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Abstract

The objective of this paper is to examine the importance of sediment diffusion relative to advection in bed load

transport. At moderate bottom shear stress, water turbulence is too weak for picking up and keeping particles

in suspension and so shallow water flows over erodible slopes carry sediment as bed load. Two deterministic

frameworks are routinely used for studying bed load transport in sedimentation engineering and computational

river dynamics. In equilibrium theory, the sediment transport rate is directly related to the water discharge (or

bottom shear stress) independently of the intensity of sediment transport and the flow conditions (nearly steady

flow as well as non-uniform time-dependent flow); embodied in the Exner equation, the bedload transport

equation dictates bed evolution. In non-equilibrium (or non-capacity sediment transport) theory, sediment

transport results from the imbalance between particle entrainment and deposition. Generally, sediment diffusion

is included in none of these approaches. Based on recent advances in the probabilistic theory of sediment

transport, this paper emphasizes the part played by particle diffusion in bed load transport. In light of these

new developments, we revisit the concepts of adaptation length and entrainment rate, two essential elements

in the deterministic non-equilibrium bed load theory. Using the shallow water equations, we ran numerical

simulations of channel degradation and anti-dune development in gravel bed streams over steep slopes, which

showed that sediment diffusion is as significant as advection in flume experiments. The predictive capability of

deterministic models can thus be improved by including diffusion in the governing equations. We also present

a versatile numerical framework, which makes it possible to use either deterministic or stochastic formulations

of bed load transport.

Keywords: Saint-Venant-Exner, Particle diffusion, Adaptation length, Aggradation/Degradation, Anti-dunes

1. Introduction

This article analyses the part played by particle diffusion in sediment transport by conducting nonlinear

numerical simulations reproducing bed load experiments. The mainstream view has long been that particles are

advected by the water flow, which explains why the sediment transport rate is mostly expressed as a function of

the water discharge or the bottom shear stress. So the problem posed by particle diffusion has gone unnoticed
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until very recently. Surprisingly enough, for other transport phenomena in turbulent flows (e.g., pollutant

transport), it has long been recognised that particle diffusion plays a key role [1, 2]. Recently, new views have

emerged and shown the significance of particle diffusion in bedload transport, especially under weak and partial

bed load transport [3, 4, 5, 6, 7, 8]. Recent theoretical studies have also highlighted the diffusive nature of

bed load transport and the influence of particle diffusion on the (stochastic) fluctuations of transport rates and

particle concentration (hereafter called particle activity) [9, 10].

In this article we address the relative importance of diffusion and advection in the momentum balance

equation. Here we use a ‘simple’ morphodynamic model consisting of the Saint-Venant-Exner equations. An

innovative feature has been to supplement these deterministic equations with two further governing equations

that describe the dynamics of sediment transport [10, 11]. The reader is referred to equations (1)–(4b) below to

get an overview of the governing equations. One of these equations is a stochastic partial differential equation,

which provides information on the particle ativity fluctuations. The deterministic components of the formulation

used are equivalent to most common approaches to predicting bed load transport in shallow water flows, as

shown in the first part of the article. The second part addresses the role of particle diffusion in bed load transport

by running numerical simulations and comparing them with available theoretical solutions and experimental

data.

The case studies considered in this article correspond to shallow water flows over erodible sloping beds in

laboratory flumes that produce nearly one-dimensional flows (complicated structures such as alternate bars are

not investigated). Laboratory studies have revealed that bedload transport exhibits a complex behaviour, even

in the ideal case of an initially uniform flow in a sandy- or gravel-bed flume. For instance, Gilbert [12], a

pioneer in the experimental investigation of bedload transport, observed the development of bed instabilities

(ripples, dunes and anti-dunes). Later, Simons and Richardson [13] quantified the increase in head loss due to

bed form roughness when the flow passed from the lower- to the upper-flow regime. Kennedy [14] found out

the existence of multiple states in which upstream and downstream migrating anti-dunes coexisted with steady

standing waves. Soni et al. [15] commented on the sediment transport rate fluctuations in transient aggradation

processes. More recently, Ancey et al. [16] monitored stochastic fluctuations of the sediment transport rate in the

laboratory while Naqshband et al. [17] and Cartigny et al. [18] described turbulent fluctuations of the sediment

load with respect to the mean value as a result of bed form migration both in subcritical and supercritical flows,

respectively. At last, Yager et al. [19] reviewed recent advances on bed surface structures and armour layer

formation. There is no unified theoretical framework for predicting all of these complex phenomena even in

the simplest case of well sorted sediments [20] and this explains why there is currently a large body of research

on this emerging topic. Increasing the accuracy of model predictions at an affordable computational cost is

an attractive challenge. In this respect, simple models such as flow-depth-averaged models (e.g., Saint-Venant-

Exner equations) are still worth further investigation even though more refined models are now increasingly

used [21].
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1.1. Governing equations

We will use the following stochastic-deterministic Saint-Venant-Exner (sdSVE)

∂h

∂t
+

∂hv̄

∂x
= 0, (1)

∂hv̄

∂t
+

∂hv̄2

∂x
+ gh

∂h

∂x
= −gh

∂yb
∂x

− f v̄ |v̄|
8

+
∂

∂x

(

νh
∂v̄

∂x

)

, (2)

(1 − ζb)
∂yb
∂t

= D − E, (3)

in which h(x, t) = ys−yb denotes the flow depth, yb(x, t) and ys(x, t) are the positions of the bed and free surfaces,

v̄ is the depth-averaged velocity, t is time, ̺ is the water density, f is the nondimensional Darcy-Weisbach friction

factor, ζb the bed porosity, D and E represent the deposition and entrainment rates, respectively, and the extra

term ∂x(νh∂xv̄) in the momentum balance equation (2) represents a simple depth-averaged Reynolds stress.

We use a Cartesian frame (x, y) in which x is the horizontal position and y is the (vertical) elevation. We

supplement these classical equations with two additional equations:

∂b

∂t
+

∂

∂x
(ūsb)−

∂2

∂x2
(Dub) = E′ −D +

√

2µb ξb (4a)

∂

∂t
〈γ〉+ ∂

∂x
(ūs 〈γ〉)−

∂2

∂x2
(Du〈γ〉) = E −D , (4b)

where ūs is the mean particle velocity, Du is the particle diffusivity, µ is the collective entrainment rate and ξb

is a Gaussian noise term. In a former paper [10], it was shown that the number of moving particles per unit

bed area, here called the particle activity γ (following Furbish’ terminology), is a random variable, whose time

variations can be calculated within the framework of jump Markov process. To gain analytical traction, the

probability density function of γ can be studied using the Poisson representation—a kind of Fourier transform in

the probability space [22]. The resulting variable is called the Poisson density b. Equation (4a) is the governing

equation for b: this is a Langevin equation, which takes the form of an advection diffusion equation with a

source term including coloured noise [10]. Itô’s convention is used in our approach for defining and interpreting

stochastic integration [22]. Taking the ensemble average of this equation leads to the governing equation (4b)

for the mean particle activity 〈γ〉.
An interesting property of the Poisson representation (which was used to infer equation (4b) from (4a)) is

that the moments of b and γ are linked

〈γ〉 = 〈b〉Vp

B
. (5)

The erosion and deposition rates (that will be introduced later) can be expressed as functions of the Poisson

density b or the particle activity 〈γ〉. The stochastic and deterministic entrainment rates are related by 〈E′〉 =
E B/Vp in which B is the channel width and Vp is the typical volume of one grain. Solving the Langevin

equation (4a) for b allows us to fully characterize the fluctuations of the particle activity while solving the

ensemble-averaged advection diffusion equation (4b) for 〈γ〉 provides information on the mean behaviour of the

particle activity.
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1.2. Definition of the sediment transport rate

An important element of sediment transport is the sediment transport rate q̄s. There is no unique definition

of q̄s [23, 24, 25]. Here we follow Furbish et al. [9] and define the bulk sediment transport rate as the sum of

convective and diffusive contributions

q̄s = ūs〈γ〉 −
∂

∂x
(Du〈γ〉) . (6)

In the following, we will refer to the advection transport rate as q̄c,s = ūs〈γ〉 and the diffusion transport rate

as q̄d,s = −∂xDu〈γ〉. Both contributions can be computed by solving the advection diffusion equation (4b)

for the mean particle activity 〈γ〉. An alternative is to compute them by first solving the stochastic Langevin

equation (4a) for the Poisson density b, then making use of equation (5) to deduce 〈γ〉. Note that the second

contribution on the right-hand side of (6) is called the “diffusion transport rate” because it arises from the

diffusion term in (4b), which can be recast as

∂ q̄s
∂x

= E −D − ∂ 〈γ〉
∂t

, (7)

even though the definition of q̄d,s involves the spatial gradient of 〈γ〉.
An interesting feature of the sdSVE equations (1)–(4b) is that they can be viewed as a generalization of

different approaches. On the one hand, the ensemble-averaged sdSVE equations (1)-(3), (4b) lead to the classical

equation based on Einstein [26]’s bed load transport function under nearly steady uniform flow conditions

(see Section 2.1). On the other hand, more involved bedload transport equations—which are referred to as

non-equilibrium or non-capacity sediment transport equations, and are common to sedimentation engineering

[27, 28]—are also a particular case of the mean sdSVE equations under unsteady, non-uniform flow conditions,

see Sections 2.2-2.3. A noticeable consequence of this is that existing numerical codes can be readily adapted

to evaluate the fluctuations of sediment transport rate by replacing equation (4b) with (4a). In practice, this

requires adding the coloured noise term
√
2µb ξb to the advection-diffusion equation and selecting an appropriate

discretization technique of the stochastic partial differential equation (4a), e.g., see Bohorquez and Ancey [11]

for detail on the numerical schemes. The diffusion term −∂xx(Du b) in equation (4a) is no longer negligible,

which leads us to think that the predictive capability of non-equilibrium (or non-capacity) bedload transport

equations can be improved by setting Du > 0 in the diffusive term −∂xx(Du 〈γ〉) of the advection diffusion

equation (4b), as shown later in this article.

