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Abstract This article examines the spatial dynamics of bed load particles in water. We focus particularly
on the fluctuations of particle activity, which is defined as the number of moving particles per unit bed
length. Based on a stochastic model recently proposed by Ancey and Heyman (2014), we derive the
second moment of particle activity analytically, that is, the spatial correlation functions of particle activity.
From these expressions, we show that large moving particle clusters can develop spatially. Also, we provide
evidence that fluctuations of particle activity are scale dependent. Two characteristic lengths emerge from
the model: a saturation length 𝓁sat describing the length needed for a perturbation in particle activity to
relax to the homogeneous solution and a correlation length 𝓁c describing the typical size of moving
particle clusters. A dimensionless Péclet number can also be defined according to the transport model.
Three different experimental data sets are used to test the theoretical results. We show that the stochastic
model describes spatial patterns of particle activity well at all scales. In particular, we show that 𝓁c and 𝓁sat

may be relatively large compared to typical scales encountered in bed load experiments (grain diameter,
water depth, bed form wavelength, flume length, etc.) suggesting that the spatial fluctuations of particle
activity have a nonnegligible impact on the average transport process.

1. Introduction

Originating in the late 1930s with the seminal work of Hans Albert Einstein [Einstein, 1937, 1950], the proba-
bilistic approach to bed load transport has had a surge of interest among the scientific community in recent
years [Papanicolaou et al., 2002; Jerolmack and Mohrig, 2005; Ancey et al., 2006, 2008; Valyrakis et al., 2010;
Ancey, 2010; Furbish and Schmeeckle, 2013]. This revival has been combined with a substantial improve-
ment in laboratory measurement techniques. In particular, the use of high-speed videos of particle motion
together with powerful digital processing has allowed for groundbreaking precision in the description of
sediment particle dynamics [Böhm et al., 2004; Radice et al., 2009; Lajeunesse et al., 2010; Roseberry et al.,
2012; Martin et al., 2012].

These data allow for an improved understanding of the transport process and its fluctuations. Indeed, bed
load transport rates are known to show fluctuations often larger than the mean [Drake et al., 1988; Kuhnle
and Southard, 1988; Hoey, 1992; Ancey et al., 2006; Singh et al., 2009]. The problem arising in any system
exhibiting internal fluctuations is the calculation of consistent average values, or relationships, that can be
used to describe its macroscopic behavior.

This paper is concerned with drawing possible links between the microscopic stochastic motion of bed load
particles and macroscopic variables, such as the average bed load flux or the particle activity (the number
of moving particles per unit bed length). In other words, the question we try to answer here is how indi-
vidual particle motion is reflected through larger-scale transport relations. More precisely, how does noise,
intrinsically present at small scales, modify the average macroscopic equilibrium at large scales? Until now,
the variability of bed load flux has been deliberately ignored in most transport models. Is this approxima-
tion physically justified or, on the contrary, do models need to take into account bed load rate fluctuations
in order to accurately predict and quantify sediment budgets?

Among the recent stochastic models of bed load transport, Sun and Donahue [2000] proposed a two states
Markov model suggesting that bed load transport rates would follow a binomial distribution. Wu and Chou
[2003] considered the rolling and lifting probabilities of particles in a turbulent stream, while in Wu and Yang
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Figure 1. (a) Particle trajectories in a time-space plane. (b) Discretiza-
tion of the space in cells of equal length (Δx) and number of particles
in each cell i at a given time t (Ni).

[2004], they proposed a stochastic partial
transport model for mixed size sediments.
Turowski [2010] suggested that the shape
of the probability distribution of the bed
load flux was a function of the interarrival
time of particles. More recently, in four
companion papers, Furbish et al. [2012]
provided further insights into particle
random motion and its consequences
on macroscopic conservation equations.
Using an ensemble averaging procedure,
they found that the bed load flux com-
prises both an advective and a diffusive
term due to particle velocity fluctuations.
Ancey et al. [2008] developed a stochas-
tic erosion/deposition model describing
the fluctuation of the number of moving
particles in an observation window. Using
the framework of birth-death Markov pro-

cesses, they provided a comprehensive picture of the large fluctuations observed in their experiments.
Generalizing Ancey et al.’s [2008] probabilistic model, Ancey and Heyman [2014] were able to model the spa-
tial variability of particle activity. By studying the erosion, deposition, and motion of particles on a lattice
made of regular cells, they ended up with a stochastic equation describing the process in both space and
time. The model is valid for low to moderate transport rates.

In this paper, we explore some applications of the stochastic model recently proposed by Ancey and Heyman
[2014]. While Ancey and Heyman [2014] paper concerned the theoretical foundations of the model, this
article focuses on validation issues. In doing so, we will demonstrate how the model accurately reproduces
spatial fluctuations of the bed load particle activity. This will be achieved by comparing theoretical results
with various experimental data of particle trajectories in time and space (Figure 1).

The paper is organized as follows. First, to make the article self-contained, we briefly go over how the gen-
eral stochastic equations governing the bed load phase are derived. A rigorous and detailed derivation is
not provided here since it is available in Ancey and Heyman [2014]. Then, we compute the second moment
(the spatial correlation function) of the particle activity. We also give the analytical expression of the K
function [Ripley, 1976], often used in point process analysis to highlight the possible correlations existing
between particle locations. In the last section, we use three different experimental studies to test the model,
two of which have already been published [Böhm et al., 2004; Roseberry et al., 2012]. The third study is an
original data set which consists of three experiments carried out in a steep slope flume. A general method to
calibrate model parameters on experimental data is proposed. Finally, we discuss the importance of includ-
ing spatial variability in bed load transport models and we propose possible improvements of Ancey and
Heyman’s [2014] stochastic model.

2. Theory
2.1. Physical Space
The transport of bed load particles occurs in a thin layer over the surface of an erodible bed. Particles gener-
ally move in a preferential direction (down the slope, parallel to fluid flow) so that it is possible to constrain
the study to a one-dimensional space in that principal direction. A generalization to a two-dimensional
space, while technically possible, goes beyond the scope of this paper.

Let us consider a one-dimensional space that represents a river reach, or an experimental flume. The space
is divided into cells of equal length Δx (Figure 1). Each cell of this lattice is labelled by an index i. We call
Ni(t) the random variable describing the number of moving particles ni in cell i at time t. We introduce the
multivariate probability:

P
([

n1, n2,…
]
, t
)
= P(n, t), (1)
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where n is the vector of all ni . In other words, P(n, t) is the probability of simultaneously observing
N1(t) = n1,N2(t) = n2, · · · at time t. The particle activity in cell i is defined as

𝛾(xi, t) = Ni(t)∕Δx, (2)

where xi denotes the position of the center of the cell i.

