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a b s t r a c t

We report experimental results related to the dam-break problem for viscoplastic fluids. Using image
processing techniques, we were able to accurately reconstruct the free-surface evolution of fixed volumes
of fluid suddenly released a plane. We used Carbopol Ultrez 10 as a viscoplastic material; its rheological
behavior was closely approximated by a Herschel–Bulkley model for a fairly wide range of shear-rates.
Varying the Carbopol concentration allowed us to change the yield stress and bulk viscosity. The yield
stress ranged from 78 to 109 Pa, producing Bingham numbers in the 0.07–0.35 range. We investigated
the behavior of a 43-kg mass released on a plane, whose inclination ranged from 0◦ to 18◦. For each run,
we observed that the behavior was nearly the same: at short times, the mass accelerated vigorously on
xperimental results
gate opening and very quickly reached a nearly constant velocity. At time t = 1 s, independently of plane
inclination and yield stress, the mass reached a near-equilibrium regime, where the front position varied
as a power function of time over several decades. We did not observe any run-out phase, during which the
mass would have gradually come to a halt. The similarity in the flow behavior made it possible to derive
an empirical scaling for the front position in the form xf = t0.275(sin ˛)1/3

(sin ˛)5/4, where ˛ and t denote
, resp
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plane inclination and time

. Introduction

Numerous applications in industrial processes and nature
nvolve the release of a finite volume of viscoplastic materials onto

surface. In civil engineering, the slump test is commonly used
o determine the flow features of concrete and has given rise to
bundant literature on empirical yield stress measurement [1–6].
similar test, referred to as the Bostwick test, is widely used in the

ood industry to characterize the consistency of food products. This
est has also attracted attention over recent years, mostly in rela-
ion to interpretation of test results [7–10]. Geophysical flows offer

any examples of finite volumes of plastic materials spreading on a
lope. Typical examples include snow avalanches and debris flows
11,12] as well as volcanic lava [13].

While much of the earlier work has focused on time-dependent
ows of viscous fluids over a rigid boundary [14–17], a grow-
ng attention has been paid to the corresponding problem with
iscoplastic fluids from the theoretical point of view [18–29].
n rare occasions, exact or asymptotic analytical solutions to

he governing equations can be worked out [10,21,30–34], but

∗ Corresponding author.
E-mail address: steve.cochard@a3.epfl.ch (S. Cochard).
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ectively, and which holds for sloping beds (˛ > 0).
© 2008 Elsevier B.V. All rights reserved.

ost of the time, solutions must be computed numerically using
ow-depth averaged equations of motion (the equivalent of the
hallow-water equations in hydraulics) [35–37], nonlinear diffu-
ion equations when inertial terms are negligible [19,21], or the
ull set of equations of motion (using a finite-element approach or
mooth-particle-hydrodynamics techniques). Surprisingly, despite
he substantial interest in the spreading of viscoplastic fluids, there
ave been to date very few experimental investigations reporting
he flow behavior of a finite volume of viscoplastic fluids down
surface. Debiane [38] tracked the front position and flow-depth
rofiles of fixed volumes of Carbopol released down a 3-m long,
0-cm wide flume. The flow-depth profile was estimated using
ltrasonic devices while the position of the front was monitored
sing a high speed camera mounted on a mobile carriage. Siviglia
nd Cantelli [37] investigated the effect of bed curvature on flow
ynamics. Chanson et al. [32] studied the dam-break problem with
hixotropic viscoplastic fluids using a 2-m long, 0.34-m wide flume
nclined at 15◦. The free-surface elevation was measured using a
CD camera and a series of laser sheets.
In this paper, we report experimental results of dam-break flows
nvolving fixed volumes of viscoplastic materials. The dam-break
xperiment consists of the sudden release of a finite volume of
aterial down a slope or onto a horizontal surface. Initially, the

uid is placed in a reservoir at the top of the plane, as sketched

http://www.sciencedirect.com/science/journal/03770257
http://www.elsevier.com/locate/jnnfm
mailto:steve.cochard@a3.epfl.ch
dx.doi.org/10.1016/j.jnnfm.2008.08.007
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F ervoir closed by a lock gate. (b) The gate is opened at time t = 0 and the fluid flows down
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The camera recorded how regular patterns projected onto the sur-
face were deformed when the free surface moved (see Fig. 3).
We developed algorithms to process the image data, determine
the spreading rate, and reconstruct whole-field three-dimensional
ig. 1. Sketch of the experimental setup. (a) Initially the fluid is contained in the res
he inclined plane.

