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Internal dynamics of Newtonian and viscoplastic fluid
avalanches down a sloping bed
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We experimentally investigated the spreading of fluid avalanches (i.e., fixed volumes
of fluid) down an inclined flume. Emphasis was given to the velocity field within the
head. Using specific imaging techniques, we were able to measure velocity profiles
within the flowing fluid far from the sidewalls. We studied the behavior of Newto-
nian and viscoplastic fluids for various flume inclinations and initial masses. For the
Newtonian fluids tested (glycerol and Triton X100), we compared the measured ve-
locity field with that predicted by lubrication theory. Provided that the flow Reynolds
number Re was sufficiently low (typically Re < 1), there was excellent agreement
between theory and experiment except for the very thin region just behind the contact
line. For higher Reynolds numbers (typically Re ∼ 10), the discrepancy between
theory and experiment was more marked (relative errors up to 17% for the body). As
viscoplastic materials, we used Carbopol ultrez 10. For the body, agreement between
theoretical and measured velocity profiles was fairly satisfactory whereas it was very
poor for the tip region as the curvature of the free surface became more pronounced:
the velocities were not only much lower than those predicted by lubrication theory,
but there was also evidence of slipping in the flow part adjacent to the contact line.
C© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4718018]

I. INTRODUCTION

In this paper, we report new experimental results that characterize the dynamics of fluid
avalanches down a sloping bed. More particularly, we focus on the velocity field within the head
of thin elongated flows for two rheologies: Newtonian fluids (glycerol, Triton) and a viscoplastic
polymeric gel (Carbopol ultrez 10).

The flow of a fixed volume of fluid down an inclined surface has attracted considerable attention
over the last decades. In terms of applications, this problem is of particular relevance to indus-
trial flows, e.g., coating films,1, 2 design of consistometer in food industry.3–5 In geophysical fluid
mechanics, the Newtonian and viscoplastic models have often been used as a first approximation
to the rheological behavior of complex slurries: debris flows, tailings dams, lava flows, and snow
avalanches.6–10 The Newtonian case is also regarded as a limiting case of (starving) gravity cur-
rents and has been studied in lock-exchange problems under laminar flow conditions.11, 12 From the
fundamental standpoint, there has been continuing interest in the development of a compact set of
equations that can describe the motion of finite volumes of fluid along a horizontal surface or down
an inclined plane. Indeed, in addition to its practical significance, this flow configuration raises a
number of questions as regards flow unsteadiness, front dynamics (contact line, stability, and finger-
ing), time-dependent free surface (shape and wave pattern), balance between two or more processes
(gravity acceleration, viscous dissipation, inertia, and pressure gradient), and the approach to an
asymptotic steady state or arrested state. Two approaches have emerged for deriving the governing
equations: one is the integral (Saint-Venant) approach that consists of taking the depth average of
the local (Cauchy) equations,7, 13–16 while the second is lubrication theory, which exploits the flow
shallowness to simplify the local governing equations.17–27 Some of the assumptions underpinning
the derivation of the governing equations (e.g., the expression of the source term in the momentum
balance equation or the existence of true plug flows) are still vividly debated.13, 16, 21
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Surprisingly enough, in spite of this considerable interest, there are few comprehensive exper-
imental investigations of time-dependent flows involving a Newtonian or viscoplastic fluid over a
solid boundary and most of them focus on macroscopic features such as the flow depth profiles
or the front position as a function of time.7, 17, 25, 26, 28–30 In this paper, we provide further insight
into the dynamics of the head of Newtonian and viscoplastic flows not only by tracking the shape
evolution but also by measuring the velocity field inside the flow and far from the sidewalls. To
that end, an innovative combination of imaging techniques has been used. The paper is organized
as follows. First, we will outline the theoretical background. Then, we will present the experimental
data for the Newtonian fluids. Finally, we will provide a few results obtained with viscoplastic fluids.
The Appendix provides further information on the theoretical framework (integral formulation and
dimensionless numbers) together with numerical and analytical solutions to the dam break problem
for viscous fluids.

II. THEORY

A. Viscous theory

Let us consider a thin layer of fluid released from a reservoir and flowing down a plane inclined
at an angle θ to the horizontal (see Fig. 1). The fluid is Newtonian with viscosity μ and density ρ.
The initial volume is V . We define a two-dimensional Cartesian coordinate system in which the x
axis points down the flume, the y axis is in the direction of the upward pointing normal. The rear
end of the reservoir is chosen to be the origin of the x axis. The bulk velocity u has components u
and v in each of these directions, respectively. The flow depth is denoted by h(x, t).

In the following treatment, we assume that the characteristic lengthscale along the bed is much
greater than the typical layer thickness. Assuming that the fluid moves slowly, we can neglect the
inertial terms in the Navier-Stokes equations. Surface tension is also neglected. The shallowness
assumption is the cornerstone that underpins lubrication theory and makes it possible to simplify a
great deal the governing equations (the Navier-Stokes equations). Using dimensional analysis and
asymptotic expansions (see the Appendix), it is possible to derive several regimes and describe
their flow properties.26, 31 Here, for the sake of simplicity, we skip many of the mathematical details
to focus on the physical meaning of the solution (from the mathematical standpoint, much more
attention must be paid to justifying the asymptotic expansions that underpin the results presented
thereafter26). The shallow flow approximation leads to a hydrostatic distribution of the fluid pressure

p = ρg cos θ (h − y), (1)

while the streamwise velocity component is given by the momentum balance equation

∂τ

∂y
+ ρg sin θ = ρg cos θ

∂h

∂x
, (2)

with τ = μγ̇ denoting the shear stress (γ̇ = du/dy is the shear rate). Integrating Eq. (2)
shows that the velocity profile takes a parabolic shape, whose amplitude is modulated by the free
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FIG. 1. Sketch defining the flow configuration.
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surface curvature

u(x, y, t) = 1

2
K y(2h − y)

(
1 − cot θ

∂h

∂x

)
with K = ρg sin θ

μ
. (3)

The continuity equation yields the normal velocity profile

v(x, y, t) = 1

2
K y2

(
∂h

∂x

(
1 − cot θ

∂h

∂x

)
− ∂2h

∂x2

(
1 − y

3

)
cot θ

)
. (4)

