb yielding process on the bulk scale, characterized
y a linear relationship between the normal and shear stresses:
= tan ϕ σ. It has long been stated that the bulk Coulomb law

n the bulk scale was a direct consequence of the Coulomb fric-
ional behavior on the particle scale. In fact, the link between the
wo scales is not particularly direct. Using Eq. (19) and the nu-

erical results obtained by Radjai et al. [200] on the probability
istribution of contact forces, Ancey et al. showed that the bulk
riction angle was weakly dependent on the particle friction co-
fficient [14]. Other effects such as the particle arrangement and
he probability distribution of contact forces have greater influ-
nce on bulk friction. The result is in line with micromechanical
nalysis done in soil mechanics [52,53,97].

For cases when particle contact is lubricated by the intersti-
ial fluid, a number of theoretical models based on Eq. (19) have
een proposed to compute the bulk stress tensor [3,40,92,95].
hese models predict a viscous behavior, with no yield stress,
ut a diverging bulk viscosity when the solid concentration tends
oward the maximum solid concentration. Indeed, the squeezing
orce between two neighboring particles is F = −3μπa2v/(8s),
ith v the relative particle velocity and s the mean distance be-

ween the particle surfaces [92]; when the solid concentration
s increased, the particles are more densely packed, which leads
o decreasing s. However, the prediction of the nonexistence
f a yield stress contrasts with experimental observation. Clear
vidence of yielding behavior has been reported by Husband
t al. [122] (with polyisobutylene/calcium carbonate suspen-
ions). They observed that for solid concentrations in excess of
critical value (φ ≈ 0.47), suspensions exhibited a yield stress.
oreover, this yield stress increased dramatically when the solid
oncentration came closer to the maximum concentration. In
his case, the authors attributed yielding behavior to either par-
icle jams or weak polymer–particle interactions, but they did
ot provide quantitative justification in their explanations. Such
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C. Ancey / J. Non-Newtonia

ehavior was also observed by Wildemuth and Williams [238]
ith coal–glycerin slurries, Kytömaa and Prasad [144,197] with
mm glass beads in a water–glycerol solution, Coussot [65]
ith 100 �m polystyrene beads in water–glycerol solutions, and

ohma et al. [134] with 2 �m polystyrene beads in water. In the
atter case, the authors related the yield appearance to structural
hanges in the particle arrangement (glass transition) at a critical
olid concentration (φ = 0.58). Using polymethylmethacrylate
pheres in a Newtonian fluid, Heymann et al. found that their sus-
ensions exhibited an apparent yield stress [108]. Surprisingly
nough, the dependencies of this yield stress and the relative vis-
osity on the solid concentration revealed a similar trend. They
lso observed that there was an elastic-viscous transition sepa-
ating the solid-like and fluid-like domains, implying that there
s not a single yield stress. Wildemuth and Williams [238] have
uggested that the existence of a yield stress in noninteracting
article suspensions is a consequence of a dependence of the
aximum solid concentration on the shear stress. Using heuris-

ic arguments, they have shown that a yield stress should arise
ver a given range of solid concentrations [φ0, φ∞]:
(21)

here A, φ0, and φ∞ are three parameters. φ∞ is the high-shear
imit of the solid concentration and φ0 corresponds to a kind of
ercolation threshold. The model has been successfully tested

t
s
h
e

ig. 10. Simplified diagram of flow regimes. The transitions between regimes are d
he temperature and k is the Boltzmann constant) for the transition between Browni
r = Ψ/(kT ) (with Ψ the van der Waals interaction potential) for the transition betwe

he ratio between viscous and colloidal interactions; the particle or flow Reynolds
e = μγ̇a2/(sσn) (with s the mean distance between the surfaces of two close partic
umber Ba = ρpγ̇s/μ is used for the transition between the viscous and collisional re
pherical particles of equal size) and φc is the minimum concentration for a network
ize).
id Mech. 142 (2007) 4–35 15

y Wildemuth and Williams on coal slurries. Experiments con-
ucted on suspensions with solid concentrations φ ≤ 0.51 have
evealed a complex behavior (thixotropy due to order/disorder
ransition), but no yield stress [235]. These experiments sub-
tantiate the idea that there is a critical solid concentration (or
arrow range of solid concentrations) φc, for which a percolating
etwork of particles develops throughout the bulk.

.4. Constitutive equations: behavior at higher shear rates

In principle, using the theoretical framework depicted in
ection 2.2 makes it possible to compute the bulk stress ten-
or for particle suspensions. Rigorous analytical results have
een obtained only for certain flow conditions (e.g., when Rep
nd St are much smaller than unity) and dilute suspensions
36,38,111,146,162,206,245]. In contrast, for moderate and con-
entrated suspensions or for general flow conditions (i.e., the
tokes, Péclet, and Reynolds numbers taking any finite value),

here is no full analytical derivation of the bulk stress tensor, but
nly approximate models based on heuristical simplifications or
umerical simulations [14,244,246]. To progress in determining
he rheological properties of particle suspensions, the basic idea
s to look for prevailing terms in Eqs. (13) and (14) depending on

he flow conditions. This may be done typically using dimen-
ional analysis. For an interaction to be predominant, it must
ave (i) sufficient strength relative to others and (ii) time for its
ffects to influence the system. In practice, most of the dimen-

escribed using dimensionless numbers. The Péclet Pe = 6πμa3γ̇/(kT ) (T is
an (thermal agitation of particles) and viscous regimes; the repulsion number
en the colloidal and Brownian regimes; Γ = 6πμa3γ̇/Ψ is a number reflecting

number is used for the transition toward turbulence; the Leighton number
les) for the transition between the viscous and frictional regimes; the Bagnold
gimes. φm denotes the maximum random solid concentration (φm ≈ 0.635 for
of particles in close contact to form (φc ≈ 0.5 for spherical particles of equal
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6 C. Ancey / J. Non-Newtonia

ionless numbers can be interpreted in this way. For instance,
he Stokes number can be seen as the ratio of particle/fluid relax-
tion times or the ratio of inertia/viscous effects. Using a limited
umber of dimensionless numbers makes it possible to outline
he flow regimes in a single diagram (γ̇, φ) where γ̇ is the shear
ate (see. Fig. 10), as suggested by Coussot and Ancey [66].

For the hydrodynamic regime (B in Fig. 10), theoretical mod-
ls predict a pseudo-Newtonian behavior, with a bulk viscosity η

ising with increasing solid concentration φ and diverging when
he solid concentration comes closer to the maximum solid con-
entration φm. In these models, the dependence of η on φ is
imilar to that given by Krieger and Dougherty’s expression

= μ

(
1 − φ

φm

)−[η]φm

(22)

here [η] = lim
φ→0

(η − μ)/(μφ) = 2.5 is called the intrinsic vis-

osity. This type of relation matches the Einstein expression
t low solid fractions. The divergence of the bulk viscosity
hen φ → φm is not realistic from a physical point of view.

n fact, beyond a critical value of φ, colloidal interactions or
irect/lubricated contacts may become predominant. Concen-
rated suspensions (φ > 0.3) usually exhibit normal-stress ef-
ects, partly because of particle migration in simple shear exper-
ments [243] or asymmetric microstructure [187].

The transition between the hydrodynamic regime (B in Fig.
0) and the colloidal regime (C in Fig. 10) are of great interest
or the applications since they correspond to viscoplastic behav-
or. To date, there is, however, no theoretical derivation, even
pproximate, of the bulk stress tensor. Phenomenological laws
re therefore used to describe rheological behavior. One of the
ost popular is the Herschel–Bulkley model, which generalizes

he Bingham law

= τc + Kγ̇n,

ith K and n two constitutive parameters. In practice, this phe-
omenological expression successfully describes the rheologi-
al behavior of many materials over a sufficiently wide range of
hear rates [44,65], except at very low shear rates [71,94]. For
umerical purposes, a viscoplastic model may be regularized
sing a biviscous model [83,239], Papanastasiou’s exponential
odel [186], or extended forms [248]. Indeed, the existence of
yield stress entails numerical difficulties in tracking the shape
nd position of the yield surface(s) within the flow.

At high solid concentrations (regimes E–G in Fig. 10), there is
significant change in bulk behavior due to the development of a
article network within the bulk. A number of striking phenom-
na (dilatancy, jamming, shear localization, etc.) are induced
y this network. Usually three subdomains can be considered:
irect friction (regime E), lubricated contact (regime F), and
ollisional contact (regime G).

Regime E corresponds to the post-failure domain in soil me-

hanics, i.e., when after yielding, a soil creeps. As explained in
ection 2.3, Coulomb friction at the particle level imparts its
ey properties to the bulk, which explains (i) the linear relation-
hip between the shear stress τ and the effective normal stress

w
d
t
f

id Mech. 142 (2007) 4–35

′ = σ − p (with p the interstitial pore pressure)

= σ′ tan ϕ,

nd (ii) the non-dependence of the shear stress on the shear rate
˙ .

Regime F (lubricated contact, also called the macro-viscous
egime by Bagnold [19]) may be seen as a mere extension of the
ydrodynamic regime (B) since the bulk rheological behavior is
till governed by the interstitial fluid. There is, however, a signifi-
ant departure from Newtonian behavior when φ → φm. Indeed,
he shear-induced relative motion of particle layers develops nor-

al forces: a particle in motion can no longer travel far away
rom neighboring particles, but must slide between the particles
f the surrounding layers (above and below it). The particle con-
guration is no longer isotropic and constant; crowding effects

nduce some organization or disorder depending on the shear rate
99]. For uniform hard-sphere suspensions, shear-thickening be-
avior appears for φ ≥ φc because of order/disorder transitions
r cluster formation [27,47,112,113,235].