n Fig. 1. It is then unleashed by lifting the lock gate and flows,
riven by gravitational forces. The initial conditions (volume of
uid, rheological features, density) and the boundary conditions
slope angle, surface roughness, topography) can easily be altered
nd controlled, which makes this test very appropriate to under-
tand time-dependent flows. In particular, this setting has been
sed as a benchmark for testing theory against data for inviscid
nd Newtonian fluids [15,16,39]; in that case, experimentalists were
atisfied with the measurement of the front position over time
ince on the one hand, this position can be accurately monitored
xperimentally and on the other hand, one can predict the front
volution using similarity theory. The situation is markedly differ-
nt for non-Newtonian fluids, for which one is interested in both
he front position and free-surface shape, which is a delicate exper-
mental task. To take up this challenge, we built a new imaging
ystem, which makes it possible to accurately reconstruct the free
urface of an avalanching mass of fluid. In Section 2.1, we outline
he techniques developed for this purpose; the interested reader
s referred to an earlier publication for further information [40].
nother substantial challenge posed by non-Newtonian fluids lies

n the proper characterization and control of rheological properties.
n equation such as the Herschel–Bulkley model is an idealization
f how a viscoplastic material behaves. In this respect, a number
f physical features such as viscoelasticity and thixotropy are not
ccounted for; furthermore, disturbing effects (e.g., slipping, shear
anding) are substantial impediments that may spoil the most care-
ul experiments. Taking a closer look at these issues is thus essential.
n Sections 2.2 and 2.3, we describe how the fluid samples were pre-
ared and characterized rheometrically. In Section 2.4, we present
he experimental procedure. Great care was brought to ensure accu-
acy and reproducibility of experiments. Section 3 is devoted to
xperimental results. There we present the data obtained with the
nclined plane; a companion paper [41] includes experimental data
elated to channelized flows. A few conclusions are drawn in the last
ection.

. Experimental procedure

.1. Experimental setup

To investigate avalanching masses of fluid, we built an experi-
ental setup made up of a high-rigidity metal frame supporting a

eservoir, a 6-mm-thick aluminium plate, and a horizontal run-out
one. This full facility was 5.5 m long, 1.8 m wide, and 3.5 m high.
he plate could be inclined from 0◦ to 45◦ (see Fig. 2). Its position
as accurately controlled using a digital inclinometer with a res-

lution of 0.1◦. Since Carbopol slipped on aluminium, we painted
he aluminum plate with Krautol Zink-und-Alugrund-3363 paint
provided by Selma AG, Schwerzenbach, Switzerland).

The reservoir was positioned at the top of the inclined plane
ehind the lock gate. The reservoir was 51 cm long and 30 cm wide.
ig. 2. View of the inclined plane during a test with Carpobol. Courtesy of C. Blaser.

he maximum capacity of the reservoir was 120 kg. The dam wall
as composed of a 1.6 m × 0.8 m ultralight carbon plate (which was
-cm-thick). Two pneumatic jacks opened the sluice gate to the
esired aperture within 0.8 s. An ultralight lock gate was needed to
educe gate inertia and plane vibration. The two jacks were quickly
aised by injecting pressurized air at 7 MPa. Two electromagnetic
ensors were located at the tip of each jack to control its position
nd start the clock.

To measure the free-surface shape, we developed a novel imag-
ng system, which consisted of a high-speed digital camera (a
asler A202k) coupled to a synchronized micro-mirror projector
a modified z-Snapper provided by ViALUX, Chemnitz, Germany).
Fig. 3. The Sketch of the experimental setup and the measurement system.
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Table 1
Rheological characteristics and composition of the Carbopol samples used (for a 60-kg mass)

Concentration

0.25% 0.30% 0.35% 0.40%

Ultrez 10 [g] 150.00 ± 0.05 180.00 ± 0.05 210.00 ± 0.05 240.00 ± 0.05
NaOH [g] 62.20 ± 0.05 74.64 ± 0.05 87.09 ± 0.05 99.53 ± 0.05
H2O [kg] 59.79 ± 0.04 59.07 ± 0.04 58.92 ± 0.04 58.77 ± 0.04
Solution [kg] 60.00 ± 0.04 60.00 ± 0.04 60.00 ± 0.04 60.00 ± 0.04

� ± 1
K ± 1.7
n ± 0.0
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In the Couette inverse problem, we have to retrieve the shear-
stress/shear-rate relation �(�̇) from torque/rotational-velocity
measurements ω(T). These quantities are related to each other by
c [Pa] 78 ± 1 89
[Pa s−n] 32.1 ± 2.3 47.68

0.388 ± 0.023 0.415

hapes of the free surface. The free surface was reconstructed with
n accuracy of 1 mm over a surface of 1.4 m × 1.4 m at a rate of
5 Hz (further details of the experimental procedure are provided
y [40]).