1.3. Objectives

The present study focuses on the three following issues: (i) we revisit the concept of adaptation length within

the framework of the sdSVE equations (1)-(4b), (ii) we seek a closure equation for the erosion-to-deposition-rate

ratio, which covers a wide range of Shields numbers, from zero to very large values (i.e., from vanishingly low

transport rates to the full mobility regime) [29, 30, 31], and (iii) we analyze the importance of particle diffusion

relative to particle advection in different case studies, including the simulation of channel degradation in Newton

[32]’s experiments and the numerical study of anti-dunes in gravel bed streams over steep slopes [33, 34, 35, 36].
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The adaptation length, denoted by ℓc,d, is the characteristic distance that particles travel for reaching steady

state motion after being entrained by the stream. It is also referred to as the saturation or relaxation length

[37]. In transient flows, this is the typical length for the sediment transport rate and particle activity to

reach steady state. It is an input parameter in non-equilibrium sediment transport simulations [38, 39] and

its parametric dependence remains unclear. Using dimensional analysis arguments, Charru [37] found that the

adaptation length is inversely proportional to the particle velocity. More recently, Heyman et al. [7] included

particle diffusion in the definition of ℓc,d. We shall see that our theory is consistent with Heyman et al. [7] and

recovers Charru [37]’s scaling in the absence of particle diffusion. The second theoretical issue addressed in the

present paper concerns the formulation of a new relation for the steady-state particle activity or, equivalently,

for the ratio between the erosion and deposition rates. Both rates are expressed in terms of a reference Shields

number and reference sediment transport rate, as initially suggested by Buffington [29]. These expressions

are of particular interest to situations in which the Shields number varies from incipient sediment motion to

full mobility conditions. By bridging the gap between our formulation, existing bed-load transport theories

[29, 30, 31] and scaling laws derived by Charru [37] and Lajeunesse et al. [40], we end up with new expressions

for the erosion and deposition rates.

Next the applicability of the sdSVE formulation to real problems is illustrated with two examples. The first

numerical benchmark we used has become a standard in numerical simulations with regards to erodible beds

because of its practical interest. The reader is referred to previous numerical studies, e.g. [41, 38]. Here it serves

to estimate the importance of particle diffusion relative to particle advection in sediment transport. The second

numerical experiment illustrates the capability of the mean sdSVE equations to self-select the wavelength of

anti-dunes when particle diffusion is included in the model. As far as we are aware, this is the first time that

this remarkable feature is reported. This numerical experiment also shows that the convection and the diffusion

transport rates (q̄c,s and q̄d,s, respectively) are of comparable magnitude in the presence of bed forms.

The paper is organized as follows: the similarities and/or differences between the mean sdSVE equations,

capacity (equilibrium) and non-capacity (non-equilibrium) formulations are summarized in § 2. The concept

of adaptation length and its dependence on the particle diffusivity is revisited in Section 3, and the closure

equations for the erosion/deposition rates are presented in Section 4. Next, Section 5 is devoted to numerical

simulations of flume experiments. Accuracy and performance are evaluated by comparing numerical simulations

with available theoretical solutions and experimental related to channel degradation and anti-dunes migration

in gravel bed streams [11, 32, 33, 34, 35, 36]. Conclusions are finally presented in § 6.

2. Equivalence between sediment transport formulations

Two approaches can be used for simulating sediment transport: (i) the classical paradigm with a sediment

transport rate defined as a conditional function of the Shields number q̄s = q̄ss(Sh) (‘conditional’ because the

Shield number must be in excess of a critical value for q̄s to be nonzero), (ii) an alternative approach (originally

developed by Einstein [42]) in which sediment transport results from the imbalance between the entrainment

and deposition rates introduced in equations (6)-(7). An overview of the relevant literature and the relation with
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the sdSVE equations (1)-(4b) are presented in Section 2.1 for approach (i) and Sections 2.2–2.3 for approach (ii).

A complete state of the art is beyond the scope of this paper and so we will essentially summarize the main

ideas.

2.1. Uniform flow down sloping bed: steady state sediment transport rate

Let us consider an inclined bed with constant bottom slope −∂xyb = tan θ. The solution to the Saint-

Venant-Exner equations (1)-(3) and (4b) for a steady uniform flow (∂x = ∂t = 0) is given by h = H , v̄ = V ,

yb = −x tan θ, 〈γ〉 = 〈γ〉ss and E = D, where H denotes the flow depth, V is the flow depth-averaged velocity

and 〈γ〉ss is the steady-state particle activity. Given the water discharge per unit width Q = H V and the

bottom slope tan θ, the hydraulic variables H and V are obtained from the balance between the gravitational

force and flow resistance on the right-hand side of the momentum balance equation (2). In nondimensional

form, this relation reads

tan θ =
f V 2

8 g H
=

f

8
Fr2 (8)

where Fr = V/
√
g H denotes the Froude number. In general, the Darcy-Weisbach friction factor f is a nonlinear

function of the relative grain roughness δ2 = d/H [43] and so equation (8) is to be solved iteratively.

Working under the Shields paradigm [29], we assume that sediment is eroded and transported by the flow

when the Shields number Sh is in excess of the critical value Shcr [43]. Shields used dimensional analysis to

demonstrate that q̄ss = q̄ss(Sh) [29]. Under steady-state plane-bed conditions, the Shields number depends on

the bed slope tan θ and relative roughness δ2 [11]

Sh =
τb

ρ (s− 1) g d
=

f Fr2

8 (s− 1) δ2
=

tan θ

(s− 1) δ2
. (9)

If sediment motion occurs, i.e., for Sh > Shcr, the steady-state particle activity 〈γ〉ss is calculated by considering

the balance between the erosion and deposition rates, i.e., by solving E = D. Appropriate closure equations

are therefore required. In the classical approach (i), a number of studies have found that the deposition and

entrainment rates satisfy

D = κ 〈γ〉 and E = λ, (10)

where λ is a constant independent of 〈γ〉 [41, 27, 28, 40, 37]. As a consequence, the steady-state particle activity

is given by

〈γ〉ss =
λ

κ
(11)

and the steady state sediment transport rate is

q̄ss = ūs 〈γ〉ss = β v̄
λ

κ
, (12)

where β denotes the sediment-to-liquid velocity ratio.

Contrasting with the Shields approach, Einstein [26]’s approach does not involve any threshold for sediment

incipient motion (this is tantamount to setting Shcr = 0). Buffington [29], Cheng [30] and Wilcock and Crowe
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[31] replaced the concept of critical Shields number Shcr with a reference Shields number Sh∗ which is associated

to the reference bed load q̄s∗ = ǫ, usually ǫ ∼ 10−4 m2/s. These authors showed how experimental data can be

scaled by introducing the scaled sediment transport rate q̂ss(Ŝh) = q̄ss(Sh)/q̄ss(Sh∗) where Ŝh = Sh/Sh∗. In

this way, the data collapse on a single ‘master’ curve independently of sediment properties.

Note that for the moment, we do not give any preference to one approach over the other. In Section 4, we

will show how to switch from one formulation to the other.

Several steady-state bedload transport equations q̄ss have been proposed and calibrated under nearly uniform

flow conditions [20]. The results (11) and (12) inferred from the sdSVE equations are consistent with existing

algebraic bedload transport equations provided that the λ-to-κ ratio satisfies

λ

κ
=

q̄ss(Sh)

ūs
=

q̄ss(Sh)

β v̄
. (13)

This condition is, however, poorly constrained as the dependence of λ and κ on Sh remains undecided for

rapidly varying flows. For nearly uniform regimes and moderate Shields numbers (Sh ≈ 2Shcr), Lajeunesse

et al. [40] and Charru [37] obtained κ = cd Vs/d, where Vs =
√

(s− 1) g d is the characteristic settling velocity

and cd ≈ 0.1. Taking into account that sediment particles settle in steady water approximately at constant

velocity Vs (we take cd = 1 at Sh = 0), we expect that κ (or cd) is a monotonically decreasing function of Sh.