2.2. Particle Motion
Bed load transport describes the motion of bed particles (sliding, rolling, or saltating) sheared by a fluid. To
build their model, Ancey et al. [2008] and Ancey and Heyman [2014] distinguished three independent phases
of particle motion: entrainment, transport, and deposition. Those are briefly reviewed below.

The entrainment of a resting particle by a fluid flow has been extensively studied, and its intermittent
and random character is widely accepted [Einstein, 1950; Papanicolaou et al., 2002; Wu and Chou, 2003;
Schmeeckle et al., 2007; Detert et al., 2010; Celik et al., 2010; Valyrakis et al., 2010; Dwivedi et al., 2011]. For flow
conditions close to incipient sediment motion, the fluid flow intermittently dislodges particles from the bed.
Turbulent flow structures are spatially and temporally correlated. Thus, it is also likely that several particles
are entrained simultaneously, leading to clouds of moving particles [Nelson et al., 1995; Drake et al., 1988].
Various experiments suggested that different mechanisms of entrainment exist, such as entrainment caused
by a particle collision or by a local bed rearrangement [Schmeeckle et al., 2001; Heyman et al., 2013].

In their model, Ancey et al. [2008] conceptualized the entrainment of a particle as a sum of two basic ran-
dom processes: (i) a memoryless and uncorrelated process, referred to as entrainment, and (ii) a correlated
process with intensity proportional to the number of particles already in motion, referred to as collective
entrainment. The probability of a particle being entrained (ni → ni + 1) in a cell i of length Δx during a small
time interval dt is thus

P(ni → ni + 1) = (𝜆Δx + 𝜇ni)dt, (3)

where 𝜆 [particles m−1 s−1] is the mean entrainment rate of particles per unit length and 𝜇 [s−1] is the
collective entrainment rate.

After being entrained, a particle is dragged by the fluid flow for a certain time before depositing onto the
bed. Ancey et al. [2008] envisioned the deposition of a particle as a memoryless and independent random
process. Thus, at any time, the probability of observing a particle deposition (ni → ni − 1) in the cell i during
dt can be expressed as

P(ni → ni − 1) = 𝜎nidt, (4)

where 𝜎 [s−1] is the mean particle deposition rate. Note that in this basis, 1∕𝜎 is the mean travel time of
a particle.

Once put in motion, particles are transported downstream by the fluid flow. Their velocity is frequently
altered due to repeated impacts on the bed as well as by drag fluctuations due to turbulence. Ancey and
Heyman [2014] proposed a model of Brownian motion in a potential to describe the transport process. They
found that under certain conditions, the transport of particles could be described locally by the sum of two
contributions: (i) a deterministic advection at the average particle velocity ūs and (ii) a random jump process
between lattice cells that can be described by the following transition probabilities in the infinitesimal time
interval dt:

P(ni → ni − 1, ni−1 → ni−1 + 1) = dnidt,

P(ni → ni − 1, ni+1 → ni+1 + 1) = dnidt, (5)

where d [s−1] is a local diffusivity rate. In the following statistical analysis, we do not consider the con-
tribution of advection in the transport of particles since it is deterministic and is not contributing to
the fluctuations of the number of moving particles [Ancey and Heyman, 2014]. Naturally, the advec-
tive contribution to the particle transport process will be reintroduced later in the deterministic part of
the equations.
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2.3. Birth-Death Process and Poisson Representation
In the previous section, we implicitly assumed that the rate coefficients 𝜆, 𝜎, 𝜇, and d were constant in space
and time. This leads us to focus on fluctuations that precisely originate from the randomness of particle
motions and exchanges with the bed rather than fluctuations arising because of local changes in flow or
bed slope that would in turn modify the rate coefficients, when bed forms are present for instance.

The transition probabilities defined above form the elementary rules governing the evolution of a multi-
variate birth-death Markov process (i.e., a memoryless process of many variables, which evolves by unitary
jumps). From these simple rules, Ancey and Heyman [2014] derived the multivariate master equation
describing the temporal evolution of P(n, t):

𝜕P(n, t)
𝜕t

=
∑

i
d(ni + 1)

(
P(n + r+i + r−i+1, t) + P(n + r+i + r−i−1, t)

)
(6)

+ (ni + 1)𝜎P(n + r+i , t) +
(
𝜆Δx + (ni − 1)𝜇

)
P(n + r−i , t)

−
(
𝜆Δx + ni(𝜎 + 𝜇) + 2dni

)
P(n, t),

where r±i is a vector whose elements are all zeros except for its ith value: ri = ±1, rk = 0 for k ≠ i. P(n + r+i +
r−i−1, t) is thus the probability of observing the system in the state n′ = (n1, n2,… , ni−1 − 1, ni + 1, ni+1,…).

This master equation can be greatly simplified using the Poisson representation. Similar to Laplace or Fourier
transforms in the spectral theory of time series, the Poisson representation is a linear operator that trans-
forms a discrete probability space into a continuous one [Gardiner and Chaturvedi, 1977]. More precisely,
it assumes that the probability function of Ni can be decomposed into Poisson distributions with various
rates ai:

P(ni, t) = ∫
R+

e−ai an
i

n!
f (ai, t)dai. (7)

Since the only parameter of a Poisson distribution is also its mean, ai can be interpreted as the mean number
of particles in the cell i. On the other hand, f (ai, t) is the probability of observing the Poisson rate ai in cell i
at time t.

By inserting equation (7) in the master equation (6), Ancey and Heyman [2014] showed that f (a, t)—a being
the vector of all ai—follows an explicit Fokker–Planck equation (i.e., a partial differential equation governing
the time evolution of probability functions):

𝜕

𝜕t
f (a, t) =

∑
i

𝜇
𝜕2aif (a, t)

𝜕a2
i

+ 𝜕

𝜕ai

[
f (a, t)

(
𝜆Δx − ai(𝜎 − 𝜇)

)]
+ 𝜕

𝜕ai

[
f (a, t)d(ai+1 + ai−1 − 2ai)

]
. (8)

Equivalently, ai can be shown to follow a Langevin stochastic equation (i.e., a differential equation with both
a deterministic and a stochastic parts):

dai(t) =
(

d(ai+1 + ai−1 − 2ai) + 𝜆Δx − ai(𝜎 − 𝜇)
)

dt +
√

2𝜇aidWi(t), (9)

where dWi(t) is the derivative of a Wiener random process, which may be interpreted as a time uncorrelated
noise (also called white noise). This noise is said to be multiplicative since its intensity is modulated by

√
ai

(in contrast to an additive noise which is independent of the state of the process, as it was, for example,
assumed in Jerolmack and Mohrig [2005]).

