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Abstract The advection-diffusion equation is one of the most widespread equations in physics. It arises
quite often in the context of sediment transport, e.g., for describing time and space variations in the particle
activity (the solid volume of particles in motion per unit streambed area). Phenomenological laws are
usually sufficient to derive this equation and interpret its terms. Stochastic models can also be used
to derive it, with the significant advantage that they provide information on the statistical properties
of particle activity. These models are quite useful when sediment transport exhibits large fluctuations
(typically at low transport rates), making the measurement of mean values difficult. Among these stochastic
models, the most common approach consists of random walk models. For instance, they have been used
to model the random displacement of tracers in rivers. Here we explore an alternative approach, which
involves monitoring the evolution of the number of particles moving within an array of cells of finite length.
Birth-death Markov processes are well suited to this objective. While the topic has been explored in detail
for diffusion-reaction systems, the treatment of advection has received no attention. We therefore look into
the possibility of deriving the advection-diffusion equation (with a source term) within the framework of
birth-death Markov processes. We show that in the continuum limit (when the cell size becomes vanishingly
small), we can derive an advection-diffusion equation for particle activity. Yet while this derivation is formally
valid in the continuum limit, it runs into difficulty in practical applications involving cells or meshes of finite
length. Indeed, within our stochastic framework, particle advection produces nonlocal effects, which are
more or less significant depending on the cell size and particle velocity. Albeit nonlocal, these effects look
like (local) diffusion and add to the intrinsic particle diffusion (dispersal due to velocity fluctuations), with
the important consequence that local measurements depend on both the intrinsic properties of particle
displacement and the dimensions of the measurement system.

1. Introduction

This article is concerned with the microscopic foundation of the advection-diffusion equation with a
source term

𝜕c
𝜕t

+ ūp
𝜕c
𝜕x

= s(c) + D
𝜕2c
𝜕x2

(1)

As we will mainly study this equation in the context of sediment transport, c(x, t) denotes the solid volume
of particles in motion per unit streambed area (m). Following Furbish et al. [2012a], we refer to c as particle
activity. We will focus on one-dimensional problems and so c is expressed as a function of the position x along
the streambed and time t. The second term on the left-hand side represents advection and ūp is the advection
velocity (m s−1), i.e., the mean velocity of particles when sediment is in motion. The first contribution to the
right-hand side represents the source term, here the net balance between the entrainment and deposition
rates of particles from/on a streambed. In this paper, we will focus on linear processes, and so we assume
that the source term s (m s−1) is either independent of c or a linear function of c (see section 2.2). The second
term on the right-hand side of equation (1) is the diffusion process, with D the particle diffusivity (m s−2). The
physical interpretation of the advection-diffusion equation (1) is straightforward: particle activity varies with
time as a result of transport by the water stream (advection), spreading (dispersion or diffusion due to particle
velocity fluctuations), and mass transfer with the streambed (entrainment and deposition).

The advection-diffusion equation is one of the most widespread equations in physics and related sciences.
In Earth surface processes related to sediment transport, it arises in different forms and in various contexts
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such as soil creep and erosion [Culling, 1960; Furbish and Haff , 2010], landscape evolution [Paola, 2000; Martin,
2000; Tucker and Bradley, 2010; Salles and Duclaux, 2015], bed load transport [Parker et al., 2000; Lajeunesse
et al., 2010; Furbish et al., 2012b; Ancey and Heyman, 2014; Pelosi et al., 2014], suspended transport [van Rijn,
2007], solute transport [Bencala and Walters, 1983; Boano et al., 2007], and wave-induced sediment transport
[Blondeaux et al., 2012]. Diffusion is also at the core of many investigations on suspension and bed load
transport [Oh and Tsai, 2010; Seizilles et al., 2014], hillslope sediment transport [Heimsath et al., 2005;
Foufoula-Georgiou et al., 2010], evolution of braiding rivers [Reitz et al., 2014], and tracer behavior [Nikora et al.,
2002; Ganti et al., 2010; Martin et al., 2012; Roseberry et al., 2012; Lajeunesse et al., 2013].