In terms of computation time, for a typical 3-min experiment,
he post-processing phase required almost one week on a single-
rocessor machine. To reduce computation time, we ran the post-
rocessing phase on a cluster of two Mac-Pro computers with 8-
rocessor cores. Parallel computation reduced processing time to
day, which enabled us to conduct more experiments and apply
ore sophisticated processing algorithms.

.2. Fluid

We used Carbopol Ultrez 10, a viscoplastic stable polymeric
el. This is a carbomer polymeric gel produced by Noveon. Here-
fter and unless specified otherwise, Carbopol refers to Carbopol
ltrez 10. Carbopol was used at four different concentrations.
able 1 summarizes the concentration of the different com-
onents used. We also report the rheological parameters of a
erschel–Bulkley equation fit to the rheometrical data (see Section
.3). Anhydrous NaOH Pellets RPE-ACS-ISO was used to neutralize
he Carbopol solution to a pH of 7. The solvent was demineralized
ater. A full description of the preparation procedure is described

n [42].

.3. Rheometry

The flow curve of the viscoplastic gel was determined using a
ohlin CVOR rheometer equipped with a Couette cell (see Fig. 4).
he inner and the outer cylinder cell walls were covered with water-
roof sandpaper 180 to reduce slip. The dimensions of the cell and
he rotating bob are reported in Fig. 4.

We first determined the yield stress using a creep test. The

ample was sheared under constant shear-stress for 6 min and com-
liance J was recorded as a function of time t. We started with a

ow shear-stress value and we incremented it by 1-Pa steps until
he curve J(t) diverged from the previous records. Fig. 5 shows
he results of a series of creep tests for a Carbopol sample at the

Fig. 4. The Couette geometry used in our experiments.
F
i

102 ± 1 109 ± 1
58.91 ± 1.7 75.84 ± 1.9

21 0.505 ± 0.027 0.579 ± 0.033

oncentration of 0.40% (only every second curve is presented for
larity).

In 1985, Barnes and Walters [43] came up with a provocative
rticle in which they concluded that the yield stress is a myth and
oes not exist. Coussot et al. [44] provided evidence for an interplay
etween yield stress and thixotropy. Møller et al. [45] concluded
hat yield stress and thixotropy of a fluid have the same physical
rigin. The measurement of the yield stress not only depends on
he duration of the experiment, but also on the history of the fluid
eformation. In 2007, Piau [46] measured, with MRI-rheometery
echnique, and compared results for different concentration of Car-
opol 940 and 980 at very low shear-rate and found, instead of
yield stress, two Newtonian plateaus. Even if in the yield stress
as been questioned as a physical property, the concept of a yield
tress still remains very useful for a wide range of applications. In
his paper, we used a 6 min creep test to define the yield stress.

We then determined the flow curve, i.e., the shear-stress/shear-
ate relation. To that end, we used a standard technique, which
nvolved imposing a step-like ramp of stress and recording the
esulting deformation until equilibrium was reached (i.e. shear-rate
as constant). The initial stress was 10 Pa higher than the yield

tress and was then progressively increased by 2-Pa increments.
he shear-stress range covered one decade. From the raw data, we
etermined the flow curve:

we solved the Couette inverse problem using Tikhonov regular-
ization techniques; and then
we adjusted an empirical equation (the Herschel–Bulkley equa-
tion) on the data.
ig. 5. Creep test of Carbopol Ultrez 10 at a 0.4% concentration. The yield stress was
n the 109 ± 1 Pa range.
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ig. 6. Herschel–Bulkley model for a sample of Carbopol at a concentration of 0.30%.

he Couette equation [47,48]

(�) = (A�̇)(�) = 1
2

∫ �

ˇ�

�̇(S)
S

dS, (1)

here ˇ = di/do is the ratio of the inner to outer cylinder diameters,
the integral operator, and S = �(di/2r)2 represents the distribution
f shear-stress across the cell gap (r denotes the radial dis-
ance from the inner cylinder). The shear-stress is directly derived
rom the torque T using � = 2M/(�d2

i h) with h the inner cylinder
eight. Tikhonov regularization consists in recovering shear-rate

˙ from rotational velocity measurement ω(T) using a least-square
pproach: instead of solving ω = A�̇ , one minimizes the residual
ω − A�̇‖, usually subject to an additional constraint on the norm
f ‖�̇‖ or its derivative to control the smoothness of the solution.