Regime G (collisional contacts, also called the particle-inertia
egime by Bagnold [19]) has long been characterized using ki-
etic theory or Bagnold-like heuristical arguments. [98,202].
or the same reason as for regime F, there are significant dif-
erences between dilute and dense collisional regimes when the
olid concentration exceeds a critical value φc. For φ > φc, the
evelopment of a particle network together with the increasing
ontribution of frictional dissipation modify the structure of the
ulk stress tensor. This regime is sometimes called frictional-
ollisional to emphasize the importance of friction. The first
roposition of bulk stress tensor seems to be attributable to Sav-
ge [210], who split the shear stress into frictional and collisional
ontributions

= σ tan ϕ + μ(T )γ̇,

ith T the granular temperature. Elaborating on this model, An-
ey and Evesque suggested that there is a coupling between
rictional and collisional processes [10]. Using heuristic argu-
ents on energy balance, they arrived at the conclusion that

he collisional viscosity should depend on the Coulomb number
o = ρpa

2γ̇2/σ to allow for this coupling in a simple way

= σ tan ϕ + μ(Co)γ̇ .

ouliquen et al. proposed a slightly different version of this
odel, where both the bulk frictional and collisional contri-

utions collapse into a single term, which is a function of the
oulomb number [93,136,195]

= σ tan ϕ(Co).

ontrasting with other propositions, Josserand et al. stated that
he key variable in shear stress was the solid concentration φ

ather than the Coulomb number [137]

= K(φ)σ + μ(φ)γ̇2,
ith K a friction coefficient. Every model is successful in pre-
icting experimental observations for some flow conditions, but
o date, none is able to describe the frictional-collisional regime
or a wide range of flow conditions and material properties.
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concentration. A striking feature of this abrupt rise is that the
increase rate is very close to the value measured for a pure kaolin
dispersion. This could mean that coarse particles surrounded by

Fig. 12. Variation in the bulk yield stress. The variation in the yield stress for a
C. Ancey / J. Non-Newtonia

.5. The case of polydisperse suspensions

Natural suspensions are made up of a great diversity of grains
nd fluids. This observation motivates fundamental questions:
ow to distinguish between the solid and fluid phases? What
s the effect of colloidal particles in a suspension composed of
oarse and fine particles? We shall see that, when the particle
ize distribution is bimodal (i.e. we can distinguish between
ne and coarse particles), the fine fraction and the interstitial
uid form a viscoplastic fluid embedding the coarse particles,
s suggested by Sengun and Probstein [218]. This approximation
sually breaks for poorly sorted slurries. In that case, following
verson [128,129], we will see that Coulomb plasticity can help
nderstand the complex, time-dependent rheological behavior
f slurries.

Sengun and Probstein proposed different arguments to ex-
lain the viscoplastic behavior observed in their investigations
n the viscosity of coal slurries (with particle size typically rang-
ng from 0.4 to 300 �m) [218,219]. Their explanation consists
f two approximations. First, as this is the interstitial phase, the
ispersion resulting from the mixing of fine colloidal particles
nd water imparts most of its rheological properties to the entire
uspension. Secondly, the coarse fraction is assumed to act inde-
endently of the fine fraction and to enhance bulk viscosity. They
ntroduced a net viscosity ηnr of a bimodal slurry as the product
f the fine relative viscosity ηfr and the coarse relative viscosity
cr. The fine relative viscosity is defined as the ratio of the appar-
nt viscosity ηf of the fine-particle suspension to the viscosity of
he interstitial fluid μ: ηfr = ηf/μ. The coarse relative viscosity
s defined as the ratio of the apparent viscosity ηc of the coarse-
article slurry to the viscosity of the fine-particle suspension:
cr = ηc/ηf. The two relative viscosities depend on the solid
oncentrations and a series of generalized Péclet numbers. For
he coarse-particle suspensions, all the generalized Péclet num-
ers are much greater than unity. Using a dimensional analysis,
engun and Probstein deduced that the coarse relative viscos-

ty cannot depend on the shear rate. In contrast, bulk behavior
n fine-particle suspensions is governed by colloidal particles
nd thus at least one of the generalized Péclet numbers is of the
rder of unity, implying that the fine relative viscosity is shear-
ependent. Sengun and Probstein’s experiments on the viscosity
f coal slurries confirmed the reliability of this concept [218].
lotting log ηnr and log ηfr against log γ̇ , they found that over
wide range of concentrations, the curves were parallel and

heir distance was equal to log ηcr (see Fig. 11). However, for
olid concentrations in the coarse fraction exceeding 0.35, they
bserved a significant departure from parallelism which they as-
ribed to nonuniformity in the shear rate distribution within the
ulk due to squeezing effects between coarse particles.

Ancey and Jorrot examined the effect of adding coarse parti-
les in a colloidal dispersion [11]. At first glance, since the vol-
me occupied by the colloidal particles is decreased, the bulk
ield stress should decrease and, to first order, we can use Eq.

20) to infer

c = K

(2a)2

(
φf

1 − φf

)c

(1 − φ), (23)

k
c
d
T
l

ig. 11. Variation in the bulk viscosity of coal slurry as a function of the shear
ate. The bulk viscosity curve is parallel to the curve obtained with the fine
raction. After [218].

here φ is the coarse-particle concentration and φf the con-
entration in fine (colloidal) particles. To test this expectation,
ncey and Jorrot measured the bulk yield stress of kaolin suspen-

ions to which they added a given amount of coarse particles. Fig.
2 shows typical results obtained with a bimodal distribution of
lass beads (1 and 3 mm in diameter). The dimensionless number
is the relative fraction of small beads (ξ = 0 means that there
ere no small beads while ξ = 1 means that all coarse particles

dded to the kaolin suspension were small beads). The total solid
oncentration φt is computed as follows: φt = φk(1 − φc) + φc.
he first result is that the trend given by Eq. (20) is correct to
rst order: adding a small amount of coarse particles leads to a
ecrease in the bulk yield stress (here for total solid concentra-
ions as high as 0.55). Interestingly enough, in contrast with the
uthors’ expectation, the bulk yield stress starts diverging when
he total solid concentration comes closer to the maximum solid
aolin suspension is reported as a function of the solid concentration (φt coin-
ides with the fine fraction). The thin solid line represents the expectation of a
ecreasing bulk yield stress with increasing coarse concentration (see Eq. (23)).
he symbols represent the experimental data obtained by varying the ratio ξ of

arge and small beads. After [11].
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olloidal particles may very well behave in turn as colloidal par-
icles (this statement is naturally wrong). Further comments on
ig. 12 are the following:

At low and moderate concentrations of coarse particles, the
bulk yield stress was independent of the particle size (when
equal size distributions were tested), but it increased signifi-
cantly with increasing relative fractions of large particles.
On the contrary, at high concentrations, the finer the distribu-
tion, the larger the yield stress.

he main and unexpected result of this experimental study is that
ulk yield stress may be significantly affected by the concentra-
ion of coarse particles, but its features (such as the growth rate
ith a solid concentration) are still governed by the fine colloidal

raction.
Given substantial experimental difficulties (particle size, sed-

mentation, etc.), few experimental investigations have been
onducted on poorly-sorted slurries. In soil mechanics, testing
ulk materials in quasi-static drained or non-drained flow con-
gurations has shown that shear strength is governed by com-
action state and pore fluid pressure [78,234]. Since geotech-
ical tests can hardly be run under large deformations, Iverson
nd his colleagues carried out experiments in a 95 m long flume,
pecifically built in Oregon (USGS flume) [131]. In Iverson’s
pinion, the flow of poorly sorted mixtures is fundamentally an
nsteady phenomenon, which cannot be easily investigated un-
er steady flow conditions. Indeed, the shear strength adheres
o the Coulomb law: τ = σ′ tan ϕ, with σ′ = σ − p the effective
tress. During the motion, the material contracts, which gives
ise to high pore pressure and thus a decrease in shear stress.
ore pressure can remain elevated when pore pressure diffu-
ion is slow (i.e., for low bulk permeability), as shown by Eq.
6). Consequently, shear strength is not a rheological property
127].

Is it possible to provide clear evidence for the prevalence of
oulomb frictional behavior and dependence of shear strength
n pore pressure in rapidly sheared, poorly sorted slurries? Be-
ause of the unsteady nature of shear strength together with the
umber of control variables that are also time-dependent (pore
ressure, solid concentration, normal stress), providing an indis-
utable reply to this question remains difficult. There are, how-
ver, a number of laboratory and field observations that support
his theory. For instance, carrying out experiments with poorly
orted materials in the USGS flume, Major observed that in-
reasing the fine fraction resulted in thinning the deposit layer,
hich meant that the bulk strength decreased [156] (see also

127]). This observation conflicts with laboratory experiments
howing an increase in yield stress when the fine fraction is in-
reased (see the asymptotic trend in Fig. 12 when φt → φm), but
an be explained by recognizing that increasing the fine content
eads to a decrease in the bulk permeability and consequently

educes pore pressure diffusion; the bulk stays longer in a liqui-
ed state, with high pore-pressure levels and low shear strength.
n the next section, we will present laboratory experiments that
lso provide support for this explanation.

d
p

id Mech. 142 (2007) 4–35

. Rheometrical experiments

Over the last 20 years, a large number of experiments have
een carried out to test the rheological properties of natural ma-
erials. The crux of the difficulty lies in the design of specific
heometers compatible with the relatively large size of parti-
les involved in geophysical flows. Coaxial-cylinder (Couette)
heometers and inclined flumes are the most popular geome-
ries. Another source of trouble stems from disturbing effects
uch as particle migration and segregation, flow heterogeneities,
racturation, layering, etc. These effects are often very pro-
ounced with natural materials, which may explain the poor re-
roducibility of rheometrical investigations [62,126,158]. Poor
eproducibility, complexity in the material response, and data
cattering have at times been interpreted as the failure of the one-
hase approximation for describing rheological properties [126].
n fact, these experimental problems demonstrate above all that
he bulk behavior of natural material is characterized by wide
uctuations, which can be as wide as the mean values. As for

urbulence and Brownian motion, we should describe not only
he mean behavior, but also the fluctuating behavior to properly
haracterize the rheological properties. For concentrated col-
oidal or granular materials [54,107,152,175,181,222,231], ex-
eriments on well-controlled materials have provided evidence
hat to some extent, these fluctuations originate from jamming in
he particle network (creation of force vaults sustaining normal
tress and resisting against shear stress, both of which suddenly
elax). Other processes such as ordering, aging, and chemical al-
eration occur in natural slurries, which may explain their time-
ependent properties [39,163]. Finally, there are disturbing ef-
ects (e.g., slipping along the smooth surfaces of a rheometer),
hich may bias measurement.
Table 1 reports a number of experimental investigations run

n natural samples collected in the field or materials mimicking
atural materials. The list is far from exhaustive. For Coulomb
lastic materials, apart from experimental tests conducted by
avage, Hutter, and Iverson et al., which are cited in Table
, most authors have tried to document that shear stress de-
ends on the solid concentration or the shear rate, as expected
rom kinetic theory or Bagnold-like phenomenological laws
15,17,87,177,178,195,228,232]. These authors are not cited in
able 1.

Here, we will not examine at length the various experiments
upporting either the viscoplastic or the Coulomb plastic model,
ut we will try to understand in which conditions a material can
ehave like a viscoplastic fluid. This analysis is mostly based
n the rheometrical investigation carried out by Ancey with a
ouette cell [6]. We will then examine the consequences of the

heological properties on the flow features. This analysis will
ely on the flume experiments conducted by Parsons et al. [188]
nd Iverson et al. [127–129,131,156].