The advection-diffusion equation (1) is a macroscopic equation that is often postulated without refer-
ence to any microscopic analysis. It can certainly be derived from conservation principles of continuum
mechanics (conservation of mass) and phenomenological laws (Fickian dispersion law, reaction rate equation)
[Crank, 1975], but its basis remains essentially empirical. While a postulation approach has the advantage of
simplification, it fails to provide strong justification for the relevance of equation (1) to a particular setting and
there is no general method for determining the various parameters involved in equation (1), their possible
interconnection, and their parametric dependence on sediment properties. A microscopic underpinning of
macroscopic models such as equation (1) has several advantages. First, the various terms appearing in macro-
scopic equations can be shown to arise from microscopic processes. For instance, in the Reynolds-averaged
Navier-Stokes equations, the Reynolds stress tensor (representing fluid turbulence) arises from the fluctuat-
ing velocity field, and awareness of this connection is key to understanding and modeling turbulence [Pope,
2000]. By averaging microscopic equations to derive their macroscopic counterparts, we can find out contri-
butions that would have been omitted in the postulated model and give insights into the terms expected to
play a significant part on the macroscopic scale. Second, to simplify the problem by reducing the amount of
information, some sort of averaging process has to be applied to derive macroscopic equations from micro-
scopic considerations, which makes it possible to relate the resulting macroscopic variables to local properties
[Batchelor, 1974]. For instance, when studying the dispersion of matter in turbulent fluid or the flow of neu-
trally buoyant particle suspensions, the particle diffusivity can be linked with the flow features [Majda and
Kramer, 1999; Guazzelli and Morris, 2012; Gillespie and Seitaridou, 2013]. Third, the averaging process often
raises important questions about the representative length and time scales of the problem at hand: the nature
of transport phenomena resolved by macroscopic equations depends a great deal on the scale at which the
process is observed. For instance, a particle undergoing Brownian motion sees its velocity and displacement
direction change many times per unit time (and so the resulting path is well captured by a stochastic Langevin
equation), but if we observe it on a shorter timescale, the random walk with uncorrelated steps reveals a
continuous ballistic path (in that case, a deterministic model is more suited to describing particle motion)
[Pusey, 2011].

The aim of this paper is to propose a microscopic framework for the advection-diffusion equation (1). To this
end, we revisit our theoretical framework with an emphasis given to advection: in our earlier publications,
we have shown that the theory of birth-death Markov processes is well suited to describing the statistical
properties of sediment transport [Ancey et al., 2006, 2008]. The model was then extended to derive a contin-
uum version [Ancey, 2010] and include diffusive effects induced by particle velocity fluctuations [Ancey and
Heyman, 2014]. The model has been recently coupled with the Saint-Venant equations to study bed form ini-
tiation and antidune migration under supercritical flow conditions [Bohorquez and Ancey, 2015]. Comparison
with experimental data has also been presented in earlier publications [Ancey et al., 2008; Heyman et al., 2013,
2014].

Two elements are of particular significance to the present microscopic analysis. First, we emphasize the part
played by fluctuations (of sediment transport rate, particle activity, and bed elevation) in the dynamics of
sediment transport. Section 1.1 shows how large the fluctuations of sediment flux can be relative to the
mean flux and how this affects measurement and modeling. The key question is to what extent sediment
transport—seen as a macroscopic transport process—is affected by noise (i.e., the fluctuations on the
microscale). On the whole, there are two possible answers: (i) noise is irrelevant on large scales so that
the fluctuation effects on the macroscopic behavior can be either ignored or modeled using a closed-form
representation, e.g., the term for particle diffusion in equation (1) and (ii) noise is relevant on large scales,
with the consequence that the fluctuation effects are expected to appear in the macroscopic governing
equation in a nonclosed form and thus they are part of the problem to be solved (the Reynolds stress tensor
in the Reynolds-averaged Navier Stokes equation is a case in point). We will see that depending on flow
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conditions, sediment transport falls under (i) or (ii). The good news is that even in case (ii), an approximate
closure equation for the fluctuation effects can be proposed. Second, the problem under investigation
changes nature between the microscale and macroscale: at the particle scale, sediment transport is a discrete
problem, while on the bulk scale, it is considered a continuum problem. For particulate systems characterized
by a clear separation of length scales, this change does not cause trouble as any elementary volume contains
a sufficiently large number of particles for the continuum approximation to hold. In contrast, for bed load
transport problems, for which this separation of scales may be hardly applicable, the usual definitions of par-
ticle flux and concentration used in continuum mechanics run into practical difficulties, as noted by Furbish
et al. [2012b], Ballio et al. [2014], and others. Following the standard procedure in continuum mechanics, we
will describe the microscopic behavior by considering control volumes, then take the ensemble average and
continuum limit to derive the advection-diffusion equation (1). In doing so, we will demonstrate that applying
the continuum equation (1) to practical problems is potentially fraught with error because of the combined
effects of fluctuations and length scales: difficulties arise in the treatment of the advection term between
the microscale and macroscale, which may cause the diffusion coefficient D to be scale dependent when the
integral form (over control volumes) or discretization of equation (1) is used.