To describe the rheological behavior of Carbopol, we used the
erschel–Bulkley model, whose expression for a simple-shear flow

s

= �c + K�̇n, (2)

ith �c the yield stress, K the consistency, and n an index. We
etermined the value of these parameters from rheometrical exper-

ments as follows: �c was set to the value determined by the creep
est while K and n were computed using a least-square approach.
q. (2) can be integrated across the gap to provide the theoretical
ariation in the torque as a function of the rotational velocity. The
esulting equation can then be used to fit the raw data and derive
c, n, and K values.

Fig. 6 gives an example of results obtained for Carbopol Ultrez 10
t a concentration of 0.30%. The dashed line represents the results
rom the Couette rheometer using Tikhonov’s method. The dash-
nd-dot line is the best-fit line when the parameters �c, K, and n
ere free: � = 96.7 + 47.9�̇0.54. We also considered that the yield-

tress value was measured independently with the creep test (see
bove) and we sought K and n using the least-square method; in
hat case we obtained � = 90.0 + 47.6�̇0.43 (solid line in Fig. 6). As
een on this log-linear plot, there is little difference between the
hree curves for �̇ ranging from 0.02 to 0.5 s−1. Small deviations
an be observed in the low-shear-rate regime (�̇ < 0.1 s−1), but
uch larger differences are seen for large shear-rate values (�̇ >
s−1), which shows how important it is to select an appropriate
djustment procedure.

Carbopol exhibits little thixotropy. In our case, to evaluate the

hixotropy influence on the rheological behavior, we ran standard
ysteresis loop tests. These tests are known to be insufficient for
ully characterizing thixotropy, but satisfactory when the intent is
ust to appreciate the influence of thixotropy [49]. We first applied

linear shear-rate ramp (from zero to a maximum value) to our

s

2

ig. 7. Creep test and recovery period on a sample of Carbopol with a 40-mm ser-
ated parallel on a sample of Carbopol at a concentration C of 0.30%.

ample, then we decreased the shear-rate while following the same
amp backward. The procedure was repeated several times until a
onstant loop behavior was produced. The area between the upper
nd lower curves is a measure of thixotropy. The test was also
epeated with 120 and 180-s ramps. The curves are close to each
ther (within the measurement error) and the loop area is small,
eading to the conclusion that our Carbopol samples were weakly
hixotropic.

Another test consisted in imposing a 10-s creep followed by a
ecovery period. To that end, we used a 40-mm serrated parallel-
late geometry to reduce inertia and enhance accuracy. The applied
tress was just above the yield stress. The time to reach equilibrium
ave an indication of how thixotropic the sample was. Fig. 7 shows
120- and 150-Pa creep test for a Carbopol sample at the concen-

ration of 0.30%. Equilibrium was reached, for both tests, within
pproximately 1 s after stress application and within less than 1 s
fter stress removal. This short relaxation time provided further
vidence that Carbopol was weakly thixotropic.

Slip can affect rheometrical measurements with Carbopol [50].
ndeed, under some circumstances the Carbopol polymer chains
re repelled from the walls owing to repulsion forces arising from
arious physico-chemical interactions (e.g., electrostatic and steric
orces) between the polymer chains and wall. Molecular migra-
ion creates a depletion layer, i.e. a very thin layer of water at the
all, causing slip on the macroscopic level. Since slip could seri-
usly affect our measurements, we paid special attention to this
ssue. Two techniques are classically used to avoid or reduce slip:
oughening or coating the walls [51,52]. Another technique involves
hearing the material with a vane (a shaft equipped with four or six
lades) [51].

Roughening the wall with water resistant sandpaper 180 pro-
ided a satisfactory expedient for the Couette cell (provided that
oth inner and outer cylinders were covered), but not for the
arallel-gap geometry (probably because of inaccuracies in the
ap measurement). In contrast, coating the cylinder with PVP
-90TM high-molecular-weight polyvinyl-pyrrolidone (produced
rom International Specialty Products and provided by ISP Switzer-
and AG, Baar, Switzerland) as suggested by Wu et al. [53] gave,
n our case, poor results. Not only the flow curves obtained were
elow the ones obtained with the sandpaper, but they were also
uctuating. A 6-blade vane also proved not to be appropriate. The
otating vane irreversibly fractured the gel and then spun without

hearing it.