.1. Couette-cell experiments on granular mixtures
In order to study the influence of lubricated contact on bulk
ynamics and provide evidence of the key role played by the
article network in the rheological properties of highly con-
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Table 1
Experimental investigations conducted on natural materials or nearly natural materials

Avalanche Debris flow
Authors Experiments Authors Experiments

Viscoplastic material
Dent and Lang [82] Lab experiments in a small flume

on dry snow
O’Brien and Julien [180] Viscometric tests on natural mudflow deposits

Kern et al. [141] Experiments in a large flume on
dry snow

Coussot [65], Coussot and Piau [67],
Coussot et al. [73]

Couette rheometer on fine mud samples

Coussot et al. [70] Wide-gap Couette rheometer with debris-flow
samples

Bardou et al. [26] Couette rheometer and special rheometers
used for concrete on debris-flow samples

Remaı̂tre et al. [203] Couette rheometer on fine mud samples
Major and Pierson [158] Couette rheometer with fine-grained materi-

als collected on debris-flow deposits
Martino [164] Couette rheometer with natural samples
Schatzmann et al. [216] Special BMS rheometer with natural samples
Parsons et al. [188] Flume with artificial mixtures made up of clay,

silt, and sand

Coulomb mixture
Savage and Hutter [212], Unsteady sand avalanches on Denlinger and Iverson [80], Iverson

29], M
Unsteady avalanches mobilizing natural mix-
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Hutter et al. [124] smooth chutes [1
Hungr and Morgenstern [118] Unsteady gravel avalanches on

smooth chutes
M

entrated suspensions, Ancey studied a number of suspensions
ade up of glass beads and various interstitial fluids: air (μ =
.8 × 10−5 Pa s), water (μ = 10−3 Pa s), a water–glycerol solu-
ion (μ = 0.96 Pa s, ρf = 1260 kg/m3), and a water–kaolin dis-
ersion [6]. The particle diameter was 0.3, 0.8, 1, 2, or 3 mm. For
he rheometrical tests, Ancey used a Haake Rotovisco rheometer
ith a four-blade vane centered around a vertical shaft. This tech-
ique from soil mechanics is now increasingly used in rheometry
f suspensions [30]. The radius of the vane was R1 = 30 mm.
he solid concentration in coarse particles φ was very close to

he maximum concentration φm (here we have φ = 0.58–0.61
hile φm = 0.635).
Fig. 13 shows the variation in the dimensionless shear stress

= τ/(ρ̄gh) (where τ denotes the shear stress and h is the

hickness of material sheared by the vane) as a function of a
imensionless number Γ = μΩ/(ρ̄′gh) (where Ω is the rota-
ional speed of the vane, ρ̄′ = ρ̄ − ρf is the buoyant density,

the viscosity of the interstitial fluid). Γ is a dimensionless

able 2
eatures of materials used and flow conditions for experimental run reported in Figs.

Class Material φf φt

Granular suspensions Material E0 0 61.3
Material E1 0 61
Material E2 0 61
Material E3 0 60
Material E4 0 60
Material E5 0 60
Material E6 2 60.9
Material A 3.2 60.6

Class 2 Material B 9.8 58.9
Class 3 Material C 15.4 47.9

olid concentrations are in %, flow depth h in mm, yield stress τc in Pa.
ajor [156] tures down a long steep flume
155,157], Major et al. [159] Geotechnical tests on natural samples

hear rate. Ancey replaced the true shear rate by the rotational
peed because determining the actual shear rate for a large-gap
heometer and a material with varying rheological properties is
ery delicate (see below). Let us note that this number is very
lose to the Leighton number introduced in the caption of Fig.
0 or the friction number introduced by Iverson [129]. Although
he experimental curve reported in Fig. 13 does not provide the
roper flow curve, it can provide an approximate idea of this
ow curve. Two trends can be observed

At low rotational velocities (Γ � 1), shear was localized
within a narrow cylindrical band around the vane, with a typ-
ical thickness of approximately 10 bead diameters indepen-
dently of Γ . Ancey found that S was independent of Γ which

implies, when one returns to dimensional variables, that: (i)
τ ∝ σzz (where σzz denotes the vertical normal stress) and
(ii) τ does not depend on the shear rate, but is linear with
the vertical normal stress. Both features are typical of the

13–15

φ N τc h Fluid

61.3 – 0 43 Water
61 – 0 44 Air
61 – 0 14 Water
60 – 0 9 Glycerol
60 – 0 21 Glycerol
60 – 0 32 Glycerol
61.6 12.4 0.2 34 Water
61.8 9.1 0.2 33 Water

62.9 1.7 1.2 35 Water
55.9 0.3 4.5 60 Water
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ig. 13. Variation in the dimensionless shear stress as a function of the dimen-
ionless number Γ . The line slope is unity and indicates a linear variation of S
ith Γ . The features of each material are specified in Table 2. After [6,9].

frictional regime. The relation τ ∝ σzz implies that the total
torque should be a quadratic function of the flow depth for a
Coulomb material, as is shown in Fig. 14.
At high rotational velocities, all the material was sheared in
the gap. S ∝ Γ , that is, in terms of dimensional variables,
τ ∝ γ̇ . The bulk behavior is similar to that of a Newtonian
fluid for these flow conditions.

striking result of this experiment is that it is possible to observe
ery different bulk rheological behavior by merely increasing the
hear rate and keeping the solid concentration fairly constant.

difficult point in the rheometrical analysis is the derivation of
he flow curve. Indeed, in a Couette cell, the shear rate is found

y solving the following equation

=
∫ R2

R1

γ̇(r)

r
dr, (24)

ig. 14. Variation in the reduced torque M = C/(πρ̄′ghR2
1) as a function of the

caled flow depth h/R1, with R1 the inner cylinder radius. After [6,9].
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.605, μ0 = 1.05 Pa s). The solid line represents the WVD solution, while the
ashed line represents the Tikhonov solution. After [7].

here R2 denotes the outer-cylinder radius. For thin-gap
heometers, Eq. (24) can be easily approximated to first order:

≈ (R2 − R1)γ . For wide-gap rheometers, specific techniques
ust be used, such as the Tikhonov regularization method [241].
hey may, however, induce errors in smoothing out the flow
urve when this curve undergoes abrupt changes (e.g., transi-
ion from frictional to viscous regimes). To solve Eq. (24), Ancey
eveloped an alternative method called wavelet-vaguelette de-
omposition (WVD), which is based on wavelets and projection
ethods [7] (Table 2).
The outcomes of the WVD and Tikhonov methods are re-

orted in Fig. 15. In this figure, the shear rate was computed by
olving Eq. (24); note that the resulting shear rate is equivalent to
shear rate that would have been measured at the inner-cylinder
oundary. Taking a closer look at the WVD solution, we ob-
erve that, for low shear stresses (τ < 50 Pa), the flow curve is
pproximately horizontal for shear rates in the range 0.1–4 s−1.
t γ̇ = 4 s−1, a slight increase in the shear stress leads to a sub-

tantial decrease in the shear rate, which drops to 1 s−1; this
alue is much higher than the value of γ̇m, but this is normal
ince γ̇m has been estimated by assuming a sudden expansion of
he sheared zone. For higher shear stress (τ > 80 Pa), the shear
tress varies almost linearly with increasing shear rates. This re-
ult is consistent with our interpretation above. In contrast, the
ikhonov solution smooths the flow curve bulges, thus compar-

ng well with the WVD solution only at very low and high shear
ates (γ̇ < 1 s−1 or > 6 s−1).

Ancey also studied poorly sorted suspensions by adding fine
kaolin) particles to a coarse-grained suspension [6]. The ques-
ion was: how was bulk behavior affected by adding these par-
icles? Experimental data are reported in Fig. 16, showing the
orque exerted by the suspension on the vane as a function of
ts dimensionless rotational speed Γ . Obviously, when the solid
oncentration in fine particles φf is low, there is not much dif-
erence compared to the results found above with the granular

uspension (see Fig. 13). Conversely, when φf is sufficiently
igh, bulk behavior is expected to be viscoplastic (Sengun and
robstein’s approximation). Both statements are right, as shown

n Fig. 16 (material A refers to a suspension poor in kaolin
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ig. 16. Variation in the dimensionless torque M = C/(πρ ghR1) (where C is
he measured torque) exerted on the vane by the tested suspension as a function
f the rotational speed Γ . For material features, see Table 2. After [6].

hile material C is rich in kaolin). At an intermediate con-
entration φf (material B in Fig. 16), an odd behavior was
bserved.

Measuring the torque with time revealed that, when a shear
ate was applied, the shear stress first increased rapidly and
eached a maximum (short-term behavior), then decreased
lowly and flattened out, and rose once again to finally attain
ts late-time value (typically after 1000 revolutions of the vane).
eporting the early-time and late-time values of the measured

orque in Fig. 17, we observed a complicated response of the ma-
erial: over a short time span, it behaved like a power-law (shear-
hinning) fluid while, over a long time span, its flow curve was
dentical to that of material A. A possible explanation for this

ehavior is that, when a shear rate step is applied, the network of
articles is broken and contact between coarse particles is lubri-
ated by the kaolin-water suspension. Since the yield stress of
he kaolin–water suspension is not sufficient for coarse-particle

ig. 17. Variation in the dimensionless shear stress S = τ/(ρ̄gh) as a function
f dimensionless time t̃ = tΩ. Experiments made for a suspension made up of
lass beads (φc = 0.589, a = 0.4 mm), kaolin (φk = 0.098, τc = 1.2 Pa), and
ater (φt = 0.629). After [6].
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edimentation to be hindered, a network of particles in close
ontact forms again after a finite period of time. An alternative
xplanation is the following: according to Iverson [129], impos-
ng a shear-rate step on the slurry first caused dilatancy at short
imes, then contraction within the bulk and a pore-pressure in-
rease. Pore pressure slowly diffused (see Eq. (6)) until it became
ydrostatic. According to the Coulomb law (τ = (σ − p) tan ϕ),
uring the phase of contraction and high pore pressure, the shear
tress was lower than its long-time value (when the pressure was
ecame hydrostatic), but slowly increases toward this value as
he pore pressure decreased.

A more quantitative analysis of Ancey’s experiments can be
erformed as follows. Fine colloidal particles and water form
homogeneous colloidal blend, which becomes the interstitial
uid. If the yield stress of this blend is sufficiently high, it coun-

erbalances settling effects for the coarse fraction. This explana-
ion can be more evident using dimensional arguments. Let us
onsider two coarse neighboring particles within this blend. If
hese particles are squeezed to expel the thin layer of interstitial
uid between them, the normal-stress limit is 2τc. The squeezing
orce is the buoyant gravity force. We can define a dimensionless
umber N as the ratio of a buoyancy stress (here 4ρ′ga/3) to the
esisting force:

= 2ρ′ga

3τc
.

hen N � 1, the blend impeded coarse-particle settling; as a
esult, the coarse particles cannot come into contact. From the
heological point of view, this entails that, since all the con-
acts are lubricated by a viscoplastic material, the bulk is in turn
iscoplastic.