Just like the definition of the particle activity 𝛾(x, t), let us call 𝜂(x, t) the Poisson rate per unit bed length
(referred to as Poisson activity in the following). We have

𝜂(xi, t) = ai(t)∕Δx. (10)

Using equation (9) and letting Δx → 0, we obtain the Langevin stochastic partial differential equation for
the Poisson activity:

d𝜂(x, t) =
[

D∇2𝜂(x, t) + (𝜇 − 𝜎)𝜂(x, t) + 𝜆
]

dt +
√

2𝜇𝜂(x, t)dW(x, t), (11)
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where W(x, t) is now a spatial Wiener process satisfying the condition

dW(x, t)dW(x′, t) = 𝛿(x − x′)dt. (12)

According to equation (12), the multiplicative noise term
√

2𝜇𝜂dW arising in equation (11) is perfectly
uncorrelated in space and time. We also introduced the notation D = dΔx2, which highlights the connection
between the local particle jump rate d [s−1] and the macroscopic particle diffusivity D [m2 s−1].

Making use of the linearity of the deterministic part of equation (11), we can reintroduce the deterministic
advection flux:

d𝜂(x, t) =
[
−ūs∇𝜂(x, t) + D∇2𝜂(x, t)

]
dt + [𝜆 − (𝜎 − 𝜇)𝜂(x, t)]dt +

√
2𝜇𝜂(x, t)dW(x, t). (13)

Equation (13) models the stochastic evolution of the rate (per unit length) of the Poisson distribution fol-
lowed by Ni(t). It is shown in Appendix B how equation (13) can be solved numerically and how it can be
related to the point process framework [Cox and Isham, 1980]. Equation (13) also shares interesting simi-
larities with the Bouchaud-Cates-Ravi-Edwards (BCRE) model of dry granular avalanches of Bouchaud et al.
[1995]. In Appendix A, we show how equation (13) may be used as a stochastic version of the BCRE model in
order to characterize spatial correlations in some dry granular flows.

2.4. Moments
In the remaining of the paper, the notation ⟨∙⟩ denotes ensemble averaging (i.e., average over all the
possible states of a stochastic process). There exists a simple connection between moments of a in the
Poisson representation and moments of the real variable N. Indeed, the p-factorial moment of N (i.e.,⟨n(n − 1)(n − 2)… ⟩) is equal to the p moment of a (i.e., ⟨ap⟩), implying that ⟨n⟩ = ⟨a⟩ and ⟨nn⟩ = ⟨aa⟩ + ⟨a⟩
[Gardiner and Chaturvedi, 1977; Ancey and Heyman, 2014]. Similar relationships exist between moments of 𝜂
and moments of 𝛾 : ⟨𝜂(x, t)⟩ = ⟨𝛾(x, t)⟩ and ⟨𝛾(x, t), 𝛾(x′, t)⟩ = ⟨𝜂(x, t), 𝜂(x′, t)⟩ + 𝛿(x − x′) ⟨𝜂(x, t)⟩ [Gardiner
and Chaturvedi, 1977]. In the following, we study the first and second moments of equation (13).
2.4.1. First Moment
The average behavior of 𝜂(x, t) is easily obtained by dropping the noise term in equation (13):

𝜕 ⟨𝜂⟩
𝜕t

+ ūs
𝜕 ⟨𝜂⟩
𝜕x

= D
𝜕2 ⟨𝜂⟩
𝜕x2

+ 𝜆 − (𝜎 − 𝜇) ⟨𝜂⟩ . (14)

It is a linear advection-diffusion-reaction equation. For t → ∞, providing that 𝜎 > 𝜇, the stationary and
homogeneous solution is

⟨𝜂⟩s =
𝜆

𝜎 − 𝜇
, (15)

where the notation ⟨∙⟩s denotes the ensemble average for stationary and homogeneous conditions. Thus,
the stationary homogeneous particle activity is ⟨𝛾⟩s = 𝜆∕(𝜎 − 𝜇).

Ancey and Heyman [2014] studied the evolution of a sediment pulse in space and time. Here we focus on the
stationary behavior of (14) given a fixed Dirichlet boundary condition at the origin ⟨𝛾(0)⟩ = 0 (Figure 2). The
problem simplifies to a second-order ordinary differential equation whose solution is given by

⟨𝛾(x)⟩ = 𝜆

𝜎 − 𝜇

(
1 − e−x∕𝓁sat

)
,𝓁sat =

2𝓁c

Pe

(√
1 + 4Pe−2 − 1

)−1
, (16)

where we have introduced 𝓁c =
√

D∕(𝜎 − 𝜇) and the dimensionless number Pe = ūs𝓁c∕D, which can be
interpreted as a local Péclet number. The Péclet number is usually defined as the ratio of the rate of advec-
tion by the flow to the rate of diffusion. In the case of the diffusion of matter, it can also be defined as the
product of a typical length scale by the advection velocity divided by the diffusivity. In our case, the local
Péclet number compares particle diffusion against advection with respect to the correlation length 𝓁c.
The latter originates from the coupled action of diffusion and particle exchanges with the bed (collective
entrainment and deposition), but its meaning will be best understood while studying spatial correlations.
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Figure 2. Boundary value problem corresponding to the relaxation of
particle activity to equilibrium. 𝓁sat is the saturation length.

Note that in contrast to aeolian sediment
transport, the saturation length 𝓁sat does
not originate from particle inertia (which is
negligibly small in water) but rather from
the particle exchanges with the bed and
their transport by the flow [Charru, 2006].
2.4.2. Second Moment
We show in Appendix C1 that the station-
ary and homogeneous spatial correlation
function of the particle activity reads

⟨
𝛾(x), 𝛾(x′)

⟩
s
≡ ⟨

𝛾(x)𝛾(x′)
⟩

s
− ⟨𝛾(x)⟩2

s (17)

= 𝛿(x − x′) ⟨𝛾⟩s +
⟨𝛾⟩s 𝜇

2𝓁c(𝜎 − 𝜇)
exp

(
− |x − x′|

𝓁c

)
,

where we have already used the correlation length 𝓁c =
√

D∕(𝜎 − 𝜇). The steady state spatial correlation
function is thus the sum of a Dirac delta function (i.e., 𝛿(x) is a distribution which is zero everywhere except
at x = 0, with an integral of one over the entire real line) of intensity equal to the mean density of mov-
ing particles and an exponentially decaying function corresponding to correlations caused by the collective
entrainment of particles (when 𝜇 = 0, this term disappears). The correlation length 𝓁c modulates the speed
of the decay. Thus, 𝓁c is a measure of the typical spatial scale of fluctuations in particle activity. It increases
with the diffusivity of particles and with the collective entrainment rate but decreases with the deposition
rate. Interestingly enough, when 𝜇 = 0, no more spatial correlations are observed in the particle activity
although 𝓁c remains positive. When 𝜇 → 𝜎, the spatial correlations of particle activity become infinitely
large and when 𝜇 = 𝜎, equation (13) becomes unstable and an exponential increase in the number of
moving particles is observed.