Indeed sediment deposition is negligible at sufficiently large Shields number because turbulence fluctuations are

sufficiently strong to keep sediment in suspension [44]. For uniform and non-uniform sand mixtures, entrainment

and deposition rates have been estimated by observing dune migration [45]. More accurate estimations of E

and D would require high-resolution techniques such as particle tracking, but there are few data available [19].

We propose a method to calibrate κ and λ in Section 4 as they are essential to the model.

The bed load transport rate q̄s reaches its steady state value q̄ss(Sh) under steady uniform flow conditions,

i.e., when ∂xq̄s = ∂t〈γ〉 = 0, so E = D, according to the mass balance condition (7), and there is no aggradation

or degradation of the bed, i.e., ∂tyb = 0. Contrasting with this physical picture, approach (i) does not go into

detail and so the relation q̄s = q̄ss(Sh) is assumed to hold also under nonuniform flow conditions. The Exner

equation (3) is thus defined as

(1− ζb)
∂yb
∂t

=
∂q̄ss
∂x

. (14)

Formally this approximation holds under slowly varying flow conditions (when ∂t〈γ〉 ≪ λ) and in the absence

of strong gradient of the sediment transport rate (∂xq̄ss ≪ λ).

2.2. Quasi-steady, non-diffusive sediment transport: Exner equation and flux relation equation

By setting Du = 0, keeping only the first (algebraic) contribution in the definition (6) of the sediment

transport rate (i.e. q̄s = ūs〈γ〉), neglecting the temporal variation ∂t〈γ〉, and substituting (4b) into (3), we end

up with the standard version of Exner equation [46]:

(1− ζb)
∂yb
∂t

− ∂q̄s
∂x

= 0. (15)
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In this case, the bed load transport rate q̄s is derived from equation (7). We thus obtain the flux relaxation

equation:
∂

∂x
(β v̄ 〈γ〉) = λ− κ 〈γ〉 or

∂q̄s
∂x

=
1

ℓc
(q̄s − q̄ss) , (16)

where the adaptation length is ℓc = ūs/κ.

In the limiting case |∂xq̄s| ≪ λ, the leading-order solution to the flux relaxation equation (16) is 〈γ〉 = 〈γ〉ss
or q̄s = q̄ss, which shows that our formulation is consistent with the Exner equation based on the algebraic

bed load transport equation q̄ss (14). By defining the adaptation length as ℓc = ūs/κ, we also retrieve the

flux relaxation equation obtained by Charru [37]. It is worth mentioning that the flux relaxation equation (16)

allows for the formation of ripples with physically consistent wavelengths at subcritical Froude numbers [47]

while the standard Exner equation does not (it is unconditionally stable at Fr < 2 [48]). Let us also mention

that El Kadi Abderrezzak and Paquier [38] successfully computed several problems of practical relevance using

(15)-(16), while more recently, Li and Qi [49] have built analytical solutions related to channel degradation

under slowly varying flow conditions by using a constant adaptation length ℓc and in doing so, they have been

able to reproduce Phillips and Sutherland [50]’s experiments. These examples illustrate the better performance

of the formulation (16) (or equation (4b)) compared to the classical Exner equation (14). Let us move on to

the unsteady case and comment on the similarities with non-equilibrium sediment transport equations.

2.3. Non-diffusive bed load transport: non-equilibrium, non-capacity or unsteady flux relaxation equation

In recent years, emphasis has been given to non-equilibrium sediment transport models, particularly in the

numerical simulations of rapidly varying flows. These models now offer a credible alternative to the classical

Exner approach. Some examples that provide evidence of the capabilities of this approach include the simulation

of erodible dam-break flows [51, 52, 39], aggradation due to overloading, and degradation by overtopping flow

[41, 52]. The underlying idea is that sediment transport results from the imbalance between erosion and

entrainment. It has been used in various settings: bed load transport [26, 53], turbidity currents [54] , suspended

sediment transport in rivers [55], and total sediment load [56].

The mathematical similarity between the mean sdSVE equations and non-equilibrium bed load transport

equations is readily observed by neglecting sediment diffusion (i.e., by setting Du = 0) and using the definition

of the local bed load transport equation q̄s = ūs〈γ〉, that allow us to recast equations (3) and (4b) in the

following form

(1 − ζb)
∂yb
∂t

=
1

ℓc
(q̄ss − q̄s) , (17)

∂

∂t

(

q̄s
ūs

)

+
∂q̄s
∂x

=
1

ℓc
(q̄s − q̄ss) . (18)

Relations (17)-(18) are similar to the non-equilibrium or non-capacity bed load equations (e.g., see Wu [27] and

Zhang et al. [39]). Some authors prefer to express them in terms of an equivalent depth-averaged volumetric

concentration of sediment [51, 28], while others keep the mean particle activity 〈γ〉 (instead of q̄s) as the

unknown to be determined [47, 40]. Recall that we arrived at equation (18) by taking the ensemble average
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of the Langevin equation (4a) for the Poisson density b. We deduce that current sediment transport equations

calculate the mean particle activity or mean sediment transport rate by ignoring particle diffusion. Sediment

diffusion is, however, inherent to bed load transport [9, 10] as this happens to other random flight processes

[1, 2]. So sediment diffusion and its part played in sediment transport deserve further numerical studies, which

has motivated the work presented in the next section.

3. The adaptation length

We have seen in the introduction that the adaptation length is the characteristic distance travelled by

particles for reaching steady state motion; the sediment transport rate and particle activity also come close to

their steady state values q̄ss and 〈γ〉ss, respectively. Heyman et al. [7] have recently derived the expression of the

adaptation length by calculating the steady-state solution to the scalar transport equation (4b) for a prescribed

uniform particle velocity ūs and the following boundary conditions:

d

∂x
(ūs 〈γ〉)−

d2

∂x2
(Du〈γ〉) = λ− κ 〈γ〉 ,

〈γ〉 = 0 at x = 0 and
d〈γ〉
dx

= 0 at x → ∞ .

(19)

Solving equation (19) for 〈γ〉 (and assuming a constant sediment velocity ūs), we get

〈γ〉(x)
〈γ〉ss

= 1− exp−x/ℓc,d with ℓc,d =
2Du

ūs

[
√

1 + 4
Du κ

ū2
s

− 1

]−1

. (20)

The exact solution (20) is marked up with a solid line in Fig. 1. At the upstream boundary, the particle

activity vanishes owing to the prescribed Dirichlet boundary condition 〈γ〉 = 0 at x = 0. Assuming that particles

travel downward (in the streamwise direction, i.e. ūs > 0), the particle activity increases monotically along the

x axis. Far away from the inlet (i.e. for x ≫ ℓc,d), the particle activity reaches its steady state value 〈γ〉 = 〈γ〉ss.
To give an example, we provide the numerical values of 〈γ〉 at points x/ℓc,d = 1, 2.3 and 4.6: equation (20)

yields 〈γ〉/〈γ〉ss = 0.63, 0.90 and 0.99, respectively. In practice, steady state is observed for distances in excess

of 4 ℓc,d. Note that particle diffusion does not affect the steady-state particle activity 〈γ〉ss = λ/κ = q̄ss/ūs.

It is also worth highlighting that the adaptation length does not depend explicitly on the erosion rate λ. At

leading order, ℓc,d is expected to reflect the balance between particle convective and deposition [37]. The Taylor

series expansion at Du = 0

ℓc,d = ℓc + ℓd

[

ℓd
ℓc

−
(

ℓd
ℓc

)3

+ 2

(

ℓd
ℓc

)5

+O

(

(

ℓd
ℓc

)7
)]

, ℓc =
ūs

κ
, ℓd =

√

Du

κ
. (21)

shows that ℓc,d ≈ ℓc in the limit of ℓd → 0. How sediment diffusion affects the adaptation length (relative to

particle advection) can be evaluated using the ratio ℓd/ℓc = Pe−1 = (Du κ/ū
2
s)

1/2 which represents the inverse

of the Péclet number [10]. For Pe ≫ 1 (i.e. Du κ ≪ u2
s), particle advection is the predominant mechanism,

whereas for Pe → 0, sediment diffusion is the key process.
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Figure 1: Nondimensional particle activity 〈γ〉/〈γ〉ss at several scaled distances x/ℓc,d in the experiments carried out by Jain [60]
(Run 1 and Run 2) and Bagnold [61] (Run 3 and Run 4). The solid line represents the theoretical solution (20). The adaptation
length ℓc,d was calibrated by fitting the dimensional solution 〈γ〉(x) to each experimental series. This yields: 17.67, 6.35, 1.96 and
0.47 m for transport stage parameters T = Sh/Shcr − 1 of [60] 0.24, 0.62, 1.68 and 16.6 from Run 1 to Run 4, respectively.