On the other hand, when N � 1, direct contacts between
articles arise. For certain flow conditions (e.g., at low shear
elocities Γ � 1), a percolating network of particles experi-
ncing sustained frictional contacts develops, which means that
he bulk behaves like a Coulomb mixture. Increasing the shear
ate (Γ � 1) can break direct contacts and induce contact lubri-
ation.

Experimentally, three classes can be distinguished:

For N ≥ 4, the bulk behavior is either frictional (Γ � 1) or
viscous. The viscous behavior exhibits a shear-thinning trend.
For N ≤ 1.1, the bulk behavior is viscoplastic. This regime
is quickly achieved (within a few milliseconds). For the same
material and flow conditions, the flow curve varies signifi-
cantly between two runs (deviation of the order of ±10%).
For 1.1 ≤ N ≤ 4, the bulk behavior depends on typical
timescales. As shown by Fig. 17, when we impose a shear-
rate step, the mechanical response is time-dependent. A stress
peak is first reached within a few milliseconds after the
shear rate is imposed (t̃ ≈ tmax). The shear stress then re-
laxes and reaches a plateau. Finally, at long times (pour
t̃ > tst.state), the shear stress increases and flattens out to

reach a new plateau. For low shear rates (Γ < 10−5), the
characteristic times are nearly constant, with tmax = O(2),
tmin = O(10), and tst.state = O(500). At high shear rates, the
characteristics vary with Γ : tmax ∝ Γ , while tst.state ∝ Γ −1.
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ig. 18. Glass beads (φc = 0.589, a = 0.4 mm), kaolin (φk = 0.098, τc =
.2 Pa), water (φt = 0.629). After [6].

It is worth noting that for Γ � 1, the timescales are similar:
tmax � tst.state = O(100). It is then possible to distinguish an
instantaneous behavior (at short times) and delayed behavior
(long term, when a steady regime is achieved). The variation
in the timescales with Γ is reported in Fig. 18. The behavior
for short times is shear thinning: S ∝ Γ 0.35, whereas for long
times, the bulk behavior is frictional.

.2. Flow features

Parsons et al. ran a series of experiments to investigate
he transition between viscoplasticity-dominated and friction-
ominated regimes [188]. They used a semi-circular inclined
ume and measured the velocity profile at the free surface; in
ddition, they estimated the bulk viscosity and yield stress using
ndependent tests. Different slurries were prepared by altering
he sand, clay, and silt fractions. They obtained muddy slurries,
hen the matrix was rich in silt and clay, and poorly sorted
ixtures, when the silt and clay contents were reduced. Sur-

risingly enough, the change in fine-particle content did not
ignificantly modify the appearance of the body, whereas it
arkedly altered the composition of the front and its behavior.

n all the experiments, they found that the Herschel–Bulkley
erformed well since the velocity profile and the plug posi-
ion were properly estimated. Reducing the fine fraction in the
lurries induced a radical change of behavior for the front (see
ig. 19):

For muddy slurries, the front takes the form of a blunt nose.
Lack of slip along the flume bottom caused a conveyer-belt-
like flow at the front.
For coarse-grained slurries, the front takes the form of a dry
granular locked nose slipping along the bed as a result of the

driving force exerted by the fluid accumulating behind the
snout. Additional material was gradually incorporated into
the snout, which grew in size until it was able to slow down
the body.

h
fl
c
s

rained flows. (a) Conveyer-belt-like flow at the front and (b) formation of a
rictional front. After [188].

nterestingly enough, the changes in the rheological properties
ainly affected the structure of the flow, especially within the

ip region.
Iverson, Denlinger, and Major investigated slurries predomi-

antly made up of a water-saturated mixture of sand and gravel,
ith a fine fraction of only a few percent [127–129,156]. Exper-

ments were run on the USGS flume and consisted in releasing a
olume of slurry (approximately 10 m3) down a 31◦, 95 m-long
ume. At the base of the flume, the material spread out on a pla-
ar, nearly horizontal, unconfined runout zone. Flow-depth, base
ormal stress, and base interstitial flow pressure were measured
t different places along the flume. Iverson and his co-workers
bserved that at early times, an abrupt front formed at the head of
he flow, followed by a gradually tapering body, then a thin, more
atery tail. The front remained relatively dry (with pore pres-

ure dropping to zero) and of constant thickness, while the body
longated gradually in the course of the flow. Over the longest
art of the flume, the basal pore pressure nearly matched the
otal normal stress, which means that shear strength was close
o zero and the material was liquefied within the body [129].
ote that this behavior is consistent with the rheometrical data

eported in Fig. 16, were data for material B did not show any
ield stress in the short-term response to a shear-rate step.

Fig. 20 shows a sequence of aerial photographs taken when
he material spread out on the runout surface. Self-organization
f the slurry flow into a coarse-grained boundary and a muddy
ore became quite visible as the flow traveled the runout surface.
ateral levees were formed by the granular front and confined

he ensuing muddy body. Note the levee formation is probably
ot induced by particle segregation since it is also observed for
ry granular flows involving spherical equal-size particles [90].

In short, experiments performed by Parson et al. and Iver-
on et al. have shown that the flow of poorly sorted ma-
erials was characterized by the coexistence of two zones,
ach one with a distinctive rheological behavior: the flow bor-
er was rich in coarse-grained materials (Coulomb frictional
ehavior), while the core was fine-grained (viscoplastic be-

avior). This self-organization has a great influence on the
ow behavior; notably the run-out distance can be signifi-
antly enhanced as a result of levee formation limiting lateral
preading.
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Fig. 20. Snapshots showing slurry flow discharging from the U.S. Geological
Survey Debris-flow Flume and crossing the unconfined, nearly horizontal runout
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one. The dark-toned material around the perimeter of the flow was predomi-
antly gravel, while the light-toned material in the center of the flow was liquified
ud. Figure reproduced from [127]; courtesy of Dr. R.M. Iverson.

. Application: sheet flows

In this section, we will examine the consequences of the
heological properties the flow features have for thin free-
urface flows (referred to as sheet flows), a typical flow con-
guration for geophysical flows. Different flow regimes can
ccur depending on the relative strength of inertial, pressure,
nd viscous contributions in the governing equations. In Sec-
ion 4.1, dimensional analysis will be used to help clarify the
otions of inertia-dominated and friction-dominated regimes.
e will then focus on creeping flows on gentle slopes (Sec-

ion 4.2) and fast flows (Section 4.3). In the analytical com-
utations, we will use the shallowness of sheet flows to de-
ive approximate equations. Since the Bingham model is the
ost studied and widespread constitutive equation, most ex-

mples will be based on this model, but we will also refer to
apers dealing with alternative viscoplastic models or Coulomb
riction.

.1. Scaling and flow regimes

We consider a shallow layer of fluid flowing over a rigid

mpermeable plane inclined at an angle θ (see Fig. 21). The
uid is viscoplastic and incompressible; its density is denoted
y ρ and its bulk viscosity by η = τ/γ̇ . The ratio ε = H∗/L∗
etween the typical vertical and horizontal lengthscales, H∗ and

σ

Fig. 21. The configuration of the flow.

∗, respectively, is assumed to be small. The streamwise and
ertical coordinates are denoted by x and y, respectively.

A two-dimensional flow regime is assumed, namely any
ross-stream variation is neglected. The depth of the layer is
iven by h(x, t). The horizontal and vertical velocity compo-
ents of the velocity u are denoted by u and v, respectively.
he fluid pressure is referred to as p(x, y, t), where t denotes

ime. The surrounding fluid (assumed to be air) is assumed to be
ynamically passive (i.e., inviscid and low density compared to
he moving fluid) and surface tension is neglected, which implies
hat the stress state at the free surface is zero.

The governing equations are given by the mass and momen-
um balance equations

· u = 0, (25)

du
dt

= ρ
∂u
∂t

+ ρ(u · ∇)u = ρg − ∇p + ∇ · σ, (26)

upplemented by the following boundary conditions at the free
urface

(x, h, t) = dh

dt
= ∂h

∂t
+ u(x, h, t)

∂h

∂x
, v(x, 0, t) = 0. (27)

here are many ways of transforming these governing equa-
ions into dimensionless expressions [20,140,149,191]. Here
e depart slightly from the presentation given by Liu and Mei

149]. The characteristic streamwise and vertical velocities, the
imescale, the typical pressure, and the order of magnitude of
ulk viscosity are referred to as U∗, V∗, T∗, P∗, and η∗, re-
pectively. Moreover, in addition to the lengthscale ratio ε, we
ntroduce the following dimensionless numbers that character-
ze free-surface, gravity-driven flows: the flow Reynolds number
nd the Froude number

e = ρU∗H∗
η∗

and Fr = U∗√
gH∗ cos θ

.

he following dimensionless variables will be used in this sec-
ion:

ˆ = u

U∗
, v̂ = v

V∗
, x̂ = x

L∗
, ŷ = y

H∗
, and t̂ = t

T∗
natural choice for T∗ is T∗ = L∗/U∗. The stresses are scaled

s follows:
ˆxx = η∗U∗
L∗

σxx, σ̂xy = η∗U∗
H∗

σxy, σ̂yy = η∗U∗
L∗

σyy, and

p̂ = p

P∗
,
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hereσxx,σxy, andσyy are the normal stress in the x direction, the
hear stress, and the normal stress in the x direction, respectively.
ere we are interested in free-surface flows. This leads us to

et P∗ = ρgH∗ cos θ, since we expect that, to leading order,
he pressure adopts a hydrostatic distribution (see below). If we
efine the vertical velocity scale as V∗ = εU∗, the mass balance
q. (25) takes the following dimensionless form

∂û

∂x̂
+ ∂v̂

∂ŷ
= 0. (28)

ubstituting the dimensionless variables into the momentum bal-
nce Eq. (26) leads to

Re
dû

dt̂
= εRe

Fr2

(
1

ε
tan θ − ∂p̂

∂x̂

)
+ ε2 ∂σ̂xx

∂x̂
+ ∂σ̂xy

∂ŷ
, (29)

3Re
dv̂

dt̂
= εRe

Fr2

(
−1 − ∂p̂

∂ŷ

)
+ ε2 ∂σ̂xy

∂x̂
+ ε2 ∂σ̂yy

∂ŷ
. (30)

he momentum balance equation expresses a balance between
ravity acceleration, inertial terms, pressure gradient, and vis-
ous dissipation, whose order of magnitude is ρg sin θ, ρU2∗/L∗,
∗/L∗, and η∗U∗/H2∗ , respectively. Depending on the values
onsidered for the characteristic scales, different types of flow
egime occur. At least four regimes, where two contributions
revail compared to the others, could be achieved in principle

1) Inertial regime, where inertial and pressure-gradient terms
are of the same magnitude. We obtain

U∗ =
√

gH∗ cos θ.