A new integration of Eq. (3) leads to the depth-averaged velocity

ū(x, t) = 1

h

∫ h

0
u(x, y, t) dy = 1

3
K h2

(
1 − cot θ

∂h

∂x

)
. (5)

Conservation of mass leads to the governing equation for the flow depth h(x, t), which is a nonlinear
advection-diffusion equation

∂h

∂t
+ K h2 ∂h

∂x
= K h2 cot θ

(
∂h

∂x

)2

+ K h3

3
cot θ

∂2h

∂x2
. (6)

The only exact solutions available are for horizontal bottoms (θ = 0), for which the governing
equation reduces to a nonlinear diffusion equation.19, 32 Asymptotic solutions can be obtained at
short and long times.17, 18, 26 For instance, it can be shown that at sufficiently long times, the spread
of a finite volume V on a horizontal surface is given by

x f (t) = ξ f

(
ρgV 3

3μ
t

)1/5

, (7)

with ξ f = 1.411, while the front position of a fluid avalanche over a tilted plane is approximated by
the first-order expression

x f (t) =
(

9

4

ρg sin θV 2

μ
t

)1/3

. (8)

B. Viscoplastic theory

Lubrication theory can also be applied to viscoplastic flows.20, 21, 23, 25, 27 Here, we consider
viscoplastic fluids whose behavior can be described using the empirical Herschel-Bulkley law. For
simple shear flow, this law implies that there is motion only when the shear stress τ exceeds a
threshold called the yield stress τ c

κγ̇ n =
{

τ − τc for τ > τc,

0 for τ ≤ τc,
(9)

where n is called the shear thinning index (in most cases n ≤ 1) and κ is the consistency. After
substituting τ by the constitutive relation (9) into the momentum balance equation (2) and integrating
it, we readily obtain the velocity profile

u(x, y, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n

n + 1
K̂ 1/n

(
Y 1+1/n

0 − (Y0 − y)1+1/n
)(

1 − cot θ
∂h

∂x

)1/n

for y ≤ Y0,

n

n + 1
K̂ 1/n

(
1 − cot θ

∂h

∂x

)1/n

Y 1+1/n
0 for y > Y0,

(10)

with K̂ = ρg sin θ/κ and where Y0 = max (0, h − τ c/(ρgcos θ (tan θ − ∂xh))) denotes the position of
the interface between the sheared and unsheared layers; it is called the yield surface. The nature of
the unsheared layer (also called the plug) in an elongating flow has been widely debated: questioning
the existence of a plug layer within the tip region, Piau13 suggested that the entire layer should be
sheared. Taking a closer look at the matched asymptotic expansions used to derive the governing
equations, Balmforth and Craster21 have shown that the plug region is in fact slightly sheared and
for this reason, should be better referred to as the pseudo-plug layer, and the yield surface as the
pseudo-yield surface.
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III. EXPERIMENTAL FACILITY AND PROCEDURE

A. Fluids

As Newtonian fluids, we used three liquids: 98.5% glycerol solution (density ρ = 1260 kg m−3,
viscosity μ = 1110 mPa s at a temperature of 20 ◦C), pure glycerol (density ρ = 1260 kg m−3,
viscosity μ = 1490 mPa s at a temperature of 20 ◦C), both manufactured by Reactolab (Switzerland),
and Triton X100 (density ρ = 1067 kg m−3, viscosity μ = 468 mPa s at a temperature of 20 ◦C)
produced by Interchim Bioscience (Switzerland). Viscosity was measured using a Bohlin CVOR
rheometer equipped with a cone and plate geometry; density was measured using an aerometer
to within 1%. The refractive index nr was 1.4730 for glycerol (98.5% solution) and 1.49171 for
Triton. Surface tension was measured using the pendant drop test (with a 0.74-mm wide needle) and
image processing.33 We found σ = 51 mN m−1 for glycerol and σ = 32 mN m−1 for Triton X100
(measurement uncertainty as high as 20%).

As glycerol absorbed water vapor, it was very difficult to use pure glycerol and for that reason,
most runs were done with the 98.5% glycerol solution. Note that Triton is not a genuinely Newtonian
fluid. It was slightly shear thinning, with a flow curve closely approximated by a power law function

τ = κγ̇ n, (11)

with n = 0.935 the shear-thinning index and κ = 0.481 Pa s−n (at 20 ◦C) the effective viscosity.
Moreover, as the dynamic viscosity was highly sensitive to temperature changes (typically
increasing the temperature by 1◦C caused the viscosity to decrease by about 35 mPa s for Triton
and about 65 mPa s for glycerol), all the experiments were carried out under controlled temperature
conditions (at 20.0 ± 0.1 ◦C).

As viscoplastic fluids, we used Carbopol ultrez 10 (we also tested ultrez 21) at a mass con-
centration of 0.15%. Given the low concentration in Carbopol, the density and refractive index are
those of water: ρ = 1000 kg m−3 and nr = 1333. The sample was prepared as follows: the Carbopol
powder was gently poured and dispersed in a large volume of demineralized water heated at 55 ◦C.
The dispersion was left at rest for a few hours (typically one night). The pH was adjusted to 7.70
± 0.05 by adding a sodium hydroxide solution. After mixing the sample vigorously, we added a
tiny amount of polyamid particles (for particle image velocimetry (PIV) measurements). To ensure
homogeneity and remove gas bubbles trapped during the previous phases, we mixed the sample very
slowly (4 rpm) for 12 h. We measured the rheological properties using a parallel plate geometry (with
serrated plates, diameter 60 mm, and gap 2 mm) mounted on a Bohlin CVOR rheometer. Serrated
surfaces were needed to avoid/limit wall slip. On average, we had: τ c = 33 Pa, n = 0.33, and κ

= 26 Pa sn. Reproducibility tests carried out with other geometries showed that the uncertainty on
the rheological parameters was more significant than for the Newtonian liquids. We estimated that
the maximum deviation was 
τ c = 2 Pa (relative uncertainty 6%), 
n = 0.02 (relative uncertainty
6%), and 
κ = 4 Pa sn (relative uncertainty 15%). Additional tests showed that Carbopol ultrez 10
was negligibly viscoelastic and thixotropic.