There is growing experimental evidence of the part played by particle diffusion under weak and partial bed

load transport, e.g., see Nikora et al. [3] and Heyman et al. [7]. Taking a theoretical perspective, Furbish

et al. [9] and Ancey and Heyman [10] showed that particle diffusion is one of the key processes that control

particle activity fluctuations. There are different methods for evaluating particle diffusivity. Analyses of particle

trajectories lead to values ranging from 0.04 m2/s [57] to 50 m2/s [7]. These values are much higher than water

turbulent diffusivity, approximately Du ≈ 0.3H V
√

f/8 ∼ O(10−3) m2/s under uniform flow conditions [2].

Other techniques based on the spread of particle samples also lead to smaller values, e.g. 4.6 cm2/s in Drake

et al. [58] and 2.67− 4.14 cm2/s in Ramos et al. [59].

Diffusion in the advection diffusion equation (4b) arises from the ensemble average of the Langevin equation

(4a), similarly to what is obtained with Lagrangian models of turbulent particle suspensions [2]. As a possible

stochastic model underpinning non-equilibrium bed load transport equations is the Langevin equation (4a) (see

Section 2.3), we think that numerical results can be made more realistic by including equation (4a) into the set

of governing equations. In doing so, we do not need to prescribe the adaptation length ℓc,d as it is calculated in

the course of computations. This is the first step towards numerical stochastic simulation of bed load transport

using the Langevin equation (4a) (see by Bohorquez and Ancey [11] for further information).

To evaluate the parametric dependence of the adaptation length ℓc,d, we shall use the experimental data

obtained by Jain [60] (hydraulic erosion) and Bagnold [61] (aeolian erosion). We have calibrated ℓc,d by fitting

the theoretical solution (20) to their experimental results. Figure 1 shows the streamwise variation in the non-
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dimensional particle activity 〈γ〉(x)/〈γ〉ss as a function of the non-dimensional coordinate x/ℓc,d. A summary

of the experimental conditions can be found in the figure caption. Note that the data samples of the four

experimental runs closely match the theoretical solution (20). The adaptation length decreases with increasing

Shields numbers Sh (or transport stage parameters T = Sh/Shcr − 1). Furthermore, the steady-state sediment

transport rate q̄ss increases with T . In particular we obtained ℓc,d = {17.67, 6.35, 1.96, 0.47} m and q̄ss = {2.2,
19.0, 10.0, 148.0} g/s/m for T = {0.24, 0.62, 1.68, 16.6}. This means that the ratio q̄ss/ℓc,d grows monotically

when the flow passes from the partial- to the full-mobility regimes. Consequently, the local bed load transport

rate q̄s and the local particle activity 〈γ〉 tend to the steady state values q̄ss and 〈γ〉ss when Sh ≫ Shcr. This may

explain why steady-state sediment transport theories perform well for the full mobility regime (see, e.g., Garćıa

[20]). In contrast, non-equilibrium sediment transport theories are required when the flow conditions are close

to the threshold of erosion onset, typically for Sh/Shcr < 2. Mathematically the right-hand side of equations

(16)-(18), which scales as q̄ss/ℓc,d, is much more important than the other terms, allowing us to set q̄s ≈ q̄ss

when Sh ≫ Shcr. With regards to the 〈γ〉-equation (19), it readily follows that the entrainment rate λ is key to

sediment dynamics for flow conditions that are far from the threshold of incipient motion and, consequently, the

left-hand side of equation (19) becomes negligible. This is equivalent to setting 〈γ〉 ≈ 〈γ〉ss = λ/κ and ℓc,d → 0

for Sh ≫ Shcr. This finding corroborates the experimental evidence that particle diffusion is significant mostly

under weak and partial bed load transport.

We conclude this section by pointing out that Bohorquez and Ancey [11] have shown that the diffusive term

competes with the advection, erosion and deposition of sediment particles under the partial mobility regime. It

plays a key role in the development of bed forms and is pivotal in the self-selection mechanism of the bed form

wavelength
ūs 〈γ〉ss
λ ℓc,d

∼ Du 〈γ〉ss
λ ℓ2c,d

∼ 1 with Sh/Shcr ∼ O(1). (22)

The adaptation length ℓc,d is, however, independent of the bedform wavelength Λ, which is mostly controlled

by the eddy diffusivity ν—introduced in the momentum balance equation (2)—of the water phase and particle

diffusivity Du of the sediment phase. We wish to emphasize this point because on many occasions, both concepts

are mixed (which is tantamount to setting ℓc,d ≈ Λ). We refer the reader to [11] and Section 5.2 for detail on

the influence of Du and ν on the selection of the wavelength Λ.

4. The steady-state sediment transport rate and particle activity

In this section we revisit the closure equation for the steady-state particle activity 〈γ〉ss (11), which fixes

the value of the λ/κ ratio. As our objective is to build a theoretical framework consistent with the steady state

sediment transport formulation, we first consider equation (13), which relates 〈γ〉ss to the steady-state sediment

transport rate q̄ss. A similar approach was adopted in [11], where we used Fernandez Luque and van Beek [62]’s

formula for evaluating the bed load transport rate in the full mobility regime, which allowed us to write

q̄ss = 〈γ〉ss ūs with 〈γ〉ss =
λ

κ
=

ce Vp

cd d2
(Sh− Shcr) , ūs = β v̄ , Sh ≫ Shcr (23)
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Figure 2: Comparison between the scaling factor Φ(Ŝh) given by (25), the experimental data collected by Buffington [29] and Cheng
[30] equation.

in which ce/cd = 1.75 [62, 40] and the sediment-to-water velocity function β ≤ 1 depends on the Darcy-Weisbach

friction factor f and the nondimensional grain size d∗ = (d3 (s − 1) g/ν)1/3 or any combination of parameters

that represent the particle size and the turbulent boundary layer characteristics at the bed bottom, e.g., see

Yalin and da Silva [63]. Equation (23) is equivalent to Bagnold [64]’s formula; Yalin and da Silva [63] stated

that “it is preferred because it is simple, it is accurate as any, and it reflects clearly the meaning of the bed load

rate”. Most existing algebraic expressions of q̄ss exhibit a similar scaling as (23): q̄ss ∝ Sh3/2 for Sh ≫ Shcr

(e.g., see Garćıa [20] and Julien [43]), but it should be remembered that these are not accurate when Sh → Shcr

since q̄ss ∝ Sh17.5 empirically (e.g., see Buffington [29]).

In order to extend the range of applicability of our model to the partial- and full-mobility regimes, we

propose a new calibration that involves two reference constants {Sh∗, q̄s∗} (they only depend on the sediment

properties, essentially d∗ [30, 31]). Within this framework, determining the reference bedload transport rate

value q̄s∗(d∗) at a given Shields number Sh∗(d∗) makes it possible to apply the model for Sh ≥ 0. In that case,

the critical Shields number for the onset of sediment motion is set to Shcr = 0. By so doing, we retrieve the

same parametric dependence as Fernandez Luque and van Beek [62] (among others) in the full mobility regime.

By defining q̄ss in equation (13) as

q̄ss(Sh) =
q̄s∗ Sh

3/2

Sh
3/2
∗

Φ

(

Sh

Sh∗

)

, (24)

we can fit the experimental data collected by Buffington [29] in the plane {Ŝh, q̂ss/Ŝh
3/2} with the following

12



equation (see Fig. 2):

log(Φ) = 5.61− 11.22
[

1 + exp−37.41 log(Ŝh)/(log(Ŝh)2−6.22)
]

−1

, (25)

where q̂ss = q̄ss/q̄s∗ is the scaled bed load function and Ŝh = Sh/Sh∗ is the scaled Shields number.

It is readily observed that the function Φ (25) tends to the constant value 273.14 when Sh/Sh∗ > 2.72,

i.e. log(Φ) = 5.61 if log(Ŝh) > 1. Consequently, equation (24) ensures that q̄ss ∝ Sh3/2 in the full mobility

regime because Φ is constant in equation (25). For 0.5 < Sh/Sh∗ < 2, the function Φ increases rapidly when

increasing Sh and it closely describes the experimental trend. Cheng [30] proposed the exponential function

q̄ss/(Vs d) = 13Sh3/2 exp(−0.05Sh−3/2) that has also been plotted in Fig. 2 with q̄s∗/(Vs d) = 10−4 together

with the data collected by Buffington [29] and equation (25). Both functions satisfy the property Φ = 1

when Sh = Sh∗ and thus q̄ss = q̄s∗ at the reference Shields number. A slight difference between the two

approximations lies in the regularization of the function (25) at the lowest sediment transport rates, for which

Φ ≈ 0.0037. At these low Shields numbers, the experimental data are very noisy and the solid transport rate

fluctuations exceed the mean values, which is a further motivation for using a stochastic framework [10]. In our

opinion, a strength of the non-equilibrium bed load approach is that it can be readily be incorporated in this

stochastic framework. Further information can be found in [11].