The order of magnitude of the shear stress is ∂σxy/∂y =
ρg O(ε−1Re−1). This regime occurs when: εRe � 1 and
Fr = O(1).

2) Viscous regime, where the pressure gradient is balanced by
viscous stresses within the bulk. In that case, we have

U∗ = ρg cos θH3∗
η∗L∗

.

Inertial terms must be low compared to the pressured gra-
dient and the slope must be gentle (tan θ � ε). This im-
poses the following constraint: εRe � 1. We deduced that
Fr2 = O(εRe) � 1.

3) Visco-inertial regime, where inertial and viscous contribu-
tions are nearly equal. In that case, we have

U∗ = 1

ε

η∗
ρH∗

.

The pressure gradient must be low compared to the vis-
cous stress, which entails the following condition η∗ �
ερ
√

gH3∗ . We obtain εRe ∼ 1 and Fr = η∗/(ρε
√

gH3∗ ) �
1.

4) Nearly steady uniform regime, where the viscous contribu-
tion matches gravity acceleration. In that case, we have

2

U∗ = ρg sin θH∗
η∗

.

Inertia must be negligible, which means ε � 1 (stretched
flows). We obtainRe = O(Fr2) and tan θ � ε (mild slopes).

w
p
a
a

id Mech. 142 (2007) 4–35

n the inertial regime, the rheological effects are so low that they
an be neglected and the final governing equations are the Euler
quations. The visco-inertial regime is more spurious and has
o specific interest in geophysics, notably because the flows are
apidly unstable. More interesting is the viscous regime that may
chieved for very slow flows on gentle slopes (θ � 1), typically
hen flows come to rest. We will further describe this regime in
ection 4.2. When there is no balance between two contributions,
e have to solve the full governing equations. This is usually
difficult task, even numerically. To simplify the problem, one

an use flow-depth averaged equations (see Section 4.3). The
early-steady regime will be exemplified in Section 4.3 within
he framework of the kinematic-wave approximation. Finally, it
hould be kept in mind that the partitioning into four regimes
olds for viscous (Newtonian) fluids and non-Newtonian mate-
ials for which the bulk viscosity does not vary significantly with
hear rate over a sufficiently wide range of shear rates. In the
onverse case, further dimensionless groups (e.g., the Bingham
umber Bi = τcH∗/(μU∗)) must be introduced, which makes
his classification more complicated.

.2. Slow motion

Slow motion of a viscoplastic material has been investigated
y Liu and Mei [149,150], Mei [171], Mei and Yuhi [170], Cous-
ot et al. [68,69], Balmforth and Craster [20,23], and Matson and
ogg [165]. Taking the two dominant contributions in Eqs. (29)

nd (30) and returning to the physical variables, we deduce

xy = ρg cos θ(h − y)

(
tan θ − ∂h

∂x

)
, (31)

= ρg(h − y) cos θ. (32)

he bottom shear stress is then found to be τb = σxy|y=0. For
ottom shear stresses in excess of the yield stress τc, flow is
ossible. When this condition is satisfied, there is a yield surface
t depth y = h0 within the bulk, along which the shear stress
atches the yield stress

xy|y=h0 = ρg cos θ(h − h0)

(
tan θ − ∂h

∂x

)
= τc. (33)

he yield surface separates the flow into two layers [20,149]: the
ottom layer, which is sheared, and the upper layer or plug layer,
here the shear rate is nearly zero. Indeed, using an asymptotic

nalysis, Balmforth and Craster demonstrated that in the so-
alled plug layer, the shear rate is close to zero, but nonzero
20]. This result may be seen as anecdotic, but it is in fact of
reat importance since it resolves a number of paradoxes raised
bout viscoplastic solutions [2,148].

On integrating the shear-stress distribution, we can derive a
overning equation for the flow depth h(x, t). For this purpose,

e must specify the constitutive equation. For the sake of sim-
licity, we consider a Bingham fluid in one-dimensional flows
s Liu and Mei [149] did; the extension to Herschel–Bulkley
nd/or two-dimensional flows can be found in [20,23,170]. In
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he sheared zone, the velocity profile is parabolic

(y) = ρg cos θ

μ

(
tan θ − ∂h

∂x

)(
h0y − 1

2
y2
)

for y ≤ h0,

hile the velocity is constant to leading order within the plug

(y) = u0 = ρgh2
0 cos θ

μ

(
tan θ − ∂h

∂x

)
for y ≥ h0,

he flow rate is then

=
∫ h

0
u(y) dy = ρgh2

0(3h − h0) cos θ

6μ

(
tan θ − ∂h

∂x

)
. (34)

ntegrating the mass balance equation over the flow depth pro-
ides

∂h

∂t
+ ∂q

∂x
= 0. (35)

ubstituting q with its expression (34) and the yield surface
levation h0 with Eq. (33) into Eq. (35), we obtain a governing
quation for h, which takes the form of a nonlinear diffusion
quation

∂h

∂t
= ∂

∂x

[
F (h, h0)

(
∂h

∂x
− tan θ

)]
, (36)

ith F = ρgh2
0(3h − h0) cos θ/(6μ).

A typical application of this analysis is the derivation of the
hape of a viscoplastic deposit. Contrary to a Newtonian fluid,
he flow depth of a viscoplastic fluid cannot decrease indefinitely
hen the fluid spreads out along an infinite plane. Because of

he finite yield stress, when it comes to rest, the fluid exhibits
nonuniform flow-depth profile, where the pressure gradient is

xactly balanced by the yield stress. On an infinite horizontal
lane, the bottom shear stress must equal the yield stress. Using
q. (31) with θ = 0 and y = 0, we eventually obtain [149]

xy|y=0 = τc = −ρgh
∂h

∂x
, (37)

hich, on integrating, provides

(x) − hi =
√

2τc

ρg
(xi − x),

here h = hi at x = xi is a boundary condition. This equation
hows that the deposit-thickness profile depends on the square
oot of the distance. When the slope is nonzero, an implicit
olution for h(x) to Eq. (31) is found [149]

tan θ(h(x) − hi) + τc

ρg cos θ
log

[
τc − ρgh sin θ

τc − ρghi sin θ

]

= tan2 θ(x − xi). (38)

he shape of a static two-dimensional pile of viscoplastic fluid
as investigated by Coussot et al. [69], Mei and Yuhi [170], Os-
ond and Griffiths [185], and Balmforth et al. [23]; the latter de-

ived an exact solution, while the former authors used numerical
ethods or ad hoc approximations to solve the two-dimensional
quivalent to Eq. (31). Similarity solutions to Eq. (36) have also
een provided by Balmforth et al. [23] in the case of a vis-
oplastic flow down a gently inclined, unconfined surface with
time-varying source at the inlet.

t
W
t
q
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.3. Fast motion

The most common method for solving fast-motion free-
urface problems is to depth-average the local equations of mo-
ion. In the literature, this method is referred to as the Saint-
enant approach, the boundary-layer approximation, the lubri-
ation approximation, the long-wave approximation, etc. Here,
y fast motion, we refer to situations where inertia, rheological
ffects, and pressure play all a role in flow dynamics. However,
he flow velocity must not be too high; otherwise instabilities
ccur at the free surface [24,65,151,229].

The Saint-Venant approach involves integrating the mo-
entum and mass balance equations over the depth. A

onsiderable body of work has been published on this
ethod for Newtonian and non-Newtonian fluids, includ-

ng viscoplastic [64,65,116,117,191,223] and granular materi-
ls [45,61,101,102,130,142,161,195,199,212]. Here, we shall
riefly recall the principle and then directly provide the result-
ng governing equations. Let us start with the local mass balance
25). Integrating this equation over the flow depth leads to∫ h(x,t)

0

(
∂u

∂x
+ ∂v

∂y

)
dy

= ∂

∂x

∫ h

0
u(x, y, t) dy − u(h)

∂h

∂x
− v(x, h, t) − v(x, 0, t).

(39)

t the free surface and the bottom, the y-component of velocity
satisfies the boundary conditions (27). We then easily deduce

∂h

∂t
+ ∂hū

∂x
= 0, (40)

here we have introduced depth-averaged variables defined as

¯ (x, t) = 1

h(x, t)

∫ h(x,t)

0
f (x, y, t) dy.

he same procedure is applied to the momentum balance Eq.
26). Without any difficulty, we can deduce the averaged momen-
um equation from the x-component of the momentum equation

¯

(
∂hū

∂t
+ ∂hu2

∂x

)
= ρ̄gh sin θ − ∂hp̄

∂x
+ ∂hσ̄xx

∂x
− τb, (41)

here we have introduced the bottom shear stress: τb =
xy(x, 0, t). In the present form, the system of Eqs. (40) and (41)

s not closed since the number of variables exceeds the number
f equations. A common approximation involves introducing a
arameter (sometimes called the Boussinesq momentum coeffi-
ient), which links the mean velocity to the mean square velocity

2 = 1

h

∫ h

0
u2(y) dy = αū2. (42)

ost of the time, the coefficient α is set to unity.
Another helpful (and common) approximation, not men-
ioned in the above system, concerns the computation of stress.
ithin the framework of long wave approximation, we assume

hat longitudinal motion outweighs vertical motion: for any
uantity m related to motion, we have ∂m/∂y � ∂m/∂x. This
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llows us to consider that every vertical slice of flow can be
reated as if it was locally uniform. In such conditions, it is pos-
ible to infer the bottom shear stress by extrapolating its steady-
tate value and expressing it as a function of u and h. Using this
pproximation, Coussot [64,65] obtained the following bottom
hear stress

b = μ

(
1 + 2n

1 + n

)n
ūn

hn+1
0 ((2 + n−1)h − h0)n

,

or Herschel–Bulkley fluids. Using the first-order approximation
f the y-component of the momentum balance Eq. (26), he found
hat the pressure was hydrostatic, which leads to a flow-depth
veraged pressure

¯ = 1
2ρgh cos θ.

he effects of normal stresses can be neglected to first order. Note
hat this derivation is not the only way of deriving the Saint-
enant equations for a Bingham fluid; alternative procedures
ave been proposed [116,117,189]. For instance, Huang and
arcìa further considered two partial differential equations to

upplement the governing Eqs. (40) and (41) [116,117]: one
quation governing the elevation h0 of the yield surface and
nother providing the bottom shear stress.