Another quantity of interest, often used to describe a spatial point process, is the conditional intensity
h(x − x′), which gives the conditional probability of finding a particle at x′ given that there is a particle at x
[Cox and Isham, 1980]. The conditional intensity and the correlation function are directly related by

⟨
𝛾(x, t), 𝛾(x′, t)

⟩
s
= 𝛿(x − x′) ⟨𝛾⟩s + ⟨𝛾⟩s h(x − x′) − ⟨𝛾⟩2

s ,

so that by identification, we have

h(x − x′) = ⟨𝛾⟩s +
1

2𝓁c

𝜇

𝜎 − 𝜇
exp

(
− |x − x′|

𝓁c

)
. (18)

A more convenient function for data analysis is the K function [Ripley, 1976], where K(x) represents the
expected number of moving particles found in a ball of radius x centered on a particle location, divided by
the mean process rate. This can be calculated from the conditional intensity function by

K(x) = 1⟨𝛾⟩s ∫
x

0
h(u)du = x + 1⟨𝛾⟩s

𝜇

𝜎 − 𝜇

[
1 − exp

(
− x
𝓁c

)]
. (19)

In the case of a Poisson point process in one dimension (i.e., a process which is spatially uncorrelated),
K(x) = x. Furthermore, equation (19) shows that K(x) > x if 𝜇 > 0, so the point process formed by particle
locations is said to be clustered (see Appendix B).

3. Applications

After deriving the spatial correlation function of the particle activity, we examine how it can be compared
with experimental data.
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Figure 3. Snapshot from one of the two cameras used in experiments J (the field of vision is about 50 cm long). Moving
particle locations are estimated by the tracking algorithm (circles show the confidence interval of the particle diame-
ter estimates, while numbers refer to the trajectory index j). The water surface and the bed elevation are also detected
automatically (blue and orange dashed lines).

3.1. Experiments
We use three different experimental data sets. Two of them have been previously published [Böhm et al.,
2004; Roseberry et al., 2012]. The third comes from an experimental setup especially built by the authors
to observe spatial and temporal fluctuations of bed load transport (Figure 3). All three studies provide
high-resolution measurements of particle trajectories using high-speed videos. Details of the experimental
setups are given in Appendix D, while experimental conditions are reported in Table 1.

Hereafter, we denote all Böhm et al. [2004] experiments by using the prefix B, Roseberry et al. [2012] exper-
iment using R, and the new data set using J. The numbers following the prefix specify experimental slope
and solid discharge. For instance B10-5 stands for Böhm et al. [2004] experiment conducted using a 10%
sloping flume with a mean solid discharge of 5 particles s−1.

Typically, an experimental outcome consists of an ensemble of particle locations in the streamwise direction:
xj,k is the position of particle j at frame k. In total, experiment B gathers more than 8000 particle trajec-
tories over 4 min, experiment R gathers more than 300 particles trajectories over about 0.4 s while each
experiment J gathers in average 5000 trajectories over 10 min.

3.2. Spatial Fluctuations
Let us consider the number of moving particles in a window of length L at a given time t:

N(L, t) = ∫L
𝛾(x, t)dx. (20)

When t → ∞, the stationary average of N(L, t) is

Mean[N(L)] ≡
⟨
∫L

𝛾(x, t)dx

⟩
s

= ∫L
⟨𝛾(x, t)⟩s dx = ⟨𝛾⟩s L, (21)

while the variance of N(L, t) (sometimes called the variance of the sample mean) is defined by

Var[N(L)]≡
⟨
∫L

𝛾(x, t)dx ∫L
𝛾(x′, t)dx′

⟩
s

−
⟨
∫L

𝛾(x, t)dx

⟩2

s

=∫L∫L

⟨
𝛾(x, t), 𝛾(x′, t)

⟩
s

dxdx′.

(22)

Table 1. Experimental Parameters and Model Fitsa

B d50 𝜏s Fr tan 𝜃 v̄ h̄ q̄s �̄� ūs 𝜎 D 𝜆 𝜇 𝓁c Pe I(∞) 𝓁sat

B10-5 0.6 6 0.11 1.42 10.0 0.41 1.0 4.9 26.9 0.170 2.72 15 24 1.825 4.1 4.6 3.0 20
R0-79 6.0 0.5 0.06 0.35 - 0.31 12.5 78.7 1711.0 0.046 1.85 1.5 171 1.754 3.8 12.2 18.6 47
J3-1 3.5 7 0.14 1.30 3.5 0.80 3.8 1.4 4.6 0.310 0.52 59 0.33 0.447 28.7 15.1 7.2 434
J4-1 3.5 7 0.17 1.39 4.5 0.86 3.9 1.2 3.9 0.300 0.50 89 0.39 0.403 29.8 10.1 5.0 303
J5-1 3.5 7 0.14 1.47 4.7 0.80 3.1 0.9 2.8 0.320 0.56 55 0.27 0.470 24.3 14.1 6.0 345

aB (cm), channel width; d50 (mm), mean particle diameter; 𝜏s (-), Shields stress; Fr (-), Froude number; tan(𝜃) (%), slope angle; v̄ (m s−1), mean flow velocity; h̄
(cm), mean water depth; q̄s (particles s−1), mean output solid discharge; �̄� (particles m−1), mean activity; ūs (m s−1), average particle velocity; 𝜎 (s−1), deposition
rate; D (cm2 s−1), particle diffusivity; 𝜆 (particle m−1 s−1), particle entrainment rate per meter length; 𝜇 (s−1), collective entrainment; 𝓁c (cm), correlation length
(𝓁c =

√
D∕(𝜎 − 𝜇)); Pe (-) local Péclet number (Pe = 𝓁cūs∕D); I(∞) (-), limiting value of the dispersion index; 𝓁sat (cm) saturation length (equation (16)).
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Figure 4. Example of a realization of point positions in a
two-dimensional space depending on the value of the dispersion index
I(L). Here L can be interpreted as the size of the box.

Introducing equation (17) into
equation (22) and integrating it (see
Appendix C2), we find

Var[N(L)] = ⟨𝛾⟩s L + ⟨𝛾⟩s 𝓁c
𝜇

𝜎 − 𝜇

⋅
(

L∕𝓁c + e−L∕𝓁c − 1
)
.

(23)

Equation (23) shows the dependence
of the variance of N(L) on the length
L of the observation window. Let us
define the dispersion index I(L) as the
ratio of the variance over the mean:

I(L̃) = Var[N(L̃)]
Mean[N(L̃)]

= 1 + 𝜇

𝜎 − 𝜇

(
1 + e−L̃ − 1

L̃

)
, (24)

with L̃ = L∕𝓁c.

The dispersion index is used to characterize the relative positions of points (particle locations). Three classes
of stochastic processes are generally distinguished depending on the value of I: under-dispersed processes
for I < 1, purely random processes (or Poisson processes) when I = 1, and over-dispersed or clustered
processes when I > 1 (Figure 4).