.4. Experimental procedure

For each run, we proceeded as follows:
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Fig. 9. Results from two similar tests with m = 43 kg, ˛ = 12◦ and C = 0.30%. (a) Front
positions xf (solid and dashed lines) and deviation �xf (dashed–dotted line). (b)
Flow depths h.
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ig. 8. Three-dimensional view of 43 kg of Ultrez 10 at a concentration C of 0.25%
own a 6◦ slope at time t = 900 s.

1) The fluid was gently poured into the reservoir, while the plane
was kept in the horizontal position. The mass of fluid was fixed
to 43 kg.

2) The upper plane was then inclined at an inclination ˛ to the
horizontal. The initial flow-depth at the lock gate ranged from
30 to 36 cm depending on plane inclination.

3) The free surface was flattened out by hand. Note that this step
is essential to ensuring good reproducibility.

4) A few minutes before starting the test, we collected a fluid sam-
ple and tested it using a Bohlin rheometer to characterize its
rheological properties (see Section 2.3).

5) The acquisition system was turned on.
6) The clock was set to zero and the acquisition procedure was

launched on lifting up the lock gate.

We then reconstructed the three-dimensional shape using the
echniques described in Section 2.1. For particular applications, we
lso extracted the flow-depth profile at the centerline (see Fig. 8) as
ell as the contour of the mass (referred to as the contact line). The

atter was determined by seeking the points where the flow depth
ropped below a given threshold (in practice, a value of 0.5 mm
ave good results).

To test out the accuracy, sensitivity and robustness of the exper-
mental apparatus, we repeated many experiments and compared
he results. A typical example is provided in Fig. 9, where two differ-
nt batches of Carbopol prepared with the same protocol were used
42]. The mass and concentration were the same (43 kg and 0.30%,
espectively) and the plane inclination was 12◦. Fig. 9(a) shows both
ront positions xf during the first 60 s as well as the deviation �xf
etween them. In absolute value, �xf ranged from 2.5 to 6 mm.
hen scaled with the maximum distance traveled by the mass

uring the test, the maximum deviation was below 0.4%, which was
onsidered negligible. Fig. 9(b) shows the flow profile at the center-
ine for both tests. The profiles were similar in both cases since the

aximum deviation �z(x,t) between both profiles is on the order
f 3 mm. The contact lines are reported in Fig. 10 and again show
ittle difference.

To test our system, we also verified that the surge was symmetric
elative to the centerline. As shown in Fig. 10, the flow is symmetric
ith respect to y-axis, with the maximum difference in the y values

for the same elevation) within 5 mm.
Note that in our experiments, the Bingham number
i = �c

K(U∗/H∗)n (3)

anged from 0.07 to 0.35. In the above equation, H∗ denotes a flow-
epth scale (here set to the initial flow depth at the lock gate) and

∗ = (�g sin ˛/K)1/nH1+1/n
∗ is a velocity scale.

r
t
w
w
S
c
˛

ig. 10. Position of the contact lines for two tests with m = 43 kg, ˛ = 12◦ and
= 0.30%.

. Experimental results

.1. Flow regimes observed

The spreading of the avalanching mass depended on the fluid
heological parameters (�c, K, and n), the plane inclination (˛), the
eservoir dimensions, and the mass (m). To evaluate the influence of
he rheological parameters and plane inclination on propagation,

e kept the mass (43 kg) and the reservoir dimensions constant
hile the concentration and the plane inclination were varied.

ixteen tests were carried out with a 43 kg mass of Carbopol at con-
entrations C = 0.25%, 0.30%, 0.35%, and 0.40% for plane inclination
of 0◦, 6◦, 12◦, and 18◦.
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ig. 11. Three-dimensional view of a 43-kg avalanching mass of Carbopol (C = 0.30
= 52 min.

We first describe the typical behavior of an avalanching mass.
ig. 11(a)–(e) are snapshots of a typical experiment (here obtained
ith a 12◦ slope and concentration set to C = 0.30%). The time vari-

tions in the flow-depth profile and front position are reported in
ig. 12 while the contact lines are shown in Fig. 13. We observed
he following behavior:
a) At time t = 0.19 s, the dam gate was being raised. At that time,
the effective aperture was 8 cm. The gel was pushed out of the
reservoir as a result of hydrostatic pressure. The free surface was
nose-shaped. The surge motion was mainly in the x-direction.

ig. 12. Surge profile and front position for a 43-kg avalanching mass of Carbopol
C = 0.30%) down a 12◦ inclined plane.