There have been a few attempts to build a microscopic framework for the advection-diffusion equation (1)
in the context of particle transport. We review these efforts in section 1.2. The main originality of the paper
is that we focus on the Eulerian approach, in which we choose a specific location x in space and monitor
the changes in the particle activity c with time t within a control window centered at x. The paper is
organized as follows. Section 2 summarizes the theoretical framework for modeling sediment transport on
microscales and deriving the advection-diffusion equation (1) for particle activity. In section 3, we present
numerical simulations showing the difference between the discrete and continuum formulations in
the particular case of pure advection (particles move at constant velocity). In section 4, we show how the
results are modified when particle agitation (reflecting fluctuating particle velocities) is taken into account.
This paper contains a rich amount of mathematical material. In order to present the main concepts and
results within limited space, we have skipped the mathematical detail. However, all mathematical proofs
are presented in the supporting information, and the interested reader can follow the cross references to find
further information. In the present paper, emphasis is given to theoretical tools and we refer the reader to our
companion papers to see practical applications [Bohorquez and Ancey, 2015; Heyman et al., 2014; J. Heyman
et al., Exploring the physics of sediment transport in nonuniform supercritical flows through a large data set
of particle trajectories, submitted to Journal of Geophysical Research, 2015]. An explanatory list of the notation
used in this paper accompanies the appendices.

1.1. Sediment Transport and Fluctuations
Sediment transport exhibits considerable spatial and temporal fluctuations. A typical example of this variabil-
ity is given by Figure 1, which shows the time variation in the sediment transport rate for a gravel bed flume
experiment under steady state conditions (see Appendix A for further information on the experimental condi-
tions). The resulting time series illustrates various features of sediment transport at low transport rates: while
the experiment was run for a very long time (more than 50 h), the system did not reach a steady state charac-
terized by gentle fluctuations around a fixed value but seemed to jump from states marked by low sediment
transport activity (possibly with transport rates dropping to zero) to phases of intense sediment transport
(with transport rates as large as 20 times the feeding rate). The bursts are likely to reflect the migration of bed
forms (here antidunes) [Gomez, 1991].

For systems of this kind, fluctuations are likely to play an important part in the overall dynamics. Understand-
ing the part played by fluctuations in sediment transport is key to various issues such as measurement of bed
load transport rates and development of realistic morphodynamic models. We will outline these two problems
below.

For a very long time, the effect of fluctuations on the measurement of transport rates has gone unnoticed.
In recent decades, with the development of high-resolution techniques for measuring transport rates both
in the laboratory and in the field, it has been shown that the results depend a great deal on sampling time
[Cudden and Hoey, 2003; Bunte and Abt, 2005; Singh et al., 2009; Campagnol et al., 2012; Gaeuman et al., 2015].
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Figure 1. (a) Particle transport rate qs as a function of time. (b) Variation of the time-averaged particle transport rate as
a function of the integration time; the solid line shows the empirical curve q̄s(T ; t0) when the starting time is t0 = 0,
while the dashed line represents the q̄s(T ; t0) for t0 = 4 h. The dash-dotted line shows the sample mean m = 0.366 pps.

(c) Variation of the variance of the particle transport rate varqs(T ; t0) =
1
T ∫

t0+T

t0

(qs(t) − m)2dt as a function of the

integration time. See Appendix A for the experimental conditions and experimental procedure. Time series data
available from http://dx.doi.org/10.6084/m9.figshare.1480646.