All our fluids were seeded with polyamid particles for particle imaging velocimetry. The par-
ticles (polyamide 12 particles manufactured by Dantec Dynamics, mean diameter 20 μm, density
1030 kg m−3) were marked with rhodamine by leaving them in a concentrated rhodamine solution
(maintained at 60 ◦C) for one month. They were then rinsed with alcohol several times to avoid
subsequent contamination of the samples by rhodamine. Note that the density mismatch between
the PIV particles and the carrier fluid had negligible effects as the settling velocity (approximately
0.05 μm s−1) was very low compared to the streamwise velocity (approximately 10 cm s−1). We also
suspected rhodamine to have an effect on Carbopol on the long term and for this reason, Carbopol
samples were used quickly after their preparation (after PIV particles were added).

B. Flume

Experiments were conducted in a flume with a transparent bottom (PMMA plate, refractive
index nr = 1.488). The flume was 3.5 m long and 10 cm wide. It could be inclined from 0◦ to
35◦. Its position was accurately controlled using a digital inclinometer with a precision of 0.1◦. The
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upper part of flume was equipped with a sluice gate mounted on a pneumatic jack and was used as a
reservoir. The jack was quickly raised by injecting air pressured at 7 MPa, which made it possible to
lift the gate within 0.5 s. Recall that we defined a two-dimensional Cartesian coordinate system in
which the x axis points down the flume, the y axis is in the direction of the upward pointing normal,
and the z axis is the cross-stream direction (see Fig. 1). The upper end of the flume is at x = 0, while
the lower end is at x = 350 cm. z = 0 refers to the right sidewall (when looking at the flume from
the inlet), while z = W = 10 cm refers to the left sidewall.

C. Measurement systems

We took the following measurements: (i) the velocity field in a vertical plane Oxy passing
through the centerline of the flume (z = 5 cm) and normal to the flume bottom and (ii) the position
of the front as a function of time. To that end, we used a dual head, diode pumped, Q-switched
Nd:YLF Laser (Litron LDY 303). The laser had two optical cavities emitting a 527-nm beam (green),
with energy up to 20 mJ per pulse at 1 kHz. Velocities were measured using high-speed cameras
and PIV techniques. For PIV measurements, we used a Basler A504k camera (working in the
200–1000 Hz range), mounted with a Nikkor 105 mm macrolens and an orange filter. The images
were then processed using classic PIV techniques.34 Velocity fields were computed using the open
source software called MatPIV.35 Front position was monitored using two Basler A403kc cameras.

Figure 2 explains how we measured the velocity profiles from below using the Scheimpflug
principle (see Fig. 2 and, e.g, see Chap. 7 in Raffel et al.34 for additional information). Filming from
the side did not make it possible to measure velocities within the head far from the sidewall owing
to the strong curvature (in both x- and z axis) and flow shallowness of the front. On the contrary,
filming from below gave direct optical access to the vertical plane passing through the centerline, but

FIG. 2. Sketch of the measurement system for the velocity profiles within the moving fluid. Because of the fluid/air interface
and the three-dimensional nature of the flows, we were forced to film the flow from below. When shooting images with a
camera whose sensor (CCD) is not parallel with the object, one can use the Scheimpflug principle, which involves tilting the
camera until the image plane (on the CCD), the lens plane, and the object plane (lit by the laser sheet) have a common line
of intersection.
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the disadvantage of this configuration was that the largest part of the filmed plane was out of focus.
To get around this problem, we adjusted the inclinations of the camera CCD and the lens so that the
Scheimpflug rule was satisfied (the image was then in focus). A prism (made up of a PMMA block,
with the same refractive index as that of the flume bottom) was also needed to avoid refraction. For
Newtonian liquids presented here, slight refraction was induced by the change in the refractive index
change at the bottom, but it had negligible effects; refraction was more pronounced for Carbopol. As
this system caused significant image distortion, we had to correct it to properly compute the velocity
field; this was done by taking a shot of a test chart and using the MATLAB built-in function cp2tform
to undistort the images.

IV. EXPERIMENTAL RESULTS FOR NEWTONIAN FLUIDS

Table I summarizes the different runs presented in this paper. As bed inclination had direct
influence on flow velocity, this was the main parameter we altered to explore the dynamical features
of fluid avalanches under different flow conditions. In earlier papers,25, 26 we reported how the front
position and flow depth profiles evolved for highly viscous fluids (concentrated glucose solutions
μ = 345 Pa s) and we compared the data with lubrication theory. Here, we will mainly focus on
the velocity field inside the flowing material. Yet, to see how well lubrication theory performs as
regards the computation of the front position (see Sec. II A), we will first plot the front position as a
function of time in a dimensionless form in Fig. 3 and briefly comment on the results.

The measured positions xf(t) were scaled by the asymptotic values in the form (Mt)a given
by Eq. (7) (a = 1/5) for horizontal bottoms and Eq. (8) for sloping flumes (a = 1/3). If the
scalings (7) and (8) gave fair predictions of the front position, the scaled ratio should tend to unity
at sufficiently long times. Since convergence to the asymptotic (similarity) solution could be quite
slow,22 we also estimated the time needed to observe the front position lying in a given neighborhood
of the asymptotic solution. To that end, we solved the integral equations (Saint Venant) corresponding
to our initial boundary value problem using the CLAWPACK library36 (see the Appendix). We then
computed the times t5%

c and t10%
c , from which the deviation between the computed and asymptotic

positions of the front dropped below 5% and 10%, respectively. For some simulations [runs (g) and
(h)], it was impossible to observe strict convergence for our simulations of flows down a 3.5-m long
flume. When we compare the run duration te and the convergence times t5%

c or t10%
c , it turns out that

for all runs except for runs (b), (g), and (h), the experimental time should have been sufficiently long
to observe relative deviations lower than 5%; for run (b), the relative deviation should lie within
the 5%–10% range. For run (g), the numerical simulations showed that the t1/3 scaling in Eq. (8)
was correct, but the front position was systematically 25% ahead of the asymptotic value given by
Eq. (8).