F
1

d ˛ = 12◦ at time: (a) t = 0.19 s, (b) t = 0.48 s, (c) time t = 0.80 s, (d) t = 1.60 s and (e)

b) At time t = 0.48 s, the dam gate was still being lifted. The aper-
ture was 17 cm, which was still lower than the fluid height in the
reservoir (which was about 33 cm). The free surface exhibited
strong curvature. Since most of the mass was sheared, the mass
behaved as a liquid with no visible unsheared zone. The velocity
in the x-direction was about four times higher than that in the
y-direction.
(c) At time t = 0.80 s, the gate was fully open. The fluid was still in
an inertial regime, i.e. the dynamics was governed by the bal-
ance between inertia and pressure-gradient terms. Note that
following the gate opening, part of the fluid immediately moved

ig. 13. Contact line for a 43-kg avalanching mass of Carbopol (C = 0.30%) down a
2◦ inclined plane.
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downstream in the form of a forward wave, while a wave
propagating upstream separated moving fluid from static fluid

upslope. The latter reached the rear end at t = 0.6 s.

d) At time t = 1.60 s, the gel had slowed down drastically (see
Fig. 12). Time variations in the velocity became increasingly
smaller, indicating that the gel reached a near-equilibrium

(

ig. 14. Flow-depth profiles and contact line at t = 0.4 (dashed line), 0.8 (dashed–dotted li
0,000 s (dashed line). Time variation in the front position. Experimental conditions: (a)
= 0.30%. (e) ˛ = 0◦ and C = 0.35%. (f) ˛ = 6◦ and C = 0.35%. (g) ˛ = 0◦ and C = 0.40%. (h) ˛ = 6◦
Fluid Mech. 158 (2009) 73–84 79

regime where the dominant forces were the viscous forces and
gravity acceleration. The flow-depth gradient in the streamwise

direction was close to zero except for the tip region.

e) At time t = 52 min, the gel was still moving at 12 cm/h. Channel-
ization could be observed, as described in Section 3.3 in more
detail.

ne), 2 (solid line), 20 (dashed line), 200 (dashed–dotted line), 2000 (solid line) and
˛ = 0◦ and C = 0.25%. (b) ˛ = 6◦ and C = 0.25%. (c) ˛ = 0◦ and C = 0.30%. (d) ˛ = 6◦ and
and C = 0.40%.
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In brief, we observed two regimes: at the very beginning (t ≤ 1 s),
he flow was in an inertial regime; the front velocity was nearly con-
tant. Then, quite abruptly, a pseudo-equilibrium regime occurred,
or which the front velocity decayed as a power-law function of
ime.
The inertial regime depends on the mass of fluids as well as
he initial height. The same mass of fluid, in a different reservoir,
eading to another initial height would have resulted in a different
ehavior of the inertial regime.

t
(
i
0

ig. 15. Flow-depth profiles and contact line at t = 0.4 (dashed line), 0.8 (dashed–dotted li
0,000 s (dashed line). Time variation in the front position. Experimental conditions: (a)
nd C = 0.30%. (e) ˛ = 12◦ and C = 0.35%. (f) ˛ = 18◦ and C = 0.35%. (g) ˛ = 12◦ and C = 0.40%. (h
n Fluid Mech. 158 (2009) 73–84

.2. Front position, contact line, and flow-depth profile

Figs. 14 and 15 summarize the measurements taken for each run.
n a condensed form, we plot the flow-depth profile (measured at
he centerline), the contact line, and the evolution of the front posi-

ion. Each column in Figs. 14 and 15 is related to a fixed inclination
0◦, 6◦, 12◦, and 18◦) while the rows present results correspond-
ng to the same Carbopol concentration (0.25%, 0.30%, 0.35% and
.40%). For each plot, the flow-depth profiles taken at time t = 0.4,

ne), 2 (solid line), 20 (dashed line), 200 (dashed–dotted line), 2000 (solid line) and
˛ = 12◦ and C = 0.25%. (b) ˛ = 18◦ and C = 0.25%. (c) ˛ = 12◦ and C = 0.30%. (d) ˛ = 18◦

) ˛ = 18◦ and C = 0.40%.
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Balmforth et al. [10] for the dam-break problem on horizontal
planes.
Fig. 16. Front position xf in function of the time t for a slope angle ˛ = 12◦ .