Closely related is the question of the optimum sampling time for a given setting, a problem that has as yet
few solutions. Figure 1b shows the time-averaged transport rate for the time series qs(t) shown in Figure 1a

q̄s(T; t0) =
1
T ∫

t0+T

t0

qs(t)dt (2)

with T the sampling time and t0 the starting time. For this experiment, the time-averaged transport rate con-
verged very slowly to the mean sample m: T must be as long as 2 h for q̄s to come close to m to within ±20%.
Even for very long times (2 < T < 15 h), q̄s can deviate markedly from the mean sample as a result of bed
form migration (the two peaks of q̄s at T = 2 h and 9 h were associated with bed form development). Similar
conclusions can be drawn for the time-averaged variance, which slowly converges to the sample variance
(see Figure 1c). Figure 1 also shows that the empirical curve q̄s(T) depends a great deal on the starting time.
If we start integrating qs when sediment transport is intense (e.g., t0 = 0 in Figure 1), the time-averaged sed-
iment transport rate deviates initially by a factor 10 from the sample mean m. It comes as no surprise that
if we select the starting time (e.g., t0 = 4 h in Figure 1) so that sediment transport is initially low, then the
time-averaged sediment transport rate q̄s deviates less markedly from m. This example also demonstrates that
the question of the optimal sampling time for evaluating sediment transport rate has no clear-cut answer.

This particular example shows that in contrast with many fluctuating processes, the mean transport rate can-
not be estimated by merely smoothing the measurements over a short time span. It can require long sampling
times even under steady state conditions (especially at low sediment transport rates) and so the question
arises as to how to determine proper estimates of q̄s under time-dependent flow conditions, e.g., when the
timescale of water discharge changes is shorter than the optimum sampling time of q̄s.

The effect of sampling time on transport rate measurement is becoming even more apparent with field
data. Recking et al. [2012] tested different bed load transport equations against instantaneous field measure-
ments, volume accumulated at the event scale, volume accumulated at the annual and interannual scales,
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and time-integrated flume measurements. At the shortest timescales (say, a few minutes), all of the bed load
equations tested failed to predict the mean sediment transport rate to within one order of magnitude. The
results were especially poor for coarse-bed rivers and steep slopes. In contrast, on much longer timescales
(say, 1 year), the predictions more closely matched the field data, with relative errors (defined as the computed
to measured sediment volume ratio) lower than five in most cases.

Existing morphodynamic models are based on equations such as the advection-diffusion equation (1).
More elaborate models are composed of a set of governing equations. For instance, the Saint-Venant-Exner
equations consist of mass and momentum balance equations for streamflow, sediment transport, and bed
elevation, supplemented by closure equations for estimating flow resistance [García, 2007]. In all of these
models, the flow variables are smooth (or piecewise continuous) fields. In other words, these models do not
provide instantaneous values, but spatially or temporally averaged values. The effects of random perturba-
tions on the mean flow are either ignored or incorporated in the form of a diffusive term (the equivalent of
the eddy diffusion process in turbulence models). Owing to the random nature of sediment transport rates,
morphodynamic models are fraught with difficulties of different order.

The first impediment has been highlighted by Figure 1. Any direct comparison between theory and observa-
tion is made quite difficult because of the great sensitivity of the mean sediment transport rate to sampling
time. In practice, this hurdle has mostly been avoided by looking at global patterns such as the determina-
tion of the areas prone to aggradation/degradation or the evaluation of the sediment budget over a long
characteristic time [e.g., see Ferguson and Church, 2009].

Another difficulty arises when solving morphodynamic models numerically. Finite-volume methods are pref-
erentially used for several reasons. First of all, discretization based on finite volumes is seen as more physical
as the resulting discretized equations are obtained by integrating the governing equations over elementary
control volumes, expressing the flux (e.g., mass and momentum) through the boundaries of each volume,
and updating the volume-averaged quantities [LeVeque, 2002; Toro, 2001]. A clear advantage of this computa-
tional strategy is the possibility to deal with discontinuities (e.g., a hydraulic jump). As the method makes use
of volume averaging, it suffers from mesh size dependence when applied to random fields in the same way
as the time-averaged sediment transport rate (2) depends on sampling time. This subtle point will be illus-
trated in the following; the reader is also referred to our companion paper for further discussion on this point
[Bohorquez and Ancey, 2015].

1.2. Existing Approaches to Deriving the Advection-Diffusion Equation
Equation (1) is often derived using conservation principles of continuum mechanics and phenomenological
laws. Arguments of this sort have been used to derive an advection equation for particle activity [Charru, 2006;
Lajeunesse et al., 2010]. The main shortcoming of this approach is that it ignores or downplays the fluctuations
of particle activity and its crucial influence on the sediment transport dynamics.