The next step is to derive the steady state particle activity 〈γ〉ss from q̄ss. Substituting equation (24) into

equation (13) and using v̄ =
√

8/f Vs Sh
1/2, we end up with

〈γ〉ss =
λ

κ
= 〈γ〉∗ ŜhΦ(Ŝh) , 〈γ〉∗ =

q̄s∗
√
f

β Vs

√
8Sh∗

. (26)

At the reference level we get Ŝh = 1, Φ = 1 and 〈γ〉ss = 〈γ〉∗. The sediment-to-water velocity ratio β depends

on the friction factor as β ∝ f1/2 [11] and so, in (26), 〈γ〉∗ is independent of the flow conditions. At large Shields

number, we recover the scaling relation 〈γ〉ss ∝ Sh (23) as Fernandez Luque and van Beek [62], Charru [37]

and Lajeunesse et al. [40] also found. In contrast, at low Shields number, the function Φ plays a non-negligible

role. Indeed, identifying 〈γ〉ss in equations (23) and (26), we end up with

ce
cd

=
〈γ〉∗ d2
Sh∗ Vp

Φ(Ŝh) . (27)

Lajeunesse et al. [40] calibrated the parameters ce and cd by tracking the motion of individual grains in

well-controlled flume experiments. They found ce/cd = 1.75 and cd = 0.094 ± 0.006 at moderate/high Shields

number. Similarly, our expression (27) yields a constant ratio ce/cd at Sh ≫ Sh∗ where Φ = 1. Note that for

weak sediment transport, this ratio is no longer constant, but depends on Ŝh. So the calibrated formula Φ(Ŝh)

(25) can be used together with equation (26) to evaluate equation (27) at any Shields number. Alternatively,

the former closure equation (23) could be used in the numerical simulation of partial/intense bed load transport

with a preliminary calibration of the parameters ce and cd that is equivalent to including the scaling factor Φ

(see example in Section (5.1)).
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5. Numerical simulation of flume experiment

We present two numerical experiments in order to benchmark the numerical results against experimental and

theoretical solutions: Section 5.1 is devoted to the simulation of the degradation of a sloping channel (Test 3

in Newton [32]’s experiment); then, in Section 5.2, a numerical study of anti-dunes migration in gravel bed

streams over steep slopes is presented [33, 34, 35, 36]. We follow the same strategy as in our previous work

to discretize and integrate the ensemble-averaged sdSVE equations numerically. A fractional-step method was

applied to split the advection-diffusion equations (1)-(4b) into a hyperbolic subproblem with source terms and a

parabolic subproblem. The hyperbolic subproblem was solved numerically with a fifth-order accurate, weighted

essentially nonoscillatory (WENO) scheme, second-order-accurate, source term discretization and third-order

accurate, strong stability-preserving (SSP), Runge-Kutta time integration—denoted by SSPRK(3,3) in Gottlieb

et al. [65]. The eddy and particle diffusivity terms were integrated with the one-step implicit Crank-Nicholson

scheme, which is second-order accurate in space and time. Specific details of the numerical scheme and its

implementation into the high-order finite volume library SharpClaw can be found in [11, 66].

5.1. Newton’s degradation experiment

Newton [32] ran experiments on bed load transport in a flume including a 9.14 m long, 0.3 m wide 0.6 m deep

test reach. A hopper filled with sand (d = 0.69 mm) fed the flume with sediment upstream of the test reach

to ensure initial bed equilibrium along the flume. The bed load transport rate was maintained at equilibrium

(q̄s = q̄ss) by recirculating sediment from the outlet to the inlet. Sediment supply was suddenly stopped to

study bed degradation. The water discharge Q = 0.0057 m3/s was kept constant during the experiment that

lasted for 27 hours. Newton [32] monitored the bed load flux at the outlet of the flume, the thalweg elevation

along the test reach at several points over time (1, 2.17, 4, 12 and 27 hr) and the evolution of the local scour

depth at x = 3.66 m. The data in the downstream reach of the flume (x > 6 m) were used for calibration of the

model parameters under steady state conditions, as described in section Appendix A. The rest of data was used

for testing the numerical results shown in Fig. 3. Initially the bed was flat, inclined at the angle of 0.348◦ with

respect to the horizontal, the bed porosity was ζb = 0.396 and the depth-averaged velocity was V = 0.47 m/s.

The flow regime was subcritical with the Froude number Fr = 0.75 at t = 0. The (fitted) non-dimensional

parameters in the erosion-deposition model were ce = 8.4 × 10−4 and cd = 1.6 × 10−3, which leads to the

following entrainment and deposition rates λ = 4.65× 10−5 (Sh− Shcr) m s−1 and κ = 0.245 s−1, respectively,

with Shcr = 0.044. The sediment velocity ūs and the friction factor f were evaluated from equations (A.2)–

(A.1). In the numerical simulations, the eddy viscosity was roughly estimated by ν ≈ νt h v̄
√

f/8 with νt = 4

[11], the length of the computational was 8.6 m and the grid size consisted of 100 cells.

Table 1 summarises the boundary conditions employed in the numerical simulations. As the flow was

subcritical during the experiment, the physical boundary conditions imposed for the hydraulic variables were

the constant water dischargeQ at the inlet and the outflow water depth hout(t) (see Fig. A.9(b)). Two additional

numerical boundary conditions are required by the shallow water equations. We followed the most common

approach by extrapolating the water depth from the inner computational domain to the ghost cells at the flume
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Figure 3: Time variation in the bed (solid line) and free-surface (dashed line) elevations for the diffusive (a) and non-diffusive (b)
cases when simulating Test 3 run by Newton [32]. (c) Local depth scour at x = 3.66 m. (d) Sediment transport rate at the flume
outlet. The symbols (circles) correspond to the experimental results [32].

inlet and the outgoing Riemann invariant at the flume outlet as described by Blayo and Debreu [67]. The

absence of local scour in Newton’s experiments is a clear evidence that sediment was entrained from the sand

reservoir into the test reach because in the absence of sediment supply, degradation usually develops deep scour

holes near the flume inlet, e.g., see Phillips and Sutherland [50]. In the absence of experimental detail, we

performed an optimization process varying the value of ∂x〈γ〉 that was imposed at the inlet. This procedure

was repeated by varying the particle diffusivity from 10−4 to 100 m2/s. The optimum values that minimize

the root mean square error in the thalweg elevation yb (see Fig. 3(a)) is given in Table 1 for Du = 1.05 m2/s.

Table 1: Set of boundary conditions used in the numerical simulations. Physical and numerical boundary conditions are imposed
depending on the subcritical or supercritical flow regime as explained in the main text.

Channel degradation
Inlet Outlet

∂xh = 0 h = hout(t)
v̄ h = Q/B, ∂xv̄ = 0 ∂x

(

v̄ h+ 2
√
g h
)

= 0
∂x〈γ〉 = 11.6 〈γ〉 exp(−0.8 t/3600) 〈γ〉 = 〈γ〉ss

∂xyb = 0 ∂xyb = −f v̄2/8 g h

Anti-dunes migration
Inlet Outlet
h̄ = H CVE
v̄ = V CVE, ∂xv̄ = 0

〈γ〉 = 〈γ〉ss ∂x〈γ〉 = 0
∂xyb = 0 ∂xyb = −f v̄2/8 g h
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Figure 4: (a) Convective and diffusive sediment transport rates (q̄c,s and q̄d,s, respectively) in Newton’s experiments at the same
times as in Fig. 3(a). Panel (b) shows the streamwise profiles of the mean particle activity 〈γ〉(x). Note that the particle activity
tends to the steady state value (〈γ〉 = 〈γ〉ss) and that the diffusive sediment transport rate vanishes (q̄d,s ≈ 0) near the end of the
flume.

Finally, we fixed the steady state particle activity 〈γ〉 = 〈γ〉ss at the flume outlet, which is physically consistent

with a flume length (∼ 10 m) much larger than the adaptation length (ℓc,d ∼ 1 m).