The theoretical dispersion index (24) grows from one, when the observation window is small, to the constant
value I(∞) = 1 + 𝜇∕(𝜎 − 𝜇), as the window length tends to infinity (Figure 5a). In other words, depending
on the observation scale L, the number of moving particles in the observation window exhibits a different
statistical behavior.

When L tends to 0, I(L) tends to 1, so that the variance and the mean of N(L) are equal. Thus, in the small-
scale limit, N(L) tends to a Poisson process. This is mathematically explained by the presence of the Dirac
delta function in the spatial correlation function (17). In other words, for decreasing values of L, a limit will be
reached when most of the time an observation window contains no particle, and more rarely one. The small

Figure 5. Dispersion index (I(L̃), with L̃ = L∕𝓁c). (a) Equation (24), (b) experiment B, (c) experiment R, (d–f ) experiments J.
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Figure 6. K function. (a) Equation (19) for ⟨𝛾⟩s = 1 and 𝓁c = 1, (b) experiment B, (c) experiment R, (d–f ) experiments J. The dashed line corresponds to the
Poissonian case (K(x) = x). Note that fits were calculated from the dispersion index results.

L limit can be seen as representative of a Bernoulli process (i.e., N(L) = 1 with probability ⟨𝛾⟩s L and N(L) = 0
with probability 1 − ⟨𝛾⟩s L), which is well approximated by a Poisson process when ⟨𝛾⟩s L → 0.

On the contrary, when L → ∞, I reaches a constant value I(∞). Note that I(∞) > 1 if 𝜇 > 0, so that the vari-
ance of N(L) is now greater than its mean. Thus, for larger scales and when 𝜇 > 0, N(L) cannot be described
anymore by a Poisson process. Thus, moving particles are expected to form clusters during their motion
when collective entrainment is considered (Figure 4).

Experimental dispersion indices are presented in Figures 5b–5f. The procedure used to compute such index
is presented in Appendix D4. In all experiments, dispersion indices change through spatial scales. From a
Poisson type process at small scales (L̃ → 0), I(L̃) increases with increasing scales (Figure 5). The dispersion
index of experiment R follows a slightly different evolution, since it drops at scales larger than 5 cm. This
behavior might be explained by the relatively short measurement window (∼ 8 cm) and the relatively small
number of frames available in experiment R, which leads to biased estimates of the dispersion index (see
Appendix D4).

One striking feature of the experimental dispersion index that appears only in experiment B is the slight
decrease below unity for lengths of the order of the particle diameter (Figure 5b). This phenomenon
results from negative values in the correlation function at those scales and cannot be described by the
Markov model. Indeed the theoretical spatial correlation function (17) is strictly greater than zero so that
the dispersion index is expected to grow monotonically. The presence of negative values in the experi-
mental correlation function is explained by the finite diameter of particles. Experiments B took place in a
one-dimensional channel whose width equals particle diameters. Thus, there is less probability of finding
two particles separated by a distance smaller than the particle diameter, resulting in negative correlation at
the diameter scale.

Unfortunately, in none of the experiments presented, the limiting value of the dispersion index I(∞) is
reached for the maximum measurement length. Even experiments J—designed specially to achieve this
purpose—are unable to reach the final plateau. It is still possible to extrapolate the theoretical expression
(24) to predict the behavior of fluctuations at larger scales and to obtain I(∞).
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Figure 7. Mean squared displacement (MSD) of par-
ticles for experiment J3-1. The dashed line stands for
the linear diffusion limit.

Experimental K functions are displayed in Figures 6b–6f.
In Appendix D4, we precise how the K function can
be estimated experimentally. In all experiments, K(x)
is greater than x, suggesting that correlations exist
between particle locations.

3.3. Parameter Estimates
In the following, we show how the parameters ūs, D,
𝜆, 𝜎, and 𝜇 can be estimated given the experimental
particle trajectories.

While the average particle velocity ūs is simply deter-
mined by the arithmetic mean of all instantaneous
particle velocities, the diffusivity D can be obtained
by computing the experimental mean squared dis-
placement of moving particles. Indeed, the mean
squared displacement of particles obeying pure diffu-

sion increases linearly with time: ⟨x(t) − ⟨x(t)⟩⟩2 = 2Dt [Taylor, 1922]. As particle motions are correlated, the
mean squared displacement is not linear at small time but tends to the linear diffusion limit at large time
[Uhlenbeck and Ornstein, 1930]. Thus, the limiting diffusivity of particles is obtained by fitting a line to the
asymptotic mean squared displacement of particles (Figure 7). Note that the mean squared displacement is
only computed with the parts of trajectories where the particle moves, excluding the rest periods.

The mean deposition rate of particles 𝜎 is readily obtained by counting deposition events in a given obser-
vation window during a given time, then dividing this number by the observation time and by the mean
number of moving particles in the window.

The only parameters which cannot be estimated independently are 𝜇 and 𝜆. The theoretical expres-
sions of first and second moments have to be used to determine their respective values. First, we adjust
𝜇 so that equation (24) matches the experimental dispersion index. Then, 𝜆 is simply obtained using
equation (15). It is worth highlighting that only two parameters (𝜆 and 𝜇) are tuned to fit first and sec-
ond moments, while the three others are estimated independently. Equation (24) captures extremely
well the experimental dispersion indices at all scales (Figures 5b–5f ). Estimated parameters are reported
in Table 1.

Based on these estimates, we compare the theoretical K function (19) to each experiment. From Figures
6b–6f, we can see that the theoretical K function describes experimental data less accurately than the dis-
persion index does. This could be explained by the fact that an additional parameter, the mean particle
activity ⟨𝛾⟩s, is required in equation (19). Thus, if the measure of ⟨𝛾⟩s is biased (as it can be the case for short
trajectory samples or for nonhomogeneous transport conditions), the agreement between theory and
experiments is also biased. Another explanation may be that a two-dimensional K function would be more
appropriate for two-dimensional experiments (such as experiment R).

3.4. Characteristic Lengths and Local Péclet Number
Once D, 𝜎, and 𝜇 have been determined, 𝓁c can be calculated. Looking at equations (17) and (24), 𝓁c defines
the scale at which approximately 36.8% of the maximum fluctuations above the mean are observed. In other
words, to observe at least 95% of the total fluctuations, lengths of the order of 20𝓁c should be observed
experimentally, that is, about 1 m for experiments B and R, and 3 m for experiments J. In addition to the
technological challenge such a long acquisition length involves, the experimental flume might need to be
even longer to avoid effects from the input and output boundary conditions.