There is a considerable literature on the microscopic foundation of the advection-diffusion equation and
much of this literature makes use of the Lagrangian approach to derive equation (1) [Méndez et al., 2010;
Gillespie and Seitaridou, 2013] with consideration for fluctuations of particle motion. Essentially, in this
approach, a target particle is tracked. On the microscale, the erratic and intermittent motion of this particle can
be described using random walk models. Lagrangian models include a wide variety of processes depending
on the working assumptions: the particle motion can be seen as a series of jumps of fixed or random length
occurring at fixed or random times [Metzler and Klafter, 2000; Schumer et al., 2009]. The Lagrangian approach
has applications of particular relevance to suspending particles in rivers [Oh and Tsai, 2010; Tsai et al., 2014],
bed load transport [Einstein, 1950; Furbish et al., 2012a, 2012b, 2012c; Pelosi et al., 2014], tracers [Ganti et al.,
2010; Hill et al., 2010; Zhang et al., 2012], and hillslope sediment transport [Furbish and Roering, 2013]. The sim-
plest model is the discrete-time random walk where the target particle moves intermittently and may jump
to the left or the right (see section 1 in the supporting information). The hops are of fixed length and occur
at discrete times. This very simple configuration is sufficient to derive equation (1) in the absence of source
(s = 0) and link the advection velocity and diffusivity to the jump features. More elaborate models lead to
the advection-diffusion equation with a source term (1) [Méndez et al., 2010]. Note that in the field of sedi-
ment transport and river morphology, the Lagrangian approach leads to macroscopic equations that are more
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complicated than the classic advection-diffusion equation (1). For instance, Furbish et al. [2012b] show that
ensemble-averaged particle transport rate takes the form

⟨qs⟩(x, t) = cūp −
1
2

𝜕

𝜕x
(Dc) (3)

Mass conservation for the bed implies that

𝜕

𝜕x
⟨qs⟩ = (x, t) −(x, t) = 𝜕

𝜕x
(cūp) −

1
2

𝜕2

𝜕x2
(Dc) (4)

where  and  are the entrainment and deposition rates, respectively. Equation (4) contains advection and
diffusion terms like equation (1), but there is no temporal variation 𝜕tc and the source term s =  −  is a
priori not a simple linear function of c.

With regards to the Eulerian microscopic foundation of the advection-diffusion equation (1), there is a con-
siderable body of work related to diffusion-reaction equations, i.e., equation (1) with a vanishing advection
velocity ūp = 0 [Gardiner, 1983; Isaacson, 2005; Hellander et al., 2012]. Yet, surprisingly, we failed to find
articles including advection in the diffusion-reaction equation and, even more surprisingly, our preliminary
investigations showed us that the inclusion of advection in equation (1) leads to unexpected difficulties of
interpretation. The explanations are numerous. First, the mathematics underpinning the stochastic derivation
of equation (1) are still an emerging field. The fundamentals of stochastic differential equations are now well
established [Higham, 2001; Allen, 2007], and they have been of common use for many years in physics, math-
ematical finance, and biology [Gardiner, 1983; Gillespie, 1992; Platen, 1999; Iacus, 2008]. In contrast, there is a
greater potential for difficulties with stochastic partial differential equations. Reaction-diffusion equations in
chemical physics are a typical example of how different working assumptions on the structure of the noise
term lead to quite different governing equations [Gardiner, 1983; Dogan and Allen, 2011]. Numerical solutions
to the stochastic Burgers equation (a nonlinear variant of the advection-diffusion equation) highlight the influ-
ence of the mesh size on the solution to which the numerical schemes converge, a situation that contrasts
with the deterministic case [Hairer and Voss, 2011]. The interpretation of white noise (Itô versus Stratonovich
convention) relies on a working assumption that may also lead to conceptual and mathematical difficulties
depending on the rule chosen [Ridolfi et al., 2011] (see also section 2.3).

2. Markovian Eulerian Framework

Before tackling the question of the stochastic foundation of the advection-diffusion (1) (see section 2.3), we
summarize our approach presented in earlier papers [Ancey et al., 2008; Ancey and Heyman, 2014]. A con-
venient framework for the investigation of the statistical properties of sediment transport is the theory of
birth-death Markov processes, which has been quite successful in various fields such as population dynamics,
epidemiology, and chemical kinetics [Cox and Miller, 1965; Gillespie, 1992]. We think that it can also be a very
powerful tool to better understand the dynamics of sediment transport.