.8, 2, 20, 200, 2 × 103, and 2 × 104 s are reported in the upper half
art; the left axis gives elevation z. The contact lines measured at
he same time as the flow-depth profiles are plotted in the lower
alf part of the plot. The front position xf is plotted as a function
f time in a log-linear diagram; time t is reported on the right axis.
ote that x = 0 corresponds to the rear end of the reservoir, while the
-cm-thick gate is located at x = 51–55 cm. To guaranty an accurate
easurement of the surge free-surface, the acquisition setup was

ositioned to record from x = 55 cm (the position of the dam-gate)
o x = 190 cm. The acquisition was stopped once the front position
f had reached 190 cm or after 8 h.

As expected, we observed that gels with the lowest Carbopol
oncentrations flowed faster and farther. Similarly, the steeper
he inclination was, the faster the flows. Comparing the plots in
igs. 14 and 15 leads to further interesting observations:

The typical duration Ti of the inertia-dominated regime was on
the order of 1 s. Taking a closer look at our data reveals a slight
dependence of Ti on plane inclination. Strikingly enough, Ti seems
to be independent of Carbopol concentration C, although the
front position and velocity were influenced by C. A typical exam-
ple is provided in Fig. 16, where we report the front position
as a function of time for ˛ = 12◦ and different C values. For all
concentrations, Ti was about 1 s. The distance at which the transi-
tion from an inertial to a near-equilibrium regimes was observed
depended on solid concentration: it increased from 120 to 145 cm
when the concentration was increased from 0.25% to 0.4%.
During the inertial phase, the front velocity was nearly constant
(e.g., see Fig. 12). This contrasts somehow with what we know
of inertial flows. For inviscid fluids instantaneously released on
a dry horizontal plane, dam-break theory predicts that the front
velocity uf does not vary with time, but solely with the initial
flow depth h0: uf =

√
2gh0 (Ritter’s solution); for sloping beds,

the front is continuously accelerating [54]. If we take the example
of Fig. 12, the front velocity was about 70 cm/s, whereas an esti-
mate of the front velocity for the Ritter solution is uf = 2.4 m/s,
i.e. a factor of 3.5 higher than the velocity was observed. This
clearly shows that even in the inertia-dominated regime, viscous
dissipation played a non-negligible role.
The shape of the free surface depended a great deal on slope, but

weakly on Carbopol concentration. Fig. 17 reports the flow-depth
profile together with the contact line for four different concen-
trations in Carbopol. All measurements were taken for a 12◦

inclination and when the front reached the position xf = 138 cm. F
ig. 17. Surge profile and contact line for a front position xf = 138 cm and ˛ = 12◦ .

Note that all profiles were quite similar. Interestingly enough,
we can also point out that the flows were in a near-equilibrium
regime except for the flow at C = 0.25% (which was still in an
inertia-dominated regime). The maximum height difference was
on the order of 6 mm, while the maximum difference in the lat-
eral spread was lower than 2 cm. As shown in Fig. 18, where we
plot the flow-depth profile and contact line for ˛ = 6◦ and 18◦

(other parameters being the same), slope has great influence on
the free-surface shape.
Lateral spreading mostly occurred during the inertial phase, as
seen on each plot of Figs. 14 and 15. Plane inclination had little
influence on lateral spreading, as illustrated in Fig. 19, where the
contact lines are reported for different slopes ˛ = 0◦, 6◦, 12◦, and
18◦; the Carbopol concentration was the same (C = 0.3%) and the
contact lines were recorded at the same time t = 1.6 s.
We did not observe any avalanching mass coming to a halt, even
at shallow slope and with large-yield-stress fluids. This supports
the theoretical analysis carried out by Matson and Hogg [33] and
ig. 18. Surge profile and contact line for a front position xf = 138 cm and ˛ = 12◦ .
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ig. 19. Contact line at time t = 1.6 s for Carbopol at a concentration of 0.30% down
nclined planes.