TABLE I. Features of the 8 runs: fluid used, density ρ, dynamic viscosity μ, flume inclination θ , initial mass m, duration
of the experiment te (time needed for the mass to travel the length between the lock gate and the flume outlet), numerically
estimated times of convergence t5%

c and t10%
c , time tf (see thereafter), and flow Reynolds number Re = ρūh/μ, where ū

and h denote the depth-averaged velocity and flow depth measured within the body, respectively. We reported the numerical
estimates of the times required to observe convergence to the asymptotic solution to within 5% and 10%. tf denotes the time
at which the front reached the position x = 255 cm, at which the velocity field was measured.

Run Fluid ρ (kg m−3) μ (mPa s) θ (deg) m (kg) te (s) t10%
c (s) t5%

c (s) tf (s) Re
(a) 98.5% glycerol 1260 1110 0 6 117 1.1 8 61.5 0.08
(b) 98.5% glycerol 1260 1110 1 6 34.2 7 92 24.2 0.40
(c) 98.5% glycerol 1260 1110 3 6 19.2 1.4 1.8 12.6 1.55
(d) 98.5% glycerol 1260 1110 6 6 8.4 1.8 2.6 5.86 6.70
(e) 98.5% glycerol 1260 1110 9 6 5.5 2.1 2.7 3.95 9.33
(f) 98.5% glycerol 1260 1110 6 3 22.9 1.7 7 15.3 1.13
(g) Pure glycerol 1260 1490 25 1 35.6 ... ... 21.7 0.27
(h) Triton X100 1067 468 6 3 8.1 100 ... 5.55 9.11
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FIG. 3. Variation in the scaled front position with dimensionless time for runs (a)–(h). The front position is made dimen-
sionless by dividing xf(t) by (Mt)a with a = 1/3 and M = 9ρg sin θV 2/(4μ) for θ > 0 and a = 1/5 and M = 5.59ρgV 3/(3μ)
for θ = 0. Time te is the experiment duration (see Table I). The horizontal dashed line is the asymptotic value to which the
scaled front position should tend.

Figure 3 shows that there was an asymptotic value to which the scaled front position tended, but
this value significantly differed from unity. For flows involving large masses (6 kg) at the steepest
slopes, the asymptotic value was close to 0.8, whereas for the flows at shallow slopes, this value was
closer to 0.9. Except for run (g) done at θ = 25◦, all measured front positions were lower than the
predicted positions. In our earlier experiments done with glucose and a wide flume (30 cm), we also
observed a systematic deviation between the theoretical scaling and the measured trend. We primarily
thought that there was a delay resulting from the uplift of part of the fluid when we removed the
lock gate. However, sidewall friction seems to provide a better explanation for most cases. Indeed,
as shown in the Appendix (see Fig. 14), including an empirical correcting factor accounting for
sidewall friction reduces significantly the deviations between theory and experimental data. This
point deserves further work.

In the rest of this section, we will take a closer look at the velocity profiles inside the flow.
We will report both the measured velocity profiles taken in different places (along the centerline)
and the theoretical profiles yielded by Eq. (3). Note that making use of this expression requires an
equation specifying the gradient of the free surface ∂xh(x, t). We evaluated ∂xh(x, t) experimentally
by interpolating the measured flow depths by a piecewise linear function: the slope of each segment
gave a fairly good local estimate of ∂xh(x, t). The depth and velocity profiles are plotted relative
to the front position (
x = x − xf is the distance to the front). In all our experiments, we started
probing the velocities when the front position was xf = 255 cm.

A. Slope influence

Figure 4 shows the measured and theoretical velocity profiles for runs (a)–(c) pertaining to flows
at shallow slopes (θ ≤ 3◦). Note that only a few datasets have been reported for clarity. We also
plotted the flow depth profiles. Remarkably, increasing the bed slope by 3◦ changed the velocity by
a factor 10. For the body and the upper part of the tip region (x − xf ≥ 10 cm), there was a fairly
good agreement between the theoretical and experimental profiles (with a maximum relative error
of 10%). Within the head (x − xf ≤ 10 cm), the experimental profiles still kept a parabolic shape,
but the velocities were substantially lower than those predicted by Eq. (3). The shallower the slope
was, the more pronounced the deviation was. For θ = 0, the relative error was as large as 340% (the
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FIG. 4. Velocity profiles for glycerol flows at the shallowest slopes: (a) θ = 0◦ [run (a)]; (b) θ = 1◦ [run (b)]; (c) θ = 3◦ [run
(c)]. Initial mass released: 6 kg. The dots represent the measurements, while the solid lines stand for the theoretical profiles
provided by Eq. (3).

corresponding data are not shown to keep a reasonable plot range), whereas for θ = 3◦, it dropped
to 30%.

Figure 5 shows the measured and theoretical velocity profiles for runs (d) and (e) corresponding
to flume inclinations θ = 6◦ and θ = 9◦, respectively. Some changes in the velocity behavior were
conspicuous. First, for θ = 6◦, the velocity field given by Eq. (3) closely matched the measured
velocity profiles even within the head; the maximum relative error was 15%. Then, for θ = 9◦,
deviations from the expected theoretical profiles were noticeable in the body: at x − xf = −65 mm,
the relative deviation was as high as 17%; when approaching the front, the deviation increased and
became larger than 50% in the close vicinity of the contact line. Since this flow was characterized
by the highest Reynolds number (Re ∼ 9.33 in the body), one reasonable explanation for the
systematic discrepancy between the predicted velocity profiles and the measurements stems from
the development of inertial effects.

Surprisingly enough, the measured velocities were higher than the predicted velocities for the
body and upper part of the head (x − xf ≤ −1.6 mm). Computation of the mass flux hū showed that
for the experiments at the shallowest slopes (θ ≤ 3◦), it was increasing with distance (i.e., the mass
flux was larger in the body than that in the vicinity of the contact line) as was expected theoretically,
whereas at steeper slopes, it remained nearly constant (except near the contact line, where it dropped
abruptly). This suggests there must be flow recirculation within the tip region to allow for the
constant mass flux in the x-direction. Consistently with the analytical calculations of the velocity
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FIG. 5. Velocity profiles for glycerol flows at steeper slopes: (a) θ = 6◦ [run (d)]; (b) θ = 9◦ [run (e)]. Initial mass released:
6 kg. The dots represent the measurements, while the solid lines stand for the theoretical profiles provided by Eq. (3). For
run (d), the dashed lines represent the velocity profiles in a steady uniform regime, i.e., by setting the depth gradient term to
zero in Eq. (3).

field within an intrusive front between parallel plates,37 this recirculation might have been created
by a pair of counter-rotating vortices within the tip region, on either side of the centerline, and with
axis of rotation normal to the flume bottom: fluid parcels were sucked toward the centerline, which
contributed to increase the mass balance and give a blunter shape to the contact line, as shown in
Fig. 6. This is a speculative explanation, which does not rely on measurements (which would have
been difficult to take within the moving head with sufficient accuracy).