2.1. Outline of the Approach
We are interested in studying the variation in the particle activity c(x, t) along a river. For the sake of simplicity,
we consider a one-dimensional stream and ignore any cross-stream variation. On the microscopic scale, the
particle activity is linked to the number of moving particles N contained in a (control) volume of length Δx.
The idea underpinning the Markovian Eulerian framework is a general and rather intuitive one, which consists
in monitoring the changes in the number moving particles over a time interval Δt within this control volume.
This number N can vary because particles can be entrained from the bed, deposited on the bed, enter the
volume, or leave it. These events occur randomly and a priori independently and so N is a discrete random
variable described by a probability P(n, t) of observing N = n particles within the volume at time t. We study a
subclass of Markov processes called birth-death processes, for which the number of particles can only experi-
ence jumps of +1 or −1, which means in practice that the time interval Δt must be short enough to allow the
detection of such jumps. Sediment transport is assumed to be sufficiently low for events to be distinguishable.
At higher sediment transport rates, multiple events (erosion, deposition, emigration, and immigration) can
occur within infinitesimal times, making the present stochastic framework irrelevant. In the present context,
emigration and immigration refer to moving particles that leave or enter the control volume.

Our approach is Eulerian in that we do not track particles individually, but merely count the number of particles
in a control volume. It is Markovian because we assume that the variations in N in the time interval t and t+Δt
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Figure 2. Entrainment, deposition, and transport of particles in an array of cells of length Δx.

depend primarily on Δt. Said differently, we do not need the complete history of N up to time t to determine
what may happen in the time interval t and t +Δt. It is discrete because we consider a collection of finite-size
particles within a control volume of finite length Δx.

In this section, our goal is to determine the governing equation of N(t) as a function of the volume length Δx
and time step Δt, then to derive a differential (macroscopic) equation for particle activity in the continuum
limit (i.e., as the parameters Δx and Δt approach zero).

2.2. Mass Balance and Governing Equation at the Particle Scale
We split the one-dimensional stream into an array of M cells i of length Δx and we monitor the num-
ber of moving particles Ni in each cell (see Figure 2). More specifically, we are interested in calculating
P(n; t) = Prob(N=n; t) the probability of observing n=(n1, · · · , nM) particles in each cell at time t. The vector
N represents the state of the system. Like in continuum mechanics (in its integral formulation), we will per-
form the mass balance for each cell by counting the particles entrained, deposited, or leaving the cells over a
short time span 𝛿t.

Yet there are two crucial elements that distinguish the stochastic approach from the continuum approach:
when tracking particles, we evaluate their probabilities of changing state or position and that is why we
calculate P(n; t) and not N(t). The second point is that the time increment is not arbitrary: it must be suffi-
ciently small so that there cannot be two or more processes occurring across the whole array between times
t and t + 𝛿t.

To complete our introduction, we need some extra symbols to characterize the change of state ΔN within
[t, t+𝛿t): rj

i is a vector in which all but two entries are zero: ri = 1, rj = −1, rk = 0 for k ≠ i, j. This symbol denotes
a displacement of a particle from cell j to cell i. r±i is a vector in which all but one entries are zero: ri = ±1,
rk = 0 for k ≠ i. It reflects entrainment or deposition within cell i.

We use the following assumptions to derive the governing equation for P(n; t). First, we assume that once
set into motion, the particles move at the same velocity ūp. This assumption will be relaxed in the following
(see section 4), but as a first step, it allows us to make the picture simpler by distinguishing between the
effects due to particle advection (mean displacement) and particle fluctuation (velocity fluctuations) at the
bulk scale. Note that the assumption of constant velocity does not imply that the motion of the particles is
purely deterministic because at any time, part of the moving particles will be deposited on the bed while other
particles will be dislodged from the bed and join the cloud. All particles have the same size and so there is no
grain sorting. We do not distinguish between rolling and saltating motions even though there is experimental
evidence that the type of motion plays a role in sediment transport dynamics [Ancey et al., 2006; J. Heyman
et al., submitted manuscript, 2015] since rolling and saltating particles do not move at the same velocity.