The saturation length 𝓁sat (see equation (16)) is a good estimate of the length needed for perturbations
induced at the boundary to dissipate. It ranges from tens of centimeters in experiments B and R to several
meters for experiments J (Table 1). Unfortunately, no experimental data about saturation length in bed load
transport under water are presently available, so that no comparison could be made with these predictions.
In any case, it is clear that the boundary conditions of experiments B and J, carried out in relatively short
flumes (between 0.5 and 10𝓁sat), may have an influence on the results.

For experimental lengths of the order of 20𝓁c, it is often impossible to insure the spatial homogeneity of
sediment transport. Indeed, the instability of the bed-water interface leads to the development of bed
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forms of various wavelengths (from centimeters to hundreds of meters) and thus precludes the use of
constant parameters.

The local Péclet number can be calculated with the obtained values of parameters (Table 1). Pe is observed
to range from 4 (experiment B) to 14 (experiments R and J), showing the variety of modes of transport of
bed load. Bed load occurring in experiment B is still strongly diffusive at the correlation length scale while in
experiments R and J, it is mostly advective at this scale.

4. Summary and Discussion

In this paper, we studied the spatial fluctuations of the number of moving particles per unit bed length,
also called the particle activity [Furbish et al., 2012]. These fluctuations have been shown to have a great
deal of effect on the measurements of bed load transport rates in both field and experimental surveys
[Gomez et al., 1990; Dinehart, 1992; Garcia et al., 2000; Cudden and Hoey, 2003; Bunte and Abt, 2005]. The
model recently proposed by Ancey and Heyman [2014], generalizing the probabilistic model of Ancey
et al. [2008] to a spatial dimension, offers a simple theoretical framework to understand and quantify
these fluctuations.

The stochastic model is based on five parameters, most of which have a physical meaning: the entrainment
rate 𝜆, the collective entrainment rate 𝜇, the deposition rate 𝜎, the average particle velocity ūs, and the par-
ticle diffusivity D. The first two have to be estimated via the method of moments (with equations (15) and
(22)), while the three lasts can be calibrated independently. Two characteristic lengths emerge from the
model: a saturation length 𝓁sat (equation (16)) quantifying the length needed for particle activity to recover
its average equilibrium value and a correlation length 𝓁c =

√
D∕(𝜎 − 𝜇) which describes the typical size of

fluctuations in particle activity. We also defined a local Péclet number Pe = ūs𝓁c∕D that describes the rel-
ative importance of advection against diffusion of particles at the correlation length. This number plays an
important role in the value of the saturation length.

The stochastic model was tested against various experimental data of particle trajectories and showed good
overall agreement, notably in the description of the dispersion index.

This study also provides interesting guidelines for researchers studying the fluctuations of bed load trans-
port rates. To capture 95% of the fluctuations of particle activity, an experiment should be designed such
that it provides a measurement window larger than 20𝓁c. The difficulty lies in the fact that 𝓁c is not known
a priori, but it has to be computed after parameters estimation or measured directly if the limiting value of
the dispersion index could be reached experimentally.

Another issue arises since, at lengths of the order of 20𝓁c, it is generally difficult to ensure that bed load
transport is homogeneous. Indeed, bed forms inexorably develop and migrate, modifying locally the flow
and sediment transport. Model parameters may thus vary in time and space, precluding the use of the
preceding results, derived in the case of stationary and homogeneous transport conditions.

More generally, this leads us to question the use of average equations (such as equation (14)) to describe
bed load transport. As fluctuations were shown to span over scales often larger than the ones at which
bed load can be considered stationary and homogeneous—or even at scales larger than the experiment
size—average equations may fail at describing the nonlinear interactions that may exist between the
fluctuations in particle activity and the changes in bed elevation and water velocity for instance. Conse-
quently, a correct description of bed load transport cannot avoid the modeling of local fluctuations and
their interactions with the system boundaries.

Imagine now that the stochastic sediment transport equation (13) is coupled with Exner and Saint-Venant
or Navier-Stokes equations. By a simultaneous and local description of the bed load activity fluctuations, as
well as the fluid flow and the bed surface evolution, we may be able to give a more accurate picture of the
whole transport process.

The proposed model may also be generalized to a second spatial dimension. Indeed, the motion of particles
is only rarely unidirectional, as particle collisions and turbulent flow drag tend to modify particle trajectories
[Seizilles et al., 2014]. Thus, a dispersion of particles in the direction normal to the mean sediment velocity
vector may also occur. The corresponding cross-stream diffusivity is expected to be different than the
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streamwise diffusivity, so that the overall diffusion process might be anisotropic. Still, owing to the overall
linearity of the equations, the addition of a cross-stream diffusion term is straightforward.

Appendix A: Link to the BCRE Model

The BCRE model presented by Bouchaud et al. [1995] gives the density of rolling grains  as the solution of

𝜕t + ∇ (V) = ∇2 (D) −𝛼∇h, (A1)

where ∇h stands for the bed slope variations close to the angle of repose and 𝛼 is a constant. Thus, in their
model, when the slope is bigger than the angle of repose (∇h < 0) the second term on the left-hand side
acts as a source in the equation. In that case, the number of rolling grains increases exponentially, leading
to a local avalanche. On the contrary, when the slope is less than the angle of repose (∇h > 0), grains are
mainly deposited, causing the avalanche to stop ( = 0). The resemblance with equation (13) is striking.
In the latter, an exponential increase in the number moving particles occurs when the collective entrain-
ment rate is greater than or equal to the deposition rate (𝜇 ≥ 𝜎). In contrast to (A1), when deposition is
greater than collective entrainment, a nontrivial steady state solution exists, due to the uncorrelated particle
entrainment process (with rate 𝜆).

Our model could thus be seen as a “BCRE” model that includes an additional random perturbation.
Though the present work concerns bed load transport, and we restrict ourselves to the steady state case
(𝜇 < 𝜎), the limit 𝜇 → 𝜎 might be of particular interest for other granular flows. In particular, we sug-
gest that (13) may also be applicable to certain dry and dilute granular flow and thus may allow for their
statistical description.

Appendix B: Link to Point Processes

It is possible to draw an analogy between equation (13), obtained in the framework of birth-death Markov
processes through Poisson representation, and the point process framework. Indeed, point processes are
often defined by their rate function 𝜂(x, t) [Cox and Isham, 1980]. The simplest case is when the rate function
is constant in time and space, resulting in a Poisson point process. When the rate function is a function of
space and/or time, the process is called an inhomogeneous Poisson point process. Eventually, when the rate
function is also a random variable, the process is called a doubly stochastic process, or Cox process [Cox and
Isham, 1980]. This is the case with equation (13). To summarize, starting from a multivariate Markov process
defined on lattice cells and described by a master equation, we end up with a model belonging to a general
class of point processes, called doubly stochastic processes.