For Coulomb materials, the same procedure can be repeated.
he only modification concerns the momentum balance Eq. (41),
hich takes the form [130,212]

¯

(
∂hū

∂t
+ ∂hū2

∂x

)
= ρ̄gh

(
sin θ − k cos θ

∂h

∂x

)
− τb, (43)

ith k a proportionality coefficient between the normal stresses
¯xx and σ̄yy, which is computed by assuming limiting Coulomb
quilibrium in compression (∂xū < 0) or extension (∂xū > 0);
he coefficient is called the active/passive pressure coefficient.
n Eq. (43), the bottom shear stress can be computed by us-
ng the Coulomb law τb = (σ̄yy|y=0 − pb) tan ϕ, with σ̄yy|y=0 =
¯gh cos θ and pb the pore pressure at the bed level.

Analytical solutions can be obtained for the Saint-Venant
quations. Most of them were derived by seeking self-similarity
olutions (see [61,212,214] for the Coulomb model and [114]
or viscoplastic and hydraulic models). Some solutions can also
e obtained using the method of characteristics. We are going
o see two applications based on these methods.

In the first application, we use the fact that the Saint-Venant
quations for Coulomb materials are structurally similar to those
sed in hydraulics when the bottom drag can be neglected. The
nly difference lies in the nonhydrostatic pressure term and the
ource term (bottom shear stress). However, using a change in
ariable makes it possible to retrieve the usual shallow-water
quations and seek similarity solutions to derive the Ritter so-
utions [84,139,142,161,220]. The Ritter solutions are the so-
utions to the so-called dam-break problem, where an infinite
olume of material at rest is suddenly released and spreads over
dry bed (i.e., no material laying along the bed). Much attention

as been paid to this problem, notably in geophysics because it
s used as a paradigm for studying rapid surge motion. We pose

∗ = x − 1
2δt2, t∗ = t, u∗ = u − δt, and h∗ = h,

t
fl
I
r

id Mech. 142 (2007) 4–35

here we introduced the parameter δ = g cos θ(tan θ − μ). We
educe

∂h∗

∂t∗
+ ∂h∗u∗

∂x∗ = 0, (44)

∂u∗

∂t∗
+ u∗ ∂u∗

∂x∗ + gk cos θ
∂h∗

∂x∗ = 0. (45)

or the dam-break problem, the initial and boundary conditions
re

−∞ < x < ∞, u(x, 0) = 0,

x < 0, h(x, 0) = hi,

x > 0, h(x, 0) = 0.

(46)

he analytical solutions to Eqs. (44) and (45) are the well-known
itter solutions. We are looking for a similarity solution in the

orm [100]

¯ ∗ = t∗β/αU(ζ∗) and h∗ = t∗γ/αH(ζ∗),

ith ζ∗ = x∗/t∗α the similarity variable, and H and U two un-
nown functions. Substituting ū∗ and h∗ with their similarity
orms into (44) and (45), we find: β + α = 1 and γ + 2α = 2.
or this solution to satisfy the initial and boundary conditions,
e must pose β = γ = 0, hence α = 1. We then infer

H U − ζ∗

U − ζ∗ kg cos θ

)
·
(

U ′

H ′

)
= 0,

here the prime denotes the ζ∗-derivative. For this system
o admit a nonconstant solution, its determinant must van-
sh, which leads to kg H cos θ = (U − ζ∗)2. On substituting
his relation into the system above, we deduce U ′ = 2ζ∗/3,
hus U = 2(ζ∗ + c)/3, where c is a constant of integration,

= 4(c − (1/2)ζ∗)2/(9 kg cos θ). The constant c is found us-
ng the boundary conditions and by assuming that the undis-
urbed flow slides at constant velocity δt: c = √

kghi cos θ. Re-
urning to the original variables, we find

¯ (x, t) = ū∗ + δt = 2

3

(x

t
+ δt + c

)
, (47)

(x, t) = 1

9kg cos θ

(
−x

t
+ δ

2
t + 2c

)2

. (48)

he boundary conditions also imply that the solution is valid
ver the ζ-range [−c − δt, 2c + δt/2]; the lower bound corre-
ponds to the upstream condition ū = 0, while the upper bound
s given by the downstream condition h = 0. It is worth noting
hat the front velocity uf = 2c + δt/2 is constantly increasing or
ecreasing depending on the sign of δ. When δ < 0 (friction in
xcess of slope angle), the front velocity vanishes at t = 4c/|δ|.
ig. 22 shows that the shape of the tip region is parabolic at short

imes (δt � c), in agreement with experimental data [21,221].
olutions corresponding to finite released volumes were also
btained by Dressler [84] and Savage [212,214].

In the second application, we use the method of characteris-

ics to find a solution to the governing equations for Bingham
ows that are stretched thin when they are nearly steady uniform.
n Section 4.1, we found that for mild slopes, when the aspect
atio ε is very low, the inertial and pressure contributions can
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are given by the right-hand side term λ(h) in Eq. (51). These
characteristic curves can be used to solve an initial value prob-
lem, where the initial value of h is known over a given interval:
h = hi(xi) (at t = 0). The value of h along each characteristic
curve is the value of h at the initial point x(0) = xi. We can thus
write

h(x, t) = hi(xi) = hi(x − λ(hi(xi))t).

It is worth noting that because of the nonlinearity of Eq. (49), a
smooth initial condition can generate a discontinuous solution
(shock) if the characteristic curves intersect, since at the point
of intersection h takes (at least) two values [145]. An interesting
related issue is the Riemann problem, where we seek a solution
to the nonlinear advection Eq. (49) when the initial condition
is discontinuous and step-shaped (see Eq. (46) for the initial
conditions). Here, this problem is of particular interest not only
for developing numerical algorithms, but also for finding solu-
tions to the dam-break problem. It can be shown that, when the
bed is dry ahead of the front, the solution takes the form of a
simple wave or rarefaction wave, i.e., a continuous similarity
solution to Eq. (49), which links the material still at rest behind
and the surge tip. Indeed, if we seek similarity solutions to Eq.
(49) in the form h = tαH(ζ), with |ζ| = x/tβ, we find on sub-
stituting this form into Eq. (49) that α = 0 and β = 1; here we
pose h = H(−x/t). Furthermore, H is solution of the equation

H ′ (ζ − KH(H − hp)
) = 0,

from which we deduce that either H is constant or satisfies the
quadratic equation ζ − KH(H − hp) = 0. Solving this equation
we find

h = hp

2

(
1 +

√
1 − 4

Kh2
p

x

t

)
,

defined for x ≤ ẋft with ẋf = Kh2
p/4. Contrary to the Ritter solu-

tion for water, the flow-depth profile presents a steep nose at the
front (confusingly called shock in earlier work) and is concave
backward, as shown in the numerical example of Fig. 23. Note
that the flow depth at the front is exactly half the plug thickness
hp. The front moves at constant velocity ẋf. Note that the solu-
tion given here differs from the approximate solution provided
in the engineering literature [16,116,119], where a constraint
ig. 22. Flow-depth profile generated just after the wall retaining a granular
aterial is removed. Computations made with c = 1 m/s. The similarity variable
is ζ = x/t.

e neglected. This means that the flow-depth averaged velocity
s very close to the mean velocity reached for steady uniform
ows

¯ s = up

(
1 − h0

3h

)
,

here up is the plug velocity

p = ρgh2
0 sin θ

2μ
,

ith h the flow depth and h0 = h − τc/(ρg sin θ) the yield-
urface elevation; h0 must be positive or no steady flow occurs.
e then use the kinematic-wave approximation introduced by

ighthill and Whitham [147] to study floods on long rivers; this
pproximation was then extensively used in hydraulic applica-
ions [16,116,117,119,236]. It involves substituting the mean
elocity into the mass balance Eq. (40) by its steady-state value

∂h

∂t
+ ∂

∂x
up

(
h − h0

3

)
= 0. (49)

ntroducing the plug thickness hp = h − h0 = τc/(ρg sin θ), we
btain an expression that is a function of h and its time and space
erivative

∂h

∂t
+ K

(
h2 − hhp

) ∂h

∂x
= 0,

ith K = ρg sin θ/μ. The governing equation takes the form of
nonlinear advection equation, which can be solved using the
ethod of characteristics [145].
Using the chain rule for interpreting this partial differential

q. (49), we can show that it is equivalent to the following or-
inary equation

dh

dt
= 0, (50)

long the characteristic curve

dx = λ(h), (51)

dt

n the (x, t) plane, with λ(h) = Kh
(
h − hp

)
. Eq. (50) shows that

he flow depth is constant along the characteristic curve, hence
he characteristic curves are straight lines, the slope of which

Fig. 23. Flow-depth profile of the viscoplastic simple wave generated after the
wall is removed. Computations made with K = 4 m−1 s−1 and hp = 1 m.
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on the volume released was used to compute the front position.
It is also worth wondering whether the approximation of the
kinematic wave can be used to provide a correct solution to the
dam-break problem, where both inertia and pressure gradient
should be taken into account.

5. Field evidence

5.1. Using historical or monitored events

For a long time, the only source of information was the traces
of past events [132]. For instance, measuring the flow-depth pro-
file of a debris flow deposit and using the flow-depth profile Eq.
(38) for a Bingham fluid makes it possible to derive the yield
stress [69,207]; the mean flow thickness of a muddy debris flow
in straight channels or the slope angle of a coarse-grained de-
posit can also be used to infer the yield stress τc or the friction
angle ϕ. Figs. 24 and 25 shows typical examples of debris-flow
deposit. In Fig. 24, the deposit is a lateral levee left by a granu-
lar debris flow, which is characterized by a nearly straight free
surface. In Fig. 25, the deposit profile is nearly parabolic, which
is interpreted as the hallmark of viscoplastic behavior (see Eq.
38). Another example is provided by superelevation in channel
bends. Indeed in the course of an avalanche or a debris flow, the
flowing material sometimes encounters curved channel bends,
which cause the material to superelevate or climb up on the
bend side because of centrifugal forces. The level of flowing
material is higher on the outward side than on the inward side.
This can provide information on mean velocity at that location
[228,133,168].