Figure 3(a) shows that the simulated bed elevation (solid line) obtained with Du > 0 is in good agreement

with the experiments (empty circles) at all times. The root mean square error of the thalweg elevation is of

the order of the grain size d, which is negligible. We found out that the bed slope decreases progressively as

degradation progresses until to it reaches a nearly steady state at late time. The slope of the free surface (

dashed line) remains nearly parallel to the bed. The flow depth increases with decreasing bed slope. In the

absence of sediment diffusion, see Fig. 3(b), a shallow scour hole develops near the inlet for t ≤ 12 h and flattens

at late time. On the whole, particle diffusivity increases the total sediment transport rate with respect to the

steady state value. We could have anticipated this result by noting the order of magnitude of the adaptation

lengths. For the calibrated parameters κ = 0.245 s−1, Du = 1.05 m2/s, β = 0.692 and v̄ = 0.47 m/s, the

adaptation length takes the value ℓc,d = 2.84 m, which is comparable with the zero diffusion value ℓc = 1.32 m

and the zero advection value ℓd = 2.07 m. This indicates that both particle advection and diffusion play a part

in the numerical simulation. Indeed, the agreement between the simulation and the experiment is excellent

(poor) at t = 27 h with Du = 1.05 m2/s (Du = 0). When Du = 0, the excavation is, however, too small at

x = 3.66 m whereas for Du > 0, the predicted scour depths match the experimental values (Fig. 3(c)). As

expected, with regards to the sediment transport rate, the non-diffusive solution at the outlet nearly overlaps

the diffusive solution, see Fig. 3(d), because the flume is long enough for a uniform regime to take place near

the outlet. Both numerical solutions are close to the experimental measurements at this location. This could be

better understood by taking a closer look at the convective and diffusive contributions to the bed load transport.

Numerical simulations allow us to evaluate the relative importance of the convective and diffusive sediment

transport rates, which are plotted in Fig. 4(a) for the same times as in Fig. 3(a). The convective sediment trans-

port rate q̄c,s = ūs〈γ〉 and the diffusive rate q̄d,s = ∂xDu〈γ〉 are shown in solid and dashed lines, respectively.
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Figure 5: Diagram summarizing the flow conditions under which anti-dunes have been observed experimentally in gravel bed
channels. The labelled solid lines represent constant bottom angles (in degrees) and the dotted-dashed lines represent the contour
lines associated with a constant Shields number (Sh = 0.03, 0.06, 0.1, 0.15, 0.2, 0.3). The description of the experiments can be
found in the original works by Cao [33], Bathurst et al. [34], Recking et al. [35] and Mettra [36]. Note that in gravel bed streams
(δ2 = d/H > 0.1), anti-dunes occur typically for 1◦ ≤ θ ≤ 4◦ in supercritical regime (Fr > 1).

The convective term q̄c,s is positive as particles move downwards (in the streamwise direction). The diffusive

sediment transport rate q̄d,s is negative because the particle activity 〈γ〉 increases monotically from the flume

inlet to the outlet, see Fig. 4(b). Since we have ∂xq̄c,s > 0 and ∂xq̄d,s > 0, both advection and diffusion con-

tribute to eroding the bed. This explains why the water phase erodes more sediment in the diffusive case than

in the non-diffusive case. Furthermore, non-equilibrium bed load transport develops mostly in the upstream

reach of the flume and particles reach steady state motion after travelling a short distance (the equivalent of

a few adaptation lengths). Near the flume outlet, sediment is in a steady state regime with 〈γ〉 ≈ 〈γ〉ss. This

explains why q̄d,s ≈ 0 and why we observe the same values of sediment transport rate in Fig. 3(d), near the

flume outlet in both simulations (this good agreement substantiates the assumptions used in the calibration

stage).

5.2. Anti-dunes developments in gravel bed stream

One-dimensional shallow water flows over erodible steep slopes develop upstream migrating anti-dunes for

Shields numbers in excess of the threshold for incipient sediment motion. Figure 5 summarizes the experimental

conditions under which anti-dunes have been observed in gravel bed flumes. The flow regime is typically

supercritical (Fr > 1), the flow depth is low relative to the grain size (H < 10 d) and the bed is considered steep

according to geomorphological criteria (θ > 1◦) [68], but the mean slope is shallow in the mathematical sense

(i.e., cos θ ≈ 1) with the important consequence that the pressure distribution (across the depth) is hydrostatic
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Figure 6: (a) Snapshots of the bed and free-surface elevations together at t = 0 and at t = 200 s: the dashed lines show the uniform
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(c) Convective contribution to the bed load transport rate in the plane {x, t} scaled by the uniform background flow’s steady-state
transport rate q̄ss = 86.49 m2/s.

and the Saint-Venant equations (1)-(2) are well-suited.

In gravel bed streams, anti-dune growth arises from an instability of the initial plane bed in uniform,

steady flow. The instability mechanism was originally explained by Kennedy [14] using linear stability analysis

of two-dimensional irrotational flows above erodible beds. More sophisticated linear stability theories using

rotational flow equations for the water phase have been proposed by Colombini [69]. On the one hand, the

computational cost of these alternatives is heavy because they need to solve for the vertical velocity component.

On the other hand, the predictive capability of depth-averaged shallow water equations remains partial because

they correspond to a non-rotational formulation (the vertical component of the velocity vector is neglected).

When the Saint-Venant equations (1)-(2) are coupled with the Exner equation (14), the bed is unconditionally

stable for Fr < 2 [48] and, consequently, the anti-dunes diagram 5 cannot be plotted. Here we show that

the deterministic non-equilibrium formulation (1)-(4b) successfully captures anti-dune instability because of the

existence of saddle points in the wavenumber space, which make the flow absolutely unstable. Furthermore this

formulation catches the most unstable wavelength.

First we illustrate the development of upstream migrating anti-dunes when simulating the experimental

conditions previously described (see Fig. 5). Second, the absolute nature of the instability is proven by the
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Figure 7: (a) Diffusion contribution to the sediment transport rate in the plane {x, t} scaled by the uniform background flow’s
steady-state value q̄ss = 86.49 m2/s. (b) Comparison between the diffusive (dotted-dashed line), convective (dashed line) and total
(solid line) sediment transport rate with respect to the steady-state sediment transport q̄ss (dotted line) at location x = 0.24 m.

existence of saddle points in the spatio-temporal stability analysis (e.g., see Schmid and Henningson [70] and

Juniper et al. [71]), which allows us to predict the most unstable wavelength theoretically.

The simulated flow parameters correspond to the dimensionless numbers Fr = 1.2 and δ2 = 0.4 that come

close to the experimental conditions imposed by Cao [33], Bathurst et al. [34], Recking et al. [35] and Mettra [36]

in Fig. 5. Without loose of generality, we set the critical Shields number to Shcr = 0.03 for fine/medium gravels

[29] while the Darcy-Weisbach friction factor f was evaluated from equation (A.1) with ks = 1. The slope

angle, Shields number and sediment-to-water velocity ratio associated with this set of values were computed

from equations (8)-(9), which yields θ = 2.75◦, Sh = 0.073 (Sh/Shcr > 2) and β = 1 under uniform regime.

Other model parameters were kept constant during the numerical simulation: d = 5.74 mm, ce = 0.1, cd = 0.175

(κ = 5.31 s−1), ζb = 0.36 and Du = 0.1 m/s. Substituting these values into equation (23), we obtain the steady

state bed load transport rate for the uniform base flow q̄ss = 86.49 m2/s. This value will be used to establish

the importance of sediment advection relative to diffusion in the presence of anti-dunes and non-uniform time-

dependent flow conditions.

As in the previous simulations, the eddy viscosity was estimated at ν ≈ νt h v̄
√

f/8 with νt = 10. The

computational domain 0 ≤ x ≤ 1.5 m was divided into 1000 cells. As the flow is supercritical at the inlet at any

time during the numerical simulation, we imposed the boundary conditions summarized in Table 1. At the inlet,

the water depth and flow depth-averaged velocity were fixed to H = 0.0143 m and V = 0.45 m/s, respectively,

and the particle activity took its steady state value. At the outlet, the characteristic variable method (CVE)

was employed for the three characteristic curves that travel outwards. In addition, a fairly good sponge layer

was added in the outlet reach x > 1 m to ensure absorbing boundary conditions [72]. The initial conditions

used in our computations were h = H , v̄ = V , 〈γ〉 = 〈γ〉ss and yb = −x tan θ + ǫ(x) where ǫ(x) is a random

perturbation with amplitude 10−4 m. Below we report on the results in the reach 0 ≤ x ≤ 1 m, which is not

affected by the sponge layer.

Figure 6(a) shows the initial condition for the bed elevation (black dashed line) and water surface (blue
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Figure 8: Red bullets show the pinch points location k0 in the complex wavenumber plane {kr , ki} using Briggs’ method (isocontours
of ωr(k) and ωi(k)) for the parameter values in the numerical simulation of anti-dunes. The saddle points are pinched between
branches k+ (half-plane ki > 0) and k− (half-plane ki < 0) issuing from distinct halves of the k-plane. Spatial branches k±(ω)
with ωi = 0 are coloured in blue.

dashed line). The initial perturbation introduced in the bed elevation cannot be observed because of its small

amplitude. After a first stage in which the numerical solution self-selects a well-defined wavelength (for t ≤ 50 s),

the bed perturbation grows as ∆yb(t) = max(|yb(x, t) − yb(x, 0)|) = exp(0.068 t) until time t ≈ 100 s when the

maximum amplitude of the bed perturbation saturates, see Fig. 6(b). The numerical solution at late time (solid

lines) exhibits a train of anti-dunes with amplitudes as high as the initial water depth and similar wavelength

0.2 ≤ Λ ≤ 0.3 m. The wavelength is slightly coarser upstream than downstream, which could be attributed to

a nonlinear coarsening mechanism during the growth and propagation of the antidune from the reach outlet to

the inlet. The water surface ys and the bed elevation yb are no longer plane as a result of bed form development.