We now show how it is possible to simulate a probable realization of particle positions from equation (13).
As noted earlier, by means of the Poisson representation, 𝜂(x, t) can be interpreted as the random rate
of a Poisson distribution. First, we need to compute equation (13), to get a realization of 𝜂(x) at a given
time t. This can be achieved using standard methods for stochastic differential equations (for instance an
Euler–Maruyama scheme, which is an explicit finite-difference numerical scheme for stochastic equations
[Kloeden and Platen, 2011]). Once we get a realization of 𝜂(x), we proceed as follows. We choose a constant
C > 𝜂(x) and compute a realization of point positions according to a Poisson process with rate C. This
can be achieved by drawing CL random point locations from the uniform distribution between 0 and L, L
being the length of the computation area. Then, each point is randomly selected or discarded according to
the criteria:

if r < 𝜂(xk)∕C, keep point,

if r > 𝜂(xk)∕C, delete point,

where r is drawn from a uniform distribution in [0, 1]. The remaining points form a possible observation of
particle positions according to the model (Figure B1).

In Figure B1, it is possible to observe the clustering of particles around the region of high 𝜂(x) values, while
for the Poisson process, particles positions are purely random so no clustering appears. The clustering of
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Figure B1. Example simulation of the rate process (equation (13)) and
corresponding possible realization of particle positions. We also plot
the Poissonian case (with the same mean rate) for comparison. Model
parameters are 𝜆 = 0.05 particles m−1, 𝜇 = 9.99 s−1, 𝜎 = 10 s−1,
ūs = 0.1 m s−1, and D = 0.008 m2 s−1.

particles is a special feature of our
model (when 𝜇 > 0) and can
be quantified by the study of the
second moment.

Appendix C: Theoretical
Developments
C1. Spatial Correlation Function
Let g(x, x′, t) denote the spatial cor-
relation function of the Poisson
density variable 𝜂(x, t). By definition
we have

g(x, x′, t) =
⟨
𝜂(x, t), 𝜂(x′, t)

⟩
=
⟨
𝜂(x, t)𝜂(x′, t)

⟩
− ⟨𝜂(x, t)⟩ ⟨𝜂(x′, t)

⟩ (C1)

Taking the differential of g and
using Itō’s calculus rules (i.e., an
equivalent of the chain rule for
stochastic equations),

dg(x, x′, t) = d
⟨
𝜂(x, t)𝜂(x′, t)

⟩
=
⟨

d𝜂(x, t)𝜂(x′, t)
⟩
+
⟨
𝜂(x, t)d𝜂(x′, t)

⟩
+
⟨

d𝜂(x, t)d𝜂(x′, t)
⟩
.

(C2)

Note that d (⟨𝜂(x, t)⟩ ⟨𝜂(x′, t)⟩) is zero by definition of the average. It comes

dg(x, x′, t) = D
(
𝜕2∕𝜕x2 + 𝜕2∕𝜕x′2

) ⟨
𝜂(x, t)𝜂(x′, t)

⟩
dt

− ūs

(
𝜕∕𝜕x + 𝜕∕𝜕x′

) ⟨
𝜂(x, t)𝜂(x′, t)

⟩
dt

− 2(𝜎 − 𝜇)
⟨
𝜂(x, t)𝜂(x′, t)

⟩
dt + 2 ⟨𝜂⟩s

(
𝜆 + 𝜇𝛿(x − x′)

)
dt.

(C3)

In a spatially homogeneous situation, g(x, x′, t) is a function of r = |x − x′| only, which we call g(r, t). Thus,
substituting equation (C1) into equation (C3), we obtain

1
2
𝜕g(r, t)
𝜕t

= D
𝜕2g(r, t)
𝜕r2

− (𝜎 − 𝜇)g(r, t) + 𝜇 ⟨𝛾⟩s 𝛿(r). (C4)

The advection term disappears because 𝜕∕𝜕x = −𝜕∕𝜕x′. Thus, the spatial correlation has no dependence on
the mean velocity of particles. We look for the stationary behavior of (C4), which is

D
𝜕2gs(r)
𝜕r2

− (𝜎 − 𝜇)gs(r) + 𝜇 ⟨𝛾⟩s 𝛿(r) = 0, (C5)

with r = |x − x′|. We can simplify equation (C5) by rescaling the variable r by r̃ = r∕𝓁c where
𝓁c =

√
D∕(𝜎 − 𝜇). It yields

𝜕2gs(r̃)
𝜕r̃2

− gs(r̃) +
⟨𝛾⟩s

𝓁c

𝜇

𝜎 − 𝜇
𝛿(r̃) = 0. (C6)

By means of Fourier transform, we obtain the algebraic equation

G(𝜔) =
⟨𝛾⟩s

𝓁c

𝜇

𝜎 − 𝜇

1
𝜔2 + 1

, (C7)

where G(𝜔) is the Fourier transform of gs(r̃). The Fourier inverse of equation (C7), is given by

gs(r̃) =
⟨𝛾⟩s

2𝓁c

𝜇

𝜎 − 𝜇
exp (−|r̃|). (C8)

HEYMAN ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1763



Journal of Geophysical Research: Earth Surface 10.1002/2013JF003003

Hence,

⟨
𝜂(x), 𝜂(x′)

⟩
s
=

⟨𝛾⟩s

2𝓁c

𝜇

𝜎 − 𝜇
exp

(
− |x − x′|

𝓁c

)
. (C9)

Second moment of 𝜂 and 𝛾 is connected through the simple relationship [Gardiner and Chaturvedi, 1977]:

⟨
𝜂(x, t), 𝜂(x′, t)

⟩
=
⟨
𝛾(x, t), 𝛾(x′, t)

⟩
− 𝛿(x − x′) ⟨𝛾(x, t)⟩ ,

so that equation (17) is recovered.

C2. Spatial Fluctuations
We wish to compute the integral

Var[N(L)] = ∫L ∫L

⟨
𝛾(x, t), 𝛾(x′, t)

⟩
s

dxdx′.

That is,

Var[N(L)] = ⟨𝛾⟩s L +
⟨𝛾⟩s

2𝓁c

𝜇

𝜎 − 𝜇 ∫
L∕2

−L∕2 ∫
L∕2

−L∕2
e−|x−x′|∕𝓁c dxdx′.

The value of the integral can be obtained by using

∫
L∕2

−L∕2 ∫
L∕2

−L∕2
e|x−x′|∕𝓁c dxdx′ = ∫

L∕2

−L∕2

[
∫

x

−L∕2
e(x−x′)∕𝓁c dx + ∫

L∕2

x
e−(x−x′)∕𝓁c dx

]
dx′ =

𝓁c ∫
L∕2

−L∕2

[
2 − eL∕(2𝓁c)

(
e−x′∕𝓁c + ex′∕𝓁c

)]
dx′ = 2𝓁2

c

(
L∕𝓁c + e−L∕𝓁c − 1

)
.