Over the last two decades, an increasing number of sites
throughout the world have been equipped with sensors and vide-
orecorders, such as the Illgraben torrent (debris flow) [166,167],
the Schipfenbach stream [121], and the Vallée de la Sionne (snow
avalanches) in Switzerland [4], the Acquabona river in Italy
[42], the Col du Lautaret (snow avalanches) [172] in France,
etc. Monitored and historical events have been used to back-
calculate the constitutive parameters by matching the field data
(run-out distance, flow-rate, etc.) and the model’s predictions
[25,50,77,81,237,242]. This, however, does not provide evi-

Fig. 24. Lateral levee of a coarse-grained debris flow in the Bez torrent (France,
24 July 1995). The levee looks like a unconsolidated, noncohesive granular pile.
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ig. 25. Deposit lobe of a poorly sorted debris flow in the Valgaudemar valley
France, 30 July 2003), caused by heavy rainfalls. The deposit-thickness profile
xhibits a parabolic shape.

ence that the constitutive equation is appropriate. Occasionally,
ome useful information such as the velocity profile within the
ulk has been obtained; for instance, Gubler [104] took measure-
ents on real avalanches using a Doppler radar. He found that the

elocity profile inside the observed avalanches exhibited a plug
ow (constant-velocity zone) and a sheared zone at the bottom,
learly revealing that there was shear localization at the bottom.

.2. Inferring rheological information from velocity records

If we wish to derive rheological information from field data,
he first idea would be to extend viscometric methods (e.g., the

ethod for deriving the flow curve from the flow-velocity/flow-
epth relationship [13]) or to develop inverse-problem tech-
iques (e.g., see [209]), where information can be inferred from
eld data by assuming a particular form of the governing equa-

ions [e.g., the sheet-flow Eqs. (40)–(41)]. In practice, however,
his idea is of limited interest given how difficult it is to obtain
eld measurements of both the flow depth and mean velocity.
n most cases, the only information available is the front veloc-
ty, which substantially the possibility of inferring rheological
nformation.

However, the idea deserves further development by simpli-
ying the equations of motion. Here, the simplest case where
he fluid can be considered a slender sliding body, of volume

and mass m, is examined. Investigating this simplified case,
ncey and Meunier [12] performed a back analysis on 15 well-
ocumented avalanches by inferring the bulk frictional force
rom avalanche velocity. In their treatment, the avalanche is as-
umed to behave as a rigid body, which moves along a curvilinear
wo-dimensional profile, whose equation in a Cartesian frame
akes the form: y = z(x), where y is the elevation and x is an ar-
itrary distance measured along a horizontal axis (see Fig. 26).
he curvature radius is denoted by R. The sliding body experi-
nces a frictional force, the tangential and normal components

f which are denoted by Ft and Fn, respectively.

The position of the center of mass is given by its curvilinear
bscissa ξ = ∫ x

0

√
1 + z2

x(x′) dx′ (where zx is the x-derivative of
). Therefore, we have x = ξ cos θ̄, with θ̄ the mean path inclina-



C. Ancey / J. Non-Newtonian Fluid Mech. 142 (2007) 4–35 29

F
b

t
o
b
t
b
g
c

w
s
f
−
l
c
T
t(

−

O
w
fl
O
i
t
a

a
t
f
i
l
t

Fig. 27. Variation in the frictional force per unit mass F/m with the avalanche
velocity u for the avalanche of 21 December 1997 at the Arabba site (solid line);
F/m was obtained by applying Eq. (52) to the measured velocities and path
profile, both regularized using Legendre polynomials. The dashed curve stands
for the variation in the driving force per unit mass g sin θ. In the inset, we have
reported the variations in the measured velocities (dots) with downstream dis-
tance x. In the inset, the solid line represents the interpolated velocities while the
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ig. 26. Curvilinear frame related to the one-dimensional path profile traveled
y avalanches.

ion computed over the interval [0, x]. The ordinate of the center
f mass (relative to the curve z) is denoted by η. In the natural
asis (e1, e2) associated with the curvilinear coordinates (ξ, η),
he contravariant components of the velocity vector are denoted
y (u(1), u(2)) = (dξ/dt, dη/dt) and its physical components are
iven by (u〈1〉, u〈2〉) = ((1 − η/R)u(1), u(2)). The contravariant
omponents of acceleration in the natural basis are

a(1) = d2ξ

dt2 + Γ 1
11

(
dξ

dt

)2

+ 2Γ 1
12

dξ

dt

dη

dt
+ Γ 1

22

(
dη

dt

)2

,

a(2) = d2η

dt2 + Γ 2
11

(
dξ

dt

)2

+ 2Γ 2
12

dξ

dt

dη

dt
+ Γ 2

22

(
dη

dt

)2

,

here Γ k
ij are the Christoffel symbols. Because the natural ba-

is is orthogonal, the Christoffel coefficients are zero, except
or Γ 1

12 = Γ 1
21 = −C/(1 − Cη), Γ 2

11 = C(1 − Cη), and Γ 1
11 =

η(dC/dξ)/(1 − Cη), where C = 1/R is the curvature. The ve-
ocity in the ξ-direction is u = u〈1〉 = (1 − ηC) dξ/dt; η is fairly
onstant and the velocity u〈2〉 in the η-direction is close to zero.
he downward and normal components of the momentum equa-

ion can be expressed in the physical curvilinear basis as

1 − η

R

)2 d2ξ

dt2 + η

R2

dR

dξ

(
dξ

dt

)2

= g sin θ(ξ) − Ft

m
, (52)

1

R − η

(
dξ

dt

)2

= −g cos θ(ξ) + Fn

m
. (53)

n the left-hand side of (52), the first term represents the down-
ard component of the acceleration, while the second term re-
ects the radial effect due to the curvature of the path profile.
n the right-hand side of (52), the first contribution is the driv-

ng action of gravity while the second term stands for the fric-
ional force exerted by the bottom (ground or snowcover) on the
valanche.

The interpretation of Eqs. (52) and (53) is clear: if one has
record yielding the body velocity as a function of the posi-

ion along the path, then it is possible to directly deduce the

rictional force components and its relationship with the veloc-
ty u to a multiplicative factor m. To first order (R being very
arge in most cases), the average normal force only depends on
he local slope: Fn = mg cos θ(ξ). Eq. (52) should provide the

f
4
w
f

ashed line stands for the velocity of a rigid body sliding in a purely Coulom-
ic regime (with f = 0.66). Letters from A to C refer to various stages of the
valanche run (see text). After [12].

ain trends of the rheological behavior. Plotting the resulting
orce per unit mass in a phase space (u, F/m) can give an idea
f the dependence of the frictional force on the mean velocity
nd normal component.

For most events, the frictional force was found to be weakly
ependent on velocity or to fluctuate around a mean value dur-
ng the entire course of the avalanche. Fig. 27 shows a typical
xample provided by the avalanche at the Arraba site (Italy)
n 21 December 1997. This figure reports the variation in the
rictional force per unit mass with velocity (solid line) and the
ownward component of the driving force per unit mass g sin θ

dashed line). In the inset, we have plotted the measured ve-
ocities (dots) together with the interpolation curve (Legendre
olynomials) used in the computations. On the same plot, we
ave drawn the velocity variations as if the avalanche were in
purely Coulomb regime (dashed line): assuming that the fric-

ional force is in the Coulomb form F = fmg cos θ, where f
s the bulk friction coefficient, we numerically solved the equa-
ion of motion (Eq. (52), in which Ft/m is replaced with the
xpression of F above). As shown in Fig. 27, in the early phases
between points A and B), the frictional force gently decreased
ith increasing velocity and was slightly lower than the gravity

cceleration g sin θ. Because of the small difference between
sin θ and F/m, the avalanche accelerated less vigorously than
n avalanche in an inertial regime. At instant B, the avalanche
eached its maximum velocity (24 m/s). At this point, the fric-
ional force started exceeding the gravitational force and the
valanche decelerated monotonically. Obviously, the frictional

orce did depend on the avalanche velocity, as shown in Fig.
, but this dependence remained slight since between B and C
e have: F/m ∝ u0.1±0.05. Thus, as a first approximation, the

rictional force can be considered constant between instants A
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Fig. 28. Empirical probability distribution functions (pdf) of the 173 f values
collected from the seven paths. The thick line represents the distribution function
of the total sample, whereas the thin lines are related to individual paths. Each
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urve has been split into three parts: the central part (solid line) corresponds to
he range of computed μ values, while the end parts have been extrapolated.
fter [8].

nd C: F/m = 5 ± 1.3 m/s2. As shown in the inset of Fig. 27,
he computed velocities obtained by assuming a purely Coulom-
ic regime (dashed curve) compare well with the data: like the
ecorded values, the computed velocities exhibit an asymmet-
ic U-shaped form, while the relative deviation between the two
urves is less than 20%.

For a few events, the bulk frictional force exhibits a depen-
ence on the mean velocity, but no clear trend in the f (u) de-
endence was found [12]. An interesting property of this simple
oulomb block model is that knowing the run-out distance (point
f furthest reach) of an avalanche makes it possible to infer the
value. Since in different alpine regions, avalanche events have
een recorded over a long time period at different sites, we can
educe the statistical properties of the f distribution at different
laces. If the bulk friction coefficient f were a true physical pa-
ameter, its statistical properties should not vary with space. An-
ey thus conducted a statistical analysis on f values by selecting
73 avalanche data collected from seven sites in France. These
ites are known to produce large avalanches and their activity
as been followed up since the beginning of the 20th century.
ig. 28 shows the probability distribution of f for each site to-
ether with the entire sample. Although the curves are close and
imilar, they are not statistically identical. This means that the
robability distribution function of f is not uniquely determined
nd depends on other parameters such as snow properties, site
onfiguration, etc. Within this approach, the Coulomb model
uccessfully captures the flow features, but its friction parame-
er is not a true physical parameter. This, however, should not
egate the interest of the Coulomb model because, given the
umber of approximations needed to derive (52) and (53), the
tatistical deviance may originate from crude assumptions.

. Conclusion
In this review paper, we have shown various aspects of
oulomb plasticity and viscoplasticity. Although the physical
echanisms on the particle scale are quite similar on numerous

c
p
b
v

id Mech. 142 (2007) 4–35

oints, the rheological properties differ significantly on the bulk
cale in the continuum-mechanics description. The key differ-
nces lie mainly in the two-phase nature of the bulk and the role
f normal stress in the shear-stress generation.

For idealized suspensions of equal-size particles within a
ewtonian fluid, microstructural analysis together with dimen-

ional arguments help clarify the physical origins of plasticity
nd the different forms of plastic behavior. On the whole, this
nderstanding remains qualitative and, although the theoreti-
al predictions are often in agreement with experimental data,
ull and quantitative agreement is far from complete. In partic-
lar, recent experiments have substantiated the notion of time-
ependent yield stress/surface. Note that in soil mechanics, the
onuniqueness of the yield surface and its history-dependence
hardening/softening) has long been recognized [78,234]. Labo-
atory experiments carried out on model suspensions have shown
hat post-yielding behavior is usually properly characterized by
ither a Coulomb-like or a viscoplastic model depending on
he material properties and flow features. Phenomenological
aws (e.g., Herschel–Bulkley, Coulomb) successfully capture
he salient rheological properties for flow conditions that do not
epart significantly from steady, simple-shear flow conditions.
ot much experimental work has been accomplished so far on
nsteady and three-dimensional flows. In this respect, it is worth
oting that to date, as far as I am aware, no rheological determi-
ation of the yield surface has been carried out in the rheology
f concentrated suspensions.