The free surface curvature is marked in the anti-dune’s lee side while in the stoss side, the free surface remains

nearly parallel to the initial bed. Obviously the flow velocity v̄ and Shields number are non-uniform in the

perturbed state, which induces spatio-temporal variations in the sediment transport rate q̄s.

The fluctuations of the sediment transport rate can be readily appreciated in Figs. 6(c)-7(a) where the

convective and diffusive rates, q̄c,s and q̄d,s, have been compared to the steady state bed transport rate q̄ss. The

fluctuations of the convection transport rate is as high as ±60% of the steady state value. The diffusive transport

rate is even higher, approximately −q̄ss ≤ q̄d,s ≤ 1.1 q̄ss. The maximum deviation of the sediment transport

rate from the steady state value is reached at x ≈ 0.24 m. A detail of the evolution of each sediment transport

component is shown in figure 7(b). The bed load transport rate exhibits marked up temporal fluctuations

relative to its the mean value q̄ss for t ≥ 150 s, after the first transient stage. Note that the diffusive transport

rate (dotted-dashed line) is as high as the steady state value (dotted line), which highlights the importance

of particle diffusion in sediment transport. There is a lag time in the convective and diffusive transport rate

fluctuations, but they do not counterbalance each other. Hence the total sediment transport also exhibits large

fluctuations with a well defined frequency.
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The spatial wavelength (and the temporal frequency) observed numerically in the nonlinear cycle at late

time (t ≥ 150 s) can be predicted using a spatio-temporal linear stability analysis. Hydrodynamic stability

theory is well established and the reader is referred to the book by Schmid and Henningson [70] and the recent

review by Juniper et al. [71] for further information. Here we follow the same steps as Bohorquez and Ancey

[11]: first we define the nondimensional variables z = yb/H , φ = 〈γ〉/〈γ〉ss, η = h/H , u = v̄/V , x̂ = x tan θ/H

and t̂ = t V tan θ/H ; then, we linearise the nondimensional sdSVE equations around a uniform base flow by

setting (z, φ, η, u) = (−x̂, 1, 1, 1) + ǫ (z′, φ′, η′, u′) and retain only the terms of order O(ǫ), which leads to the

linear perturbation equation; finally, we determine the saddle and cusp points of the eigenvalue problem. As

the first and the second steps of these calculations are detailed in Sections 3.1-3.2 in [11], we do not repeat them

here for the sake of brevity. So we focus on the determination of the saddle points.

The solution of the linear perturbation equations in the spatio-temporal stability analysis can be written as

(z′, φ′, η′, u′) = T exp i(k x̂− ω t̂), where the eigenvector is denoted by T ≡ (ζ,Φ,Γ, U)T , the complex wavenum-

ber by k = kr + i ki and the complex frequency as ω = ωr + i ωi. For the closure equations (23), the eigenvalues

and eigenvectors are obtained from the following generalized eigenproblem A · T = 0:


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(28)

The dimension of matrix (28) was reduced by one using ζ = i ke Φ/ω − i 2 keU/[ω (1− u2
∗
)]. The solution is

controlled by the following nondimensional groups:

ke =
πce(1− u2

∗
)

6 (1− ζb) δ Fr
√
s− 1

, kd =
cd(s− 1)

δ Fr tan θ
, u∗ =

√

Shcr

Sh
, V = νt Fr (tan θ)3/2 , D =

Du tan θ

H V
.

The dispersion relation is obtained by setting the determinant of (28) to zero, i.e. D(k, ω) ≡ |A| = 0,

to obtain a non-trivial solution. The dispersion relation links the complex wavenumber k with the complex

frequency ω, and vice versa. Note that the nondimensional particle diffusion D increases the order of the

characteristic polynomial (28) up to O(k2). For the set of values used in the numerical simulation of anti-

dunes, we get ke = 0.0864, kd = 4.52, u∗ = 0.64, V = 0.125, D = 0.745 and β = 1. The nondimensional

wavenumber associated with the natural wavelength Λ = 0.2 m that grows spontaneously in the simulation is

k = 2πH/Λ tan θ = 9.36 at the downstream reach of the flume and its corresponding temporal frequency in the

linear stability analysis is ωi = 0.044 (ωiV tan θ/H = 0.0674 s−1). This value is in close agreement with the

numerical growth rate 0.068 s−1 obtained in Fig. 6(a). Furthermore, the dispersion relation serves to find the

saddle points that explain the selection of a well-defined wavelength [70, 71].

We seek solutions to D(k0, ω0) = 0 and ∂kD(k0, ω0) = 0 with ∂kkD(k0, ω0) 6= 0 resulting from a pinch point
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between two spatial branches k+(ω) and k−(ω) originating from distinct halves of the k-plane with k0,i < 0

(i.e. spatially growing solution) and ω0,i > 0 (i.e. temporal growing solution). In doing so, we ensure the

zero group velocity condition cg = ∂ω/∂k = (∂D/∂k)/(∂D/∂ω) = 0, referred to as Briggs-Bers or Fainberg-

Kurilko-Shapiro (in the Soviet literature) criterion [70, 71]. Hence the flow is absolutely unstable. Note that the

increase in the order of the characteristic polynomial (28), O(k2), occurs with D > 0 and favors the existence

of mathematical solutions to the Briggs-Bers condition. In the presence of an absolute instability with just one

saddle point, there are an absolute frequency and an absolute growth rate that determine the selective response

of the system to perturbations. So, the system selects a natural frequency and consequently a unique saddle

point wavenumber of the spatial branches among the wide range of unstable wavenumbers k. The response

is dominated in this case by the mode with zero group velocity which grows in place, whilst the rest of the

frequencies and wavenumbers are swept away by the flow [37]. In the presence of multiple saddle points, Pier

and Peake [73] have shown that the theoretical calculation of the natural frequency and wavenumber is much

more complicated. In our formulation, for the current set of nondimensional parameters, multiple saddles point

exist at k = −i 1.197 (ω = i 0.0112, Fig. 8(a)) and k = 6.4+ i0.6 (ω = 0.18+ i 0.054, Fig. 8(b)) with branches k+

and k− originating from distinct halves of the k-plane. The wavenumber selection occurs in the cross between

a path connecting both saddle points and the real axis where ki = 0 defining the maximum growth rate in the

temporal stability analysis, which yields k = 6.24 and ω = 0.18 + i 0.0536. This point lies really close to the

saddle point in Fig. 8(b) because it approaches the real axis. Consequently, the second saddle point controls

bed instability over the first one that occurs in the imaginary axis [Fig. 8(a)]. The dimensional wavenumber in

the numerical simulation 6.24 ≤ 2 πH/Λ tan θ ≤ 9.3 is in good agreement with the theoretical result k = 6.24.

This demonstrates the accuracy of linear stability theory and the numerical simulations.

6. Concluding remmarks

In this article we investigated the problem of bedload transport in shallow water flows over erodible bottom

slopes using the ensemble-averaged version of the stochastic-deterministic Saint-Venant-Exner equations (1)-

(4b). According Einstein’s theory [26], sediment transport results from the imbalance between the entrainment

and deposition rates, E = λ and D = κ 〈γ〉 in equation (7). The bulk sediment transport rate q̄s = q̄s,c + q̄s,d

defined by equation (6) is decomposed into the sum of the advection transport rate reflecting the driving

action of water (q̄s,c = ūs〈γ〉) and the diffusive rate due to the spatial gradient of the mean particle activity

(q̄s,d = −Du∂x〈γ〉) [9]. The diffusive nature of bedload transport and the influence of particle diffusion on

transport rates have been reported experimentally for weak bedload transport as well as full mobility regime.

In contrast with classical deterministic bedload transport theories, the sediment diffusion term −Du∂xx〈γ〉 in

the mean particle activity equation (4b) results from the ensemble average of the stochastic Langevin equation

(4a) for the Poisson density b.

There is a strong analogy between the ensemble-averaged sdSVE equations (3)-(4b) and the non-equilibrium

sediment transport equations (17)-(18), also known as non-capacity or unsteady flux relaxation equations [27, 28,

37]. In the full mobility regime, the mean particle activity and the bulk sediment transport rate approach their
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steady state values 〈γ〉 = 〈γ〉ss and q̄s = q̄ss, respectively, because at large Shields numbers, the leading-order

terms in the advection diffusion equation (4b) are the source and sink terms λ and−κ〈γ〉, see (23) for Sh ≫ Shcr.