Another striking observation is that all front-position curves
eported in Figs. 14 and 15 are V-shaped. This shape similarity
uggests that we can rescale the front position to obtain a crude,

mpirical scaling of xf as a function of the flow parameters. By trial
nd error, we found that if we introduce the following dimension-

ig. 20. (a) Front position xf as a function of the time t for all runs. (b) Scaled front
osition x̂f as a function of the time t̂ for all runs.
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ig. 21. Top view of surface structure formation at time t = 2932 s of a test with
= 0.25% and ˛ = 12◦ .

ess variables:

= t

Ti
, (4)

ˆf = xf

2.561t0.275(sin ˛)1/3
(sin ˛)5/4

(
�c − 67.66

10.736

)0.141
, (5)

here Ti = 1 s is the duration of the inertia-dominated regime, t
xpressed in s, ˛ in ◦, xf in m, and �c in Pa s, then the data nearly
ollapse on the same master curve, as shown in Fig. 20. The collapse
s not perfect, indicating that this scaling is gross and holds only for
he narrow range of flow conditions explored in our experiments.
owever, since similarity theory (or other theoretical arguments)
oes not provide any similarity form for the short- and long-
ime evolution of the front position (except for limiting cases),
his empirical scaling provides some clues to appreciate the influ-
nce of the flow parameters on the bulk dynamics. In particular, it

mbodies a time dependency in the form xf ∝ t0.275(sin ˛)5/4
, which is

arkedly different from the long-time scaling observed for viscous
uids for which xf ∝ t1/3.

.3. Surface structure formation

For all tests, surface structure formation was observed for the
ear-equilibrium regime (see Fig. 21). Here, ‘surface structure for-
ation’ means that several channels formed at the margin of

he avalanching mass. The higher the Carbopol concentration and
he steeper the plane inclination were, the faster the channels
ppeared. The channels were almost symmetric about the center-
ine and aligned with the flow direction. These structures were not
bserved when the mass was confined in a flume [41]. This may be
ue to surface instabilities, but except for this scenario, we failed
o find any reasonable explanation why regular patterns formed on
he free surface.
. Conclusion

To gain insight into the complex behavior of time-dependent,
ree-surface flows of viscoplastic materials, we built up an experi-

ental setup, which makes it possible to carefully investigate the
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am-break problem on horizontal and sloping beds in the labo-
atory. To track the free-surface evolution, we designed a novel
maging system made up of a high-speed digital camera coupled to
synchronized micro-mirror projector. The precision of our mea-

urement system is on the order of 1 mm on a 1.4 m × 1.4 m surface
t a rate of 45 Hz.

Here we focused on the behavior of a large mass of Carbopol
uddenly released on a sloping plane. As a first approximation,
arbopol behaves like a Herschel–Bulkley fluid. Sixteen tests were
arried out with a 43 kg mass of Carbopol at four different concen-
rations, C = 0.25%, 0.30%, 0.35%, and 0.40%. The plane inclination
ange from 0◦ to 18◦. The mass and the reservoir dimensions were
ept constant. Comparing all runs, we observed that the behavior
as nearly the same: at the very beginning, the mass accelerated

igorously on gate opening. We referred to this flow regime as the
nertia-dominated regime. Although it had some similarities with
ully inertial phases observed for inviscid and Newtonian fluids, we
lso observed substantial differences; in particular, the front veloc-
ty was constant and much lower than the front velocity given by
he Ritter solution to the dam-break problem.

Strikingly enough, there was systematically a transition towards
nother flow regime at time t = 1 s whatever the slope or Carbopol
oncentration. The latter regime was referred to as the near-
quilibrium regime since the flow-depth gradient being close to
ero, the flow dynamics was dictated by the balance between grav-
tational and viscous forces, as in a steady uniform flow. Since we
sed fixed volumes of Carbopol, we could have expected to observe
run-out phase, where the mass came to a halt. Such a regime
as never observed in our experiments. A remarkable feature of

he near-equilibrium regime is that the front position varied as a
ower function of time over several decades. Another interesting
bservation concerns flow organization: lateral spreading occurred
n the first instants, in the inertia-dominated regime, then became
egligible. Because of yield stress, part of the fluid was abandoned
t the lateral margins and formed levees that confined the yielded
egion, giving the appearance of a self-channelized flow. Surpris-
ngly enough, the free surface became increasingly corrugated over
ime owing to “valley” formation in the streamwise direction.

Our results may be of significance to numericists and theoreti-
ians investigating non-Newtonian flows in complex geometries.
he present work may also interest geophysicists since viscoplastic
odels are commonly used to describe natural gravity-driven flows

own steep slopes such as mud flows [11,57,58], snow avalanches
59,60], and lava flows [13].
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