To illustrate the importance of the depth gradient in the velocity computation, we have plotted
the velocity profiles pertaining to the steady uniform flow on Fig. 5(a). These profiles were readily
obtained by setting ∂xh = 0 in Eq. (3). They significantly differed from the measured velocities: for

x ∼ −60 mm (somewhere in between the contact line and the body), the relative error was as large
as 50%, while it exceeded 90% nearby the contact line. This result may seem intriguing in that in
analytical calculations of the front position as a function of time7, 17, 18, 26 (see the Appendix), it is
assumed that the depth-averaged velocity accommodates with any local change in the flow depth as
if the flow were at equilibrium, i.e., steady and uniform. This assumption allows to simplifying a
great deal the governing equation (6), which then reduces to a simple nonlinear advection equation;
in this case, the spreading rate is given by the relation (8), which is considered to provide the correct
scaling of the front position with time.

B. Mass influence

Figure 7(a) shows the velocity profiles for a mass of 3 kg down a flume inclined at 6◦. Figure
7(b) shows the profiles of the normal velocity component v(x, y, t). This velocity component was
of low amplitude (typically 2 mm/s for the body) compared to the streamwise component u even
in the close vicinity of the front. Note also there was considerable noise in the measurements,
which resulted from the very nature of particle image velocimetry, which involved correlating the
displacement over several successive images, as well as the substantial difference in the velocity
amplitudes between the streamwise, normal, and cross-stream components.
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FIG. 6. Profiles of the contact lines seen from above for runs (a), (c)–(e) corresponding to slopes θ = 0◦, 3◦, 6◦, and 9◦,
respectively. The postulated pair of counter-rotating vortices is also reported. The dashed line is the centerline. Distance x
has been adapted to give the shape the same origin at the bottom left corner. Note that the width to length ratio is 6.66, so
that the contact lines were blunter than they might appear.

Figure 7(a) plot can be usefully compared with Fig. 4(c) corresponding to the same inclination,
but with a mass of 6 kg. Clearly, the agreement was much better with the lowest mass since
the deviations between the observed and theoretical profiles were seen only near the contact line
(x − xf ≥ −2 mm). This supports our earlier statement: the discrepancy between lubrication theory
and experimental was likely to originate from the development of inertial effects, which started being
significant for Reynolds numbers in excess of 10. This is confirmed by run (g), which pertained to
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FIG. 7. (a) Streamwise velocity profiles for θ = 6◦ [run (f)]. Initial mass released: 3 kg. Same caption as for Fig. 4.
(b) Normal velocity profiles. The solid line is the theoretical velocity profile (4).
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FIG. 8. Velocity profiles for θ = 25◦ [run (g)]. Initial mass released: 1 kg. Same caption as for Fig. 4.

a steep slope (θ = 25◦) but with a very low mass (1 kg instead of 3 or 6 kg). In spite of the steep
slope, the flow was sufficiently shallow for the Reynolds number not to exceed 0.3 (see Table I) in
the body. As shown by Fig. 8, there was also good agreement between the observed and theoretical
profiles for this run.

C. Viscosity influence

We tested Triton X100, which could be roughly regarded as a Newtonian fluid in spite of its
shear thinning. Figure 9 shows the measured velocity profiles together with the theoretical profiles
given by Eq. (3). At first look, agreement was partial and, as the flow Reynolds was quite high
(Re ∼ 9), this may be due to the development of inertial effects. Yet, if we assumed a power-law
constitutive relation [see Eq. (11)], we obtained the following velocity profile:

u(x, y, t) = n

n + 1
K̃ 1/n

(
h1+1/n − (h − y)1+1/n

) (
1 − cot θ

∂h

∂x

)1/n

with K̃ = ρg sin θ

κ
(12)

that closely matched the observations. Deviations from the theoretical trend were seen only near the
contact line.
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FIG. 9. Velocity profiles for the Triton sample [run (h)] (θ = 6◦), initial mass released: 3 kg. (a) Theoretical profiles given
by the Newtonian law (3). (b) Theoretical profiles given by the power law (12) with the parameters given by the rheometric
data (11).
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FIG. 10. Depth and velocity profiles for the Carbopol sample. Slope θ = 25◦, initial mass released: 6 kg. The thick dashed
line represents the pseudoyield surface. The dots represent the measurements, while the solid lines stand for the theoretical
profiles provided by Eq. (10).

V. EXPERIMENTAL RESULTS FOR VISCOPLASTIC FLUIDS

Tests with viscoplastic materials turned out to be more difficult to carry out. While the overall
pattern was similar to that observed for Newtonian fluids (i.e., fairly satisfactory agreement with
lubrication theory, in particular sufficiently far from the contact line), we were faced with additional
difficulties arising from slip occurrence and existence of a yield stress. Velocities data were also much
more noisy (the Carbopol samples being translucent, image quality was less than with Newtonian
fluids).

One way of reducing wall slip was to spread a thin layer of Carbopol prior to each experiment.
Once dried, the layer was removed, but a thin coating film was likely to remain and change the
surface state of the flume bottom. As shown by Walls et al.,38 using hydrophilic or hydrophobic
plates has significant influence on slip occurrence. Following the conclusions of Walls et al.,38 we
also think that the coating film reduced surface energy and thus slipping velocity to a significant
degree but not completely as will be shown below.

Yield stress also had major effect on the avalanche dynamics. In particular, as shown by Eq. (10),
bed inclination or flow depth must be sufficiently large for the flow to occur. At steep slope and/or
for thick flows, the flow was rather fast and looked like the Newtonian flows described in Sec. IV,
but at shallow slopes or for thinner flows, the flow was very slow and could come to a halt. In the
following, we will give two typical examples of fast and slow flows.