The entrainment and deposition rates (13) were defined so that consistency with the equilibrium (or capacity)

approach, which imposes q̄s = q̄ss(Sh), is enforced. In weak/partial bedload transport, entrainment, deposition,

convection and diffusion mechanisms compete with each other depending on the value of the adaptation length

lc,d defined in equation (20) and the Péclet number Pe = lc/ld = (ū2
s/Du κ)

1/2. The prevalent mechanism of

sediment transport is convection when Pe ≫ 1—a limiting state in which the adaptation length lc,d tends to

lc = ūs/κ—and diffusion when Pe ≪ 1 and lc,d ≈ ld =
√

Du/κ. Next,an improved equation was proposed to

evaluate the steady-state transport rate in the form q̄s/q̄s∗ = (Sh/Sh∗)
3/2 Φ(Sh/Sh∗), which holds from the

partial- to the full-mobility regimes. The master curve Φ(Sh/Sh∗) given by equation (25), see Fig. 2, closely

matches the experimental data collected by Buffington [29] independently of sediment properties (that control

the reference parameters Sh∗ and q̄s∗).

We ran numerical experiments for simulating shallow water flows over erodible sloping beds in laboratory

flumes that produce nearly one-dimensional flows. The relative importance of the diffusive and advective trans-

port rates was studied in the problem of degradation of a sloping channel (Test 3 in Newton [32]’s experiments)

and for the unsteady flow that results from the development and migration of anti-dunes in gravel bed streams

over steep slopes [33, 34, 35, 36]. On the whole, we found that both transport rates have the same order of

magnitude at a certain stage of the bedload transport simulations.

In Newton’s experiment the diffusive transport rate was dominant in the upstream reach of the flume in the

early stage of the scouring process and vanished in the downstream reach of the channel where the flow was

nearly uniform. In that reach, sediment particles were mainly advected by the flowing water when x > 2−4 lc,d,

in agreement with the theoretical analysis of the adaptation length, which predicts the same lower bound for the

flow to reach steady state. An excellent agreement was obtained between the numerical results and experimental

data obtained by Newton [32], see Fig. 3, which provides further justification for the formulation and numerical

implementation presented in this paper.

The nonlinear numerical simulation of anti-dunes on sloping bed reveals the capability of the ensemble-

average sdSVE equations (3)-(4b) to predict upstream migrating bed forms with physically consistent wave-

lengths while the standard Exner equation (14) fails to produce such a result (bed is unconditionally stable for

Fr < 2 [48]). Particle diffusion increases the order of the characteristic polynomial (28) to O(k2) when D > 0,

favours the existence of mathematical solutions to the Briggs-Bers condition and provokes absolute instability.

Our numerical results are qualitatively consistent with the phenomenological description of the seminal exper-

imental work done by Kennedy [74] who stated that: “the disturbance at the downstream end of the flume

caused a train of waves to form” (p. 114) . . . “it was impossible to prevent large disturbances at the inlet” (p.

104). Indeed we observed wide fluctuations of the bed elevation and the bulk sediment transport rate near the

inlet due to the migration of anti-dunes from the outlet to the inlet [Figs. 6-7].

At the end of the day, we firmly think that sediment diffusion cannot be left aside. Embodying diffusion

into deterministic non-equilibrium sediment transport equations will likely improve the predictive capability
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of existing numerical codes. Furthermore, the computational cost of the depth-averaged sdSVE simulations is

much lighter than previous rotational formulations based on the Navier-Stokes equations used for computing

bed forms when using the standard Exner equation (14). We would like to highlight again that the versatile

numerical framework described in this paper—and in [11]—makes it possible to use either deterministic or

stochastic formulations of bed load transport within the same numerical framework.
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Appendix A. Calibration of the model parameters in Newton’s experiment

The calibration was done in four steps:

i. The initial water depth H , bed angle θ and water discharge Q were used to calibrate the bed roughness

scaling factor ks in the evaluation of the Darcy-Weisbach friction factor f , which in fully developed

turbulent flow and rough regime takes the form [75]

1√
f
= −2 log10

(

ks δ
2

3.71

)

. (A.1)

Upon substituting (A.1) into equation (8) and solving for the scaling factor, we get ks ≈ 4, which was

kept constant during the numerical simulation. Following Bohorquez and Ancey [11], we computed the

sediment velocity as

ūs = β v̄ with β ≡ min

(

1.44

√

f

8Shcr
, 1

)

. (A.2)

Note that during the numerical simulation the parameter δ2 increases due to the higher flow depths

developing at shallower slopes as time proceeds, modifying both f (A.1) and β (A.2).

ii. Then we calibrated the critical Shields number Shcr for the onset of sediment motion by fitting the

solid discharge at the outlet of the flume (circles in Fig. 3(c)) as a function of the mean bed slope

(corresponding to the experimental thalweg in Fig. 3(a)), which gives q̄ss = 6.85 θ − 0.005. This step

requires some algebraical manipulations and iterative solution of the equations that are not reported for

the sake of brevity. The critical angle of equilibrium is thus θcr = 0.042◦. Taking into account that the

water discharge was kept constant in Newton’s experiment, using (8), (9) and (A.1), we get the critical

Shields number Shcr = 0.0441 for the theoretical grain-size to water-depth ratio δ2 = 0.009.

iii. The next parameter that requires calibration is the deposition rate κ = cd
√

(s− 1) g/d or, equivalently, the

nondimensional parameter cd [11]. To be consistent with previous non-equilibrium numerical simulations

of Newton’s degradation experiment [52, 38], we have estimated the deposition rate from the convective
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Figure A.9: Calibration of the critical Shields number Shcr (or critical slope angle θcr) and the depth at the flume outlet in
Newton’s experiment. Both figures were constructed using available experimental data (see solid circles in Fig. 3) in the downstream
reach of the flume (x > 6 m) for the constant water discharge Q = 0.0057 m3/s under uniform flow condition. The parameter
Shcr = 0.0441 is used in the numerical simulation to evaluate {β, ūs}—see equation (A.2)—and {λ, 〈γ〉ss}—see equation (A.3). The
nondimensional erosion-to-deposition ratio ce/cd = 0.525 was used in the non-equilibrium numerical simulation. Good agreement
with the experimental results is obtained when the sediment diffusion is included in the modelling, as shown in Fig. 3. Plot (b) was
constructed by solving equations (8) and (A.1) for h and by varying the slope tan θ with time according to the experiments.

adaptation length ℓc as κ = ūs/ℓc. Taking into account the scaling proposed by Charru [37] for turbulent

flows, we obtain cd = ūs

√
d/
√

(s− 1) g ℓ2c . Wu and Wang [52], El Kadi Abderrezzak and Paquier [38] and

Zhang et al. [39] adopted ℓc ≈ 1 m. Surprisingly, by setting ℓc ∼ 1 m, we get cd ∼ O(10−3) in Newton’s

setup that is much lower than the constant value of cd = 0.1 proposed by Lajeunesse et al. [40]. We fixed

cd = 1.6× 10−3 in our computations.

iv. Following Charru [37] and Bohorquez and Ancey [11], we fix the erosion rate λ so that achieve the steady-

state particle activity can be reached during the simulation.

〈γ〉ss =
λ

κ
=

ce Vp

cd d2
(Sh− Shcr) , (A.3)

where Vp = πd3/6 is the typical particle volume. Figure A.9(a) shows a comparison of the solid discharge

in Newton’s experiments and our theoretical prediction in uniform regime with ce = 8.4 × 10−4. For

this value of ce, steady state theory for uniform flow underestimates the experimental bed load transport

rate in the non-equilibrium degradation experiment. This is not a shortcoming of non-equilibrium bed

load theory because the total sediment load transport rate increases due to the contributions of sediment

diffusion and flow unsteadiness, as described in Section 5.1.
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[16] C. Ancey, T. Böhm, M. Jodeau, P. Frey, Statistical description of sediment transport experiments, Phys.

Rev. E 74 (2006) 011302.

[17] S. Naqshband, J. S. Ribberink, D. Hurther, S. J. M. H. Hulscher, Bed load and suspended load contributions

to migrating sand dunes in equilibrium, J. Geophys. Res. Earth Surf. 119 (2014) 1043–1063.

26



[18] M. J. B. Cartigny, D. Ventra, G. Postma, J. H. van Den Berg, Morphodynamics and sedimentary structures

of bedforms under supercritical-flow conditions: New insights from flume experiments, Sedimentology 61

(2014) 712–748.

[19] E. M. Yager, M. Kenworthy, A. Monsalve, Taking the river inside: Fundamental advances from lab-

oratory experiments in measuring and understanding bedload transport processes, Geomorphology

doi:10.1016/j.geomorph.2015.04.002 (2015).
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