Contrasting with model suspensions, natural suspensions ex-
ibit a diversity of grain sizes and types, which makes the use
f concepts drawn from model suspensions trickier and, per-
aps, more deceptive. When the bulk is well sorted with a net
eparation between the fine and coarse fractions, it usually ex-
ibits viscoplastic properties [218,219]. For poorly sorted mate-
ials, there is a nearly continuous size distribution, which gives
ise to a wide range of characteristic times in the rheological
esponse of the bulk to a sudden variation in the stress state.
his time-dependence of the rheological properties is exacer-
ated by unsteady processes such as particle sedimentation,
luster formation, and pore-pressure diffusion. According to
verson, Denlinger, and Major [79,128,157], Coulomb friction
nd pore pressure diffusion predominate over viscous dissipa-
ion, and the Coulomb plastic model provides a correct approx-
mation for describing the time-dependent properties of natural
lurries.

The review paper also explores sheet flows of Coulomb or
iscoplastic flows. Slow viscoplastic flow can be described us-
ng a nonlinear diffusion equation, for which exact or approx-
mate analytical solutions have been provided, shedding light
nto the features of creeping motion and deposits. Fast mo-
ion can be characterized within the framework of flow-depth
veraged or Saint-Venant equations. Analytical solutions can
lso be found for some ideal flow conditions, such as the dam-
reak problem. To date, most analytical and numerical solutions

oncern ideal cases, where the rheological properties are sim-
le (i.e., viscoplastic or Coulomb models). Few results have
een produced on self-organization (front formation, levee de-
elopment). A proper treatment of bottom boundary conditions
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including slipping velocity, mass entrainment/deposition) have
lso attracted little attention within the geophysics community
33], even though this issue is of prime importance for modeling
eophysical flows.

In the last part, we tackle the difficult issue of rheological
nference from field data. In addition to parameter fitting and
eposit interpretation, we provide the simplest method for de-
iving rheological properties when the only information avail-
ble is the front velocity variation along the path. Applications
o avalanche data have demonstrated that the Coulomb frictional

odel captures the salient features of avalanche motion. How-
ver, a thorough statistical analysis has shown that the friction
oefficient is not a true physical parameter, but depends on the
ite where the avalanches occurred. This last section emphasizes
he importance of the physical reliability of models used in geo-
hysical fluid mechanics, especially when these models are used
or engineering purposes.
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Mathématique et de Physique, Académie Royale de Sciences, Imprimerie
Royale, Paris, 1773, pp. 343–382.

[64] P. Coussot, Steady, laminar, flow of concentrated mud dispensions in open
channel, J. Hydraul. Res. 32 (1994) 535–559.

[65] P. Coussot, Mudflow Rheology and Dynamics, Balkema, Rotterdam,
1997.

[66] P. Coussot, C. Ancey, Rheophysical classification of concentrated sus-
pensions and granular pastes, Phys. Rev. E 59 (1999) 4445–4457.

[67] P. Coussot, J.M. Piau, A large-scale field coaxial cylinder rheometer for
the study of the rheology of natural coarse suspensions, J. Rheol. 39

(1995) 105–124.

[68] P. Coussot, S. Proust, Slow, unconfined spreading of a mudflow, J. Geo-
phys. Res. B101 (1996) 25217–25229.

[69] P. Coussot, S. Proust, C. Ancey, Rheological interpretation of deposits of
yield stress fluids, J. Non-Newtonian Fluid Mech. 66 (1996) 55–70.
id Mech. 142 (2007) 4–35

[70] P. Coussot, D. Laigle, M. Arratano, A. Deganutti, L. Marchi, Direct de-
termination of rheological characteristics of debris flow, J. Hydraul. Eng.
124 (1998) 865–868.

[71] P. Coussot, Q.D. Nguyen, H.T. Huynh, D. Bonn, Viscosity bifurcation in
thixotropic, yielding fluids, J. Rheol. 46 (2002) 573–590.

[72] P. Coussot, Q.D. Nguyen, H.T. Huynh, D. Bonn, Avalanche behavior in
yield stress fluids, Phys. Rev. Lett. 88 (2002) 175501.

[73] P. Coussot, J.S. Raynaud, C. Ancey, Combined MRI-Rheometry determi-
nation of the behavior of mud suspensions, in: C.L. Chen, D. Rickenmann
(Eds.), Debris Flow Mechanics and Mitigation Conference, Mills Press,
Davos, 2003, pp. 291–301.

[74] P. Coussot, N. Roussel, S. Jarny, H. Chanson, Continuous or catastrophic
solid–liquid transition in jammed systems, Phys. Fluids 17 (2005) 011704.

[75] S. Dartevelle, Numerical modeling of geophysical granular flows. 1. A
comprehensive approach to granular rheologies and geophysical multi-
phase flows, Geochem. Geophys. Geosyst. 5 (2004) 2003GC000636.

[76] F. Darve (Ed.), Geomaterials: Constitutive equations and Modeling, El-
sevier, London, 1989.

[77] T.R.H. Davies, Large debris flow: a macro-viscous phenomenon, Acta
Mech. 63 (1986) 161–178.

[78] R.O. Davis, A.P.S. Sevladurai, Plasticity and Geomechanics, Cambridge
University Press, Cambridge, 2002.

[79] R.P. Denlinger, R.M. Iverson, Granular avalanches across irregular three-
dimensional terrain. 1. Theory and computation, J. Geophys. Res. 109
(2004) F01014.

[80] R.P. Denlinger, R.M. Iverson, Flow of variably fluidized granular masses
across three-dimensional terrain. 2. Numerical predictions and experi-
mental tests, J. Geophys. Res. 106 (2001) 553–566.

[81] J.D. Dent, T.E. Lang, Modelling of snow flow, J. Glaciol. 26 (1980) 131–
140.

[82] J.D. Dent, T.E. Lang, Experiments on the mechanics of flowing snow,
Cold Regions Sci. Technol. 5 (1982) 243–248.

[83] J.D. Dent, T.E. Lang, A biviscous modified Bingham model of snow
avalanche motion, Ann. Glaciol. 4 (1983) 42–46.

[84] R.H. Dressler, Unsteady non-linear waves in sloping channels, Proc. Roy.
Soc. Lond. A 247 (1958) 186–198.

[85] D.A. Drew, S.L. Passman, Theory of Multicomponent Fluids, Springer,
New York, 1999.

[86] D.C. Drucker, W. Prager, Soil mechanics and plastic analysis or limit
design, Quarter. J. Appl. Math. 10 (1952) 157–165.

[87] S. Egashira, T. Itoh, H. Takeushi, Transition mechanics of debris flows
over rigid bed to over erodible bed, Phys. Chem. Earth B 26 (2001) 169–
174.

[88] A. Elverhøi, D. Issler, F.V. De Blasio, T. Ilstad, C.B. Harbitz, P. Gauer,
Emerging insights into the dynamics of submarine debris flows, Nat. Haz-
ard Earth. Sys. Sci. 5 (2004) 633–648.

[89] P. Evesque, C. Stefani, Relationship between dilatancy, stresses and plas-
tic dissipation in a granular material with rigid grains, J. Phys. II 1 (1991)
1337–1347.

[90] G. Félix, N. Thomas, Relation between dry granular flow regimes and
morphology of deposits: formation of levées in pyroclastic deposits, Earth
Planet. Sci. Lett. 221 (2004) 197–213.

[91] S.M. Fielding, P. Sollich, M.E. Cates, Aging and rheology in soft mate-
rials, J. Rheol. 44 (2000) 323–369.

[92] N.A. Frankel, A. Acrivos, On the viscosity of a concentrated suspension
of solid spheres, Chem. Eng. Sci. 22 (1967) 847–853.

[93] GDR-MIDI, On dense granular flows, Eur. Phys. J. E 14 (2004) 341–365.
[94] T.A. Ghezzehei, D. Or, Rheological properties of wet soils and clays

under steady and oscillatory stresses, Soil Sci. Soc. Am. J. 65 (2001)
624–637.

[95] J.D. Goddard, An elastohydrodynamic theory for the rheology of con-
centrated suspensions of deformable particles, J. Non-Newtonian Fluid
Mech. 2 (1977) 169–189.
[96] J.D. Goddard, Dissipative materials as models of thixotropy and plasticity,
J. Non-Newtonian Fluid Mech. 14 (1984) 141–160.

[97] J.D. Goddard, A.K. Didwania, Computations of dilatancy and yield sur-
faces for assemblies of rigid frictional spheres, Quarter. J. Mech. App.
Math. 51 (1998) 15–43.



n Flu

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

C. Ancey / J. Non-Newtonia

[98] I. Goldhirsch, Rapid granular flows, Annu. Rev. Fluid Mech. 35 (2003)
267–293.
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[189] M. Pastor, M. Quecedo, E. González, M.I. Herreros, J.A. Fernández, P.
Mira, Simple approximation to bottom friction for Bingham fluid depth
integrated models, J. Hydraul. Eng. 130 (2004) 149–155.

[190] C.J. Phillips, T.R.H. Davies, Determining rheological parameters of de-
bris flow material, Geomorphology 4 (1991) 101–110.

[191] J.-M. Piau, Flow of a yield stress fluid in a long domain. Application to
flow on an inclined plane, J. Rheol. 40 (1996) 711–723.

[192] D. Picard, A. Adjari, F. Lequeux, L. Bocquet, Slow flows of yield stress
fluids: complex spatiotemporal behavior within a simple elastoplastic
model, Phys. Rev. E 71 (2005) 010501.

[193] A.A. Potanin, W.B. Russel, Fractal model of consolidation of weakly
aggregated colloidal dispersions, Phys. Rev. E 53 (1996) 3702–3709.

[194] A.A. Potanin, R. De Rooi, D. Van den Ende, J. Mellema, Microrheological
modeling of weakly aggregated dispersions, J. Chem. Phys. 102 (1995)
5845–5853.

[195] O. Pouliquen, Y. Forterre, Friction law for dense granular flow: application
to the motion of a mass down a rough inclined plane, J. Fluid Mech. 453
(2002) 133–151.

[196] W. Prager, Introduction to Mechanics of Continua, Ginn and Company,
Boston, 1961.
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