Figure 10 shows the flow depth profile and velocity profiles for a 6-kg mass down a slope of
25◦; the position of the pseudoyield surface y = Y0(x, t) is also reported. Figure 11 provides more
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FIG. 11. Velocity profiles taken at different positions. Flume inclination 25◦.
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FIG. 12. Depth and velocity profiles for the Carbopol sample. Slope θ = 15◦, initial mass released: 6 kg. The thick dashed
line represents the pseudoyield surface. Same caption as for Fig. 10.

details on the changes in the velocity profile when one goes away from the front. For the body
(
x < −100 mm), there was good agreement between experiment and lubrication theory: both
the velocity profile and position of the pseudoyield surface were properly predicted. When one ap-
proached the leading edge, deviations from the theoretical profile were conspicuous, but the position
of the pseudoyield surface predicted by theory closely matched the observations. Near the contact line
(
x ∼ −1.6 mm), the velocity profile took a parabolic shape that differed from the two-layer struc-
ture predicted by Eq. (10): consistently with Piau’s statement,13 the plug region subsided and the
entire depth was sheared. As the velocity data were noised, it was difficult to precisely determine
where the plug region arose. For −2 ≤ 
x ≤ −15 mm, there was a slow transition from a parabolic
shape to a two-layer structure.

Figure 12 provides an example of creeping (slow) flow. The flow configuration was the same
as above except that the flume inclination was decreased to 15◦. A noticeable consequence was the
drop in the velocity magnitude: the maximum velocity did not exceed 2 mm/s whereas it exceeded
30 mm/s for θ = 25◦. Four other features are also remarkable. First, the flow depth profile was
markedly different, with a thinner, acuter leading edge whereas at steeper slopes, the tip region took
the appearance of a blunt nose. Second, slipping was observed within the leading edge: as shown by
Fig. 13, the slip velocity was approximately 1.8 mm/s, a value slightly lower than the free surface
velocity (2.3 mm/s). Third, while the two-layer structure was obvious far away from the contact
line, the shape of the velocity profile within the tip region (
x > −5 mm) was more difficult to
interpret: in addition to the slip component, there seemed to be slight but continuous shearing (γ̇ ∼ 5
× 10−2 s−1) across the depth. Fourth, the velocity of the free surface seemed to stay constant: far
from the contact line (at 
x = −30.6 mm), it reached 23 ± 3 mm/s while in the vicinity of the
contact line (at 
x = −0.3 mm), it was 24 ± 1 mm/s. This may indicate that the free surface was
frozen, i.e., in a fully plastic state. The main difference between the body and the tip region lay in
the collapse of the sheared layer, which reduced to a lean layer (thickness 0.2 mm).
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VI. CONCLUSIONS

As far as we are aware, this paper is the first report on velocity measurements within the
head of fluid avalanches far from the sidewalls. We compared the velocity profiles predicted by
lubrication theory to those measured experimentally within the head and body of fixed-volume flows
over horizontal or down sloping beds under laminar flow conditions. Experiments were conducted
for various flume inclinations and two kinds of fluids: Newtonian (glycerol, Triton X100) and
viscoplastic (Carbopol ultrez 10).

For flows of Newtonian liquids at low Reynolds numbers, there was excellent agreement
between lubrication theory and experiment except for the close vicinity of the contact line, where
velocities were usually significantly overestimated by theory. At higher Reynolds numbers (Re ∼ 10),
lubrication theory slightly underestimated velocity (by approximately 10%). Interestingly enough,
these velocity measurements shed new light on the discrepancy between theory and experiment as
regards front propagation:

� In an earlier paper,26 we assumed that the systematic deviation between the corresponding
theoretical and experimental curves resulted from a delay due to the opening of the gate when
we released the fluid down the flume. This deviation was more likely due the influence of three-
dimensional structures that altered the velocity profiles along the centerline and, as shown in
the Appendix, to sidewall friction. The explanation of the latter effect (occurrence of a pair
of counter-rotating vortices) is speculative and deserves further work. We also observed that
the higher the flow Reynolds number was, the larger the deviations between theoretical and
experimental velocity profiles were.

� In lubrication theory, the front position equation (8) is derived by using an approximation that
amounts to regarding the flow as a locally steady uniform flow. We showed that although this
approximation did not hold true, in particular within the tip region owing to the curvature of
the free surface (that makes the velocity field very different from the velocity distribution in a
steady uniform flow), it provided reasonably accurate predictions of the front position to within
20%.

For viscoplastic flows, the experiments were more difficult to conduct. At sufficiently steep
slopes (25◦), there was satisfactory agreement between lubrication theory and experiment as long
as the curvature of the free surface was not too marked. At shallower slopes (15◦), agreement
became poor. While the two-layer structure of the velocity profile predicted by theory was evident
far from the contact line, the structure of the velocity field within the head was more complicated.
In particular, significant wall slip was observed there.
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APPENDIX: EXACT AND APPROXIMATE SOLUTIONS TO THE DEPTH-AVERAGED
EQUATIONS OF MOTION

1. Governing equations

In Sec II A, we omitted the effects of surface tension and inertia in the derivation of the governing
equation (6). To appreciate the respective influence of surface tension and inertia, we can use the
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following set of depth-averaged dimensionless equations reflecting mass conservation

∂h

∂t
+ ∂hū

∂x
= 0, (A1)

and momentum conservation

εRe

(
∂hū

∂t
+ β

∂hū2

∂x

)
+ ε cot θh

∂h

∂x
= h − τb + ε3

Ca
h

∂3h

∂x3
. (A2)

These equations are derived from the Navier-Stokes equation using integral theory and a Kármán-
Polhausen approach (see Craster and Matar2 for an example of derivation). For the sake of simplicity,
we have not used specific symbols to refer to dimensionless numbers, as in this Appendix, all
variables are in dimensionless form. In the left-hand side of Eq. (A2), the first two terms represent
the variations in the bulk momentum while the third term is the pressure gradient term. In the
right-hand side of Eq. (A2), the first term represents the gravitational forces, the second term τ b is
the bottom shear stress, and the third contribution accounts for surface tension. In the momentum
balance equation (A2), the advection term is weighted by the Boussinesq coefficient β = u2/ū2,
which reflects the effect of the shearing on the velocity distribution. By adopting the Kármán-
Polhausen approach and assuming that the velocity profile is parabolic, we close the mass and
momentum balance equations by setting