A consequence of advection is that at any time, part of the moving particles contained in cell i will leave this
cell and enter cell i + 1. Note that at this stage of the development, we assume that the time step 𝛿t is so
small that the displacement ūp𝛿t cannot exceed the cell length and so particles can jump from one cell to
its downstream neighbor, but cannot make long hops. We thus impose the constraint ūp𝛿t < Δx, which can
be interpreted as a Courant-Friedrichs-Lewy (CFL) condition for the jump process. The probability that one
particle leaves cell i − 1 and enter cell i is denoted by

p1
i = Prob

(
N = n + ri−1

i ; t + 𝛿t
)
= 𝜈i−1Ni−1𝛿t (5)

where 𝜈i−1 = ūp∕Δx (s−1) is the emigration rate for cell i − 1. The superscript 1 in p1
i indicates that it is the first

process we include in our study. If the particles are uniformly distributed inside cell i − 1, the probability that

ANCEY ET AL. STOCHASTIC ADVECTION DIFFUSION 7
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an individual particle leaves the cell over the time step 𝛿t is ūp𝛿t∕Δx. Since they are Ni−1 particles in cell i − 1,
the resulting probability is then given by equation (5).

Particles can be entrained and deposited. We assume that the entrainment and deposition rates, 
(particles per second (pps)) and  (pps), respectively, can be expanded as a power series of N

 = 0 + 1N + · · · (6)

 = 0 +1N + · · · (7)

As we investigate linear models, the expansions are limited to order 1. Concerning deposition, as there are
N moving particles, the deposition rate is necessarily linearly dependent on N and so 0 = 0. To keep the
notation consistent with our earlier papers [Ancey et al., 2008; Ancey and Heyman, 2014], we denote 1 by 𝜎

(s−1); we index it by i to recall that 𝜎 depends on position. The probability of deposition in cell i is then

p2
i = Prob(N = n + r−i ; t + 𝛿t) = 𝜎iNi𝛿t (8)

For entrainment, we interpret 0 as the effect of the water stream alone on the bed. Moving particles induce
perturbations, collisions, changes in the water turbulence, etc., which can also lead to dislodge particles from
the bed. We refer to the coefficient 1 as collective entrainment, but this name is confusing to some degree
as it may lead one to think that several particles are simultaneously entrained. This is not the meaning here
(massive entrainment would conflict with our working assumption that there is no more than one event over
the time span 𝛿t). Again, for consistency with our earlier publications [Ancey et al., 2008; Ancey and Heyman,
2014], we denote 0 and 1 by 𝜆 (pps) and 𝜇 (s−1). The probability of entrainment in cell i is thus

p3
i = Prob(N = n + r+i ; t + 𝛿t) = (𝜆i + 𝜇iNi)𝛿t (9)

In equations 5, (8), and (9), we have calculated the transition probabilities pk
i (k = 1, 2, and 3) that process

k occurs in cell i (1 ≤ i ≤ M). We can now calculate the probability of change for the whole system. We
will not reproduce the derivation of the governing equation, which can be found in our earlier papers [Ancey
et al., 2008; Ancey and Heyman, 2014]. The fundamental idea is that starting from the Chapman-Kolmogorov
equation

P(n, t + 𝛿t) =
∑

for all Δn and k=1,2,3

P(n + Δn, t)pk(n + Δn → n, 𝛿t) (10)

and taking the limit 𝛿t → 0, we end up with the forward Kolmogorov equation (also called the master equation)

𝜕P
𝜕t

(n; t) =
M∑

i=1

(ni + 1)
(

P
(

n + ri
i+1, t

)
𝜈i + P

(
n + r+i , t

)
𝜎i

)
(11)

+ P
(

n + r−i , t
) (

𝜆i + 𝜇i(ni − 1)
)

+ P
(

n + ri−1
i , t

)
𝜈i−1ni−1

− P(n, t)(𝜈i−1ni−1 + 𝜆i + 𝜇ini+1 + 𝜈ini + 𝜎ini)

which is the governing equation for N.

Apart from the one-cell case (M = 1) [Ancey et al., 2008], there is no technique for solving this equation ana-
lytically. In this respect, the governing equation (11) for N does not allow us to directly derive a macroscopic
equation for N in the form of an advection-diffusion equation. However, various techniques can be used
for finding numerical solutions and analytical approximations and for transforming the forward Kolmogorov
equation (11) into a more tractable form (see sections 2 and 3 in the supporting information). In the
following, we will use an exact technique (the Poisson representation) to transform the forward Kolmogorov
equation (11) to gain analytical traction. Direct numerical solutions of the forward Kolmogorov equation (11)
are also possible [Gillespie, 