Thus,

Var[N(L)] = ⟨𝛾⟩s L + ⟨𝛾⟩s 𝓁c
𝜇

𝜎 − 𝜇

(
L∕𝓁c + e−L∕𝓁c − 1

)
.

Appendix D: Experiments

D1. Experiments B
These experiments were carried out in a narrow steep flume where sediment consisted of glass beads of
equal size (6 mm). Particle transport was completely two-dimensional; this allowed Böhm et al. [2004] to
take pictures through the sidewall and detect and track individual particles via image processing. Camera
resolution was 640 × 192 pixels with a frame rate of 129.2 frame per second (fps). Each sequence comprised
8000 images corresponding to a duration of approximately 1 min. The acquisition length was 22.5 cm, for a
resolution of 0.3 mm/pixel. Thus, this imaging technique covers about 2 orders of magnitude in space. For
further information on the experimental conditions, the reader is referred to Böhm et al. [2004] and Ancey et
al. [2008].

D2. Experiment R
Roseberry et al. [2012] presented a set of experiments where particle trajectories were sampled in a
two-dimensional window of the bed viewed from the top. High-speed imaging at 250 fps over a 7.57 cm
(streamwise) by 6.05 cm (cross-stream) bed-surface domain, and with 1280×1024 pixels resolution pro-
vided the basis for tracking particle motions (with a precision of 0.06 mm/pixel). Bed material consisted of
relatively uniform coarse sand with an average diameter of d50 = 0.5 mm.

The data set involved one experiment with a total duration of 0.4 s, i.e., 100 frames. In contrast to the
three other data sets, experiment R concerns relatively small particles (sand) over mild slope (the slope
is not given in [Roseberry et al., 2012] but the Froude number is much lower than unity).
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D3. Experiments J
The originality of this data set compared to the two others lies in its high temporal and spatial resolutions.
Two cameras of 1280×200 pixels resolution, placed side by side, took pictures from the transparent sidewall
at a rate of 200 fps. The length of the observation window was slightly less than 1 m (with a precision of
about 0.4 mm/pixel), while the duration of a sequence was 150 s (30,000 images). For each experiment, four
film sequences were repetitively taken to insure good statistical results.

Experiments were carried out in a 2.5 m long flume. The erodible bed was made of natural sediment parti-
cles with mean diameter of 8 mm. The flume was 3.5 cm wide, and the water depth was ranging from 3 to
4 cm during experiments. The channel slope ranged between 3% and 5%. The flow was fully supercritical.
Small antidunes were occasionally growing and propagated upstream, but the bed remained nearly flat in
all experiments. As the channel width to flow depth ratio was relatively small (B∕h ∼ 1), the fraction of the
shear stress taken by the bed was certainly reduced, because of the increased sidewall friction. Experimental
studies [Knight, 1981] report a drop of about 40 to 60% of the bed shear stress for such aspect ratio. It is thus
hard to determine precisely the experimental Shield stress without any direct flow velocity measurements.

Image processing and automatic particle tracking were then performed on these images (Figure 3). The
processing steps from raw images to particle trajectories were the following:

1. First the raw images were processed using the powerful yet simple method of median background sub-
traction [Yilmaz et al., 2006; Radice et al., 2006]. This allows a distinction between an immobile background
(made up of particle resting on the bed) and a moving foreground (the moving particles).

2. An algorithm was then used to detect the centroid position of the moving particles in the foreground
images. This was achieved after thresholding the foreground image and computing properties of
connected regions (such as area, barycentre, and eccentricity).

3. Moving particles between two consecutive images were then associated into trajectories. The Hungarian
algorithm was used here to obtain the best combinations. In case of conflict (for instance, if two particles
are assigned to the same particle in the following frame), the trajectory was supposed to end and a new
trajectory was built.

4. Finally, to reconstruct broken trajectories, a Kalman filter was applied to each missing measurements and
overlapping trajectories were merged.

D4. Experimental Dispersion Index and K Function
The experimental dispersion index at length L is estimated as follows. First, we randomly choose p sub-
windows of equal length L inside the whole available observation region. As the subwindows are selected
randomly, they possibly overlap. Then, we construct the vector Ni,k of the number of moving particles found
in the subwindow i (i = 1, · · · , p) at frame k (k = 1, · · · , f , f being the total number of video frames). Var[N(L)]
and Mean[N(L)] are then estimated with all Ni,k samples. Typically, we chose p = 20. In experiments J, the
dispersion index is thus estimated over more than 2 millions of samples. Note that such a large number of
samples is necessary to get unbiased estimates of moments, since samples may not be independent of each
other. Similarly, the dispersion index of experiment R is estimated over 2000 samples and the dispersion
index of experiment B is estimated over 640,000 samples.

The procedure to compute the experimental K function is given in Ripley [1976]. In the latter paper, several
methods are presented to prevent the problems arising at the boundaries of the image. Indeed, for a particle
located close to the image boundary, the number of particles found in a circle of radius x larger than the
particle-boundary distance may be underestimated. To prevent this, we chose to limit the computation of
K(x) to particles located at a minimum distance x from the image boundary.

Notation

⟨∙⟩ Ensemble average.⟨∙⟩s Ensemble average in steady state and homogeneous conditions.⟨∙, ∙⟩ Covariance of two random variables. For instance, ⟨X, X⟩ = ⟨
X2

⟩
− ⟨X⟩2.

Ni∕ni Random variable/number of moving particles in cell i.
Δx Cell length in meters.

𝛾(x, t) Density of moving particles at location x and time t in particles m−1.
n Vector of the number of moving particles in each cell.
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xi Position of the center of the cell i.
𝜆 Average particle entrainment rate per meter length in particles m−1 s−1.
𝜇 Average collective entrainment rate in s−1.
𝜎 Average particle deposition rate in s−1.
D Macroscopic diffusivity in m2 s−1.

ūs Mean particle velocity in m s−1.
d Local diffusivity in s−1.

r±i Vector whose all but one value are zero: ri = ±1, rk = 0 for k ≠ i.
ai Poisson rate in cell i in the Poisson representation of ni .
a Vector of Poisson rates in each cell.
f Pseudodensity function of a.

dWi(t) derivative of a temporal Wiener process (white noise).
𝜂(x, t) Poisson density of moving particles at location x and time t in particles m−1.

dW(x, t) derivative of a spatiotemporal Wiener process (two-dimensional white noise).⟨𝛾⟩s Steady state homogeneous average density of moving particles in particles m−1.⟨𝜂⟩s Steady state homogeneous average Poisson density of moving particles in particles m−1.
𝓁c Correlation length in meters.

𝓁sat Saturation length in meters.
Pe Local Péclet number (dimensionless number).

I Index of dispersion.
L Length of the observation window in meters.
L̃ Dimensionless length (L∕𝓁c) of the observation window.
K K function.
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