τb = 3
ū

h
and β = 5

6
. (A3)

Equations (A1) and (A2) are parameterized by four dimensionless groups: the bed slope θ , the aspect
ratio ε, the Reynolds number Re, and the capillary number Ca

ε = H∗
L∗

, Re = ρH∗U∗
μ

and Ca = μU∗
σ

, (A4)

where H*, L*, U∗ = ρgH 2
∗ sin θ/μ are typical scales of length, height, and velocity. In the present

context, the typical orders of magnitude of these scales are: H* = 3 cm, L* = 3 m, U* = 50 cm/s
(estimates for μ = 1.1 Pa s, θ = 3◦, ρ = 1260 kg m−3, σ = 60 mN m−1), yielding: ε = 10−2,
Re = 17, and Ca = 9. This application shows that surface tension (which scales as ε3Ca−1 ∼ 10−7)
has negligible effects here, while inertia (which scales as εRe ∼ 2 × 10−1) is sufficiently small to be
neglected as a first approximation, but it may play a role, as discussed later. The pressure gradient
(which scales as ε cot θ ∼ 2 × 10−1) is of the same order of magnitude as inertia for this numerical
application. From this, we can simplify the mass and momentum balance equations (A1) and (A2)

∂h

∂t
+ ∂hū

∂x
= 0, (A5)

∂hū

∂t
+ β

∂hū2

∂x
+ cot θ

Re
h

∂h

∂x
= 1

εRe

(
h − 3

ū

h

)
. (A6)

To elucidate the respective role of the different contributions to the momentum balance equation,
we solve Eqs. (A5) and (A6) numerically and analytically using asymptotic methods.

2. Characteristic form

The governing equations (A5) and (A6) can be cast into the characteristic form


±
dh

dt
+ dū

dt
= 1

εRe

(
1 − 3

ū

h2

)
on

dx

dt
= λ±, (A7)

where


± = ū2(β − 1) + cot θ Re−1h

h(ū(β − 1) ±
√

βū2(β − 1) + cot θ Re−1h)
, (A8)

λ± = βū ±
√

βū2(β − 1) + cot θ Re−1h. (A9)
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In the x − t plane, the equations dx/dt = λ± form two (one-parameter) families of characteristic
curves, along which the relation (A7) hold.36 The wave front is the locus of points in the x − t plane,
for which the depth is zero and the velocity takes a finite nonzero value. In the absence of shearing
(β = 1) and drag (Re → ∞), the solution to the governing equations (A5) and (A6) is the Ritter
solution (also called the dam break solution).36, 39 In that case, both families of characteristic curves
merge at the front; the wave front is then a characteristic curve. When β > 1 and drag is taken into
account, the front wave is no longer a characteristic curve, but the envelope of the characteristics.40

As the wave front is tangent to each characteristic when h = 0, it has the same slope dx/dt. When
h → 0, we have λ± = γ2ū f + O(h) and 
± = ū f /(γ1h) + O(1) with γ1 = 1 + √

β/(β − 1) and
γ2 = β + √

β(β − 1) and where ū f (t) denotes the front velocity. In the limit of vanishing flow
depths and for β >1, we have 
±dh + dū ≈ ū1−γ1

f d(huγ1
f )/(γ1h), from which we deduce

ū1−γ1
f

γ1h
d(huγ1

f ) = − 3

εRe

ū f dt

h2
+ O(1) on

dx

dt
= γ2ū f + O(h). (A10)

After integration, we find that close to the front x = xf, the flow depth varies as

h ≈
(

6

εRe

γ1

γ2ū f
(x f − x)

)1/2

, (A11)

a scaling that is in close agreement with earlier findings.7, 39

3. Numerical solution

A common strategy to solve the governing equations (A5) and (A6) is to use a fractional-step ap-
proach, which involves splitting the problem into two subproblems that can be solved independently
and more easily:36 first, solve the homogenous advection equation

∂t U + A · ∂x U = 0, with A =
[

0 1
εh cot θ − βū2 2βū

]
and U =

[
h

hū

]
, (A12)

then solve the evolution equation

∂t U = S, with S = 1

εRe

[
0

h − 3
ū

h

]
. (A13)

For the first subproblem (A12), we used a high-resolution wave propagation algorithm developed by
LeVeque.36 This algorithm is a Godunov-type scheme that employs the solution to local Riemann
problems. It is part of an open-source library called CLAWPACK. More specifically, we used an approx-
imate Riemann solver developed by George,41 which provides a well-balanced scheme that preserves
balanced steady states, properly captures shock waves and fronts over dry surfaces, and maintains
depth non-negativity. For the second problem (A13), we used a backwards (implicit) Euler scheme.

Taking shearing into account, i.e., taking β > 1, leads to characteristic velocities in excess of
the front velocity and in the absence of viscous drag, it is not possible to identify the location of
the front, as the front is rejected to infinity, which has been already noticed when solving the dam
break problem (with or without drag).39, 42 For this reason, in the absence of expedient to fix this
issue, we took β = 1 in the numerical simulations. Figure 14 shows a typical example of simulations
with β = 1 for the initial boundary value problems that corresponded to runs (b)–(d) (same initial
volume but different bed inclinations). The convergence of the numerical solutions to the similarity
solution (A20) was rather fast: for t ≥ 0.5, the simulated front position curves collapsed onto the
curve given by Eq. (A20).

Numerically, it is possible to account for sidewall friction by utilizing the approximation of
hydraulics radius used in hydraulics.43, 44 Using the Darcy-Weisbach formula, Chow43 showed that
for open channel flows, the mean bottom shear stress can be expressed as

τb = 1

8
fρū2, (A14)
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FIG. 14. Front position as a function time (dimensionless log-log plot). The flow conditions pertain to runs (b)–(d), i.e., for
θ = 1◦, 3◦, and 6◦. The dashed line is the similarity solution (A20): xf = ξ ft1/3. The dots represent the numerical data, which
were obtained by solving the governing equations (A5) and (A6) with the same initial conditions as those imposed in our
experiments. The scales were L* = 3 m, A* = H*L* = 4.8 × 10−2 m2. U∗ = ρgH2∗ sin θ/μ.

where the Darcy-Weisbach friction factor f is expressed as f = 24/Reh with Reh = ρū Rh/μ the
generalized Reynolds number and Rh = W h/(W + 2h) the hydraulic radius (where W denotes the
flume width). This amounts to weighting the bottom shear stress τ b in the momentum balance
equation (A2) with a correcting factor 1 + 2h/W : τb = 3(1 + 2h/W )ū/h. Figure 15 shows the
comparison between experimental data and numerical simulations for runs (b)–(d), i.e., for a mass
of 6 kg and slopes θ = 1◦, 3◦, and 6◦. We also report the similarity solution (A20). Using the
empirical sidewall friction resulted in much better agreement with experimental data. This supports
the idea that sidewall friction influenced the front dynamics in our narrow flume.

4. Analytical solution

We solve the following boundary value problem. We consider the flow generated by the removal
of a lock gate, behind which a volume A of fluid is at rest. In the absence of surface tension, the
governing equations are given by Eqs. (A5) and (A6). The equations are supplemented by an equation
of mass conservation and a boundary condition at the front∫ x f (t)

0
h(x, t)dx = A and h(x f ) = 0. (A15)

Without losing generality, we can seek solutions in the form

h(x, t) = t−p Z (ξ, t), u(x, t) = t−q V (ξ, t), and ξ = x

ta
. (A16)

The continuity equation (A5) yields

(pZ + aξ∂ξ Z )ta+q−1 = ta+q∂t Z + ∂ξ (Z V ) (A17)

while the momentum balance equation (A6) leads to

1

εRe

(
1 − 3tq−2p V

Z2

)
ta+2q + (qV + aξ∂ξ V )ta+q−1 = tq−a∂t V + V ∂ξ V + cot θ

Re
t2q−p∂ξ Z .

(A18)
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FIG. 15. Front position as a function time (dimensionless log-log plot) when sidewall friction is taken into account. The flow
conditions pertain to runs (b)–(d), i.e., for θ = 1◦, 3◦, and 6◦. The dotted line is the similarity solution (A20): xf = ξ ft1/3. The
dashed lines stand for the numerical simulations while the solid lines represent the experimental data.

The outer solution is obtained by taking the limit εRe → 0 and posing Z (ξ, t) = Z0(ξ ) + tα1 Z1(ξ )
+ . . . and V (ξ, t) = V0(ξ ) + tβ1 V1(ξ ) + . . .. We have a = p, q = 2p, and a + q = 1, which yields:
a = p = 1/3 and q = 2/3. To leading order, we get

V0 = 1

3
Z2

0 and Z0 =
√

ξ . (A19)

The front position is determined using mass conservation (A15)

ξ f =
(

3

2
A

)2/3

. (A20)

The depth profile and front position are the same as those calculated by Hunt7 using the shallow-flow
(Saint-Venant) equations and Huppert17 from the Navier-Stokes equations. Since the flow depth does
not drop to zero, we expect a boundary layer to occur at the front, where it is no longer possible to
neglect the curvature of the free surface and its effect on pressure gradient in the momentum balance
equation (A6).

To magnify what is occurring within this boundary layer, we now use the following change of
variable: ξ = ξ f + δtdη, where δ is a free parameter and d < 0 a constant. From Eq. (A18), we see
that at sufficiently long times (for t � Retan θ ), the pressure gradient term ∂ξ Z is much larger than
the convection term V ∂ξ V . The dominant balance is then between the pressure gradient term and the
source term (gravitational force and viscous drag). We then deduce that d = −2/3 and δ = ε cot θ .
Using the expansions Z (ξ, t) = Ẑ0(ξ ) + tγ1 Ẑ1(ξ ) + . . . and V (ξ, t) = V̂0(ξ ) + t δ1 V̂1(ξ ) + . . . (with
γ i and δi constants), we deduce that to leading order, the balance and momentum balance equations
are

∂η

(
Ẑ0(3V̂0 − ξ f )

) = 0 and 1 − 3
V̂0

Ẑ2
0

= ∂η Ẑ0, (A21)

subject to the boundary conditions when η → −∞
Ẑ0 → Z f = √

ξ f and V̂0 → ξ f /3. (A22)
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FIG. 16. Flow depth profiles for flow conditions pertaining to run (d), i.e., for a slope θ = 6◦. (a) Time evolution of the depth
profiles h(x, t) for times t = 0 to t = 4 by time increment of 0.4. (b) Depth profile at time t = 4: comparison between the
numerical solution (solid line) and analytical solution (A19) (dashed line).

The velocity field is constant while the depth profile is given by the implicit solution to

Ẑ0 − Z f tanh(−1) Ẑ0

Z f
= η − η f , (A23)

where ηf is a constant of integration, which can be determined by assuming that mass is merely
distributed within the boundary layer with no creation or loss. We find that η f = (ln 2 − 1/2)

√
ξ f .

Returning to the initial variables, we have found that the front position is given by

x f =
(

9

4
A2t

)1/3

+ (ln 2 − 1/2)

(
3

2
A

)1/3

t−1/3ε cot θ. (A24)

The flow depth is the composite of the inner and outer solutions (A23) and (A19). Contrary to
the outer solution, the inner solution slightly differs from the one worked out by Hunt,7 who
assumed no time dependence of the boundary layer thickness; the shape is identical even though the
mathematical expressions may look different. Note that the correction brought by the inner solution
to the front position is low because of the εt−1/3 dependence: quickly after the collapse, the similarity
solution provides a reasonable approximation of the solution to the initial boundary value problem.
Figure 16 shows the evolution of the flow depth profiles for the simulation of run (d). As seen in
Fig. 16(a), the depth profile rapidly conforms to the parabolic shape given by Eq. (A19) and the
thickness of the frontal boundary layer decreases rapidly as the mass spreads along the flume.
Figure 16(b) is a close-up view of the depth profile at time t = 4, which compares the similarity
solution (A19) with the computed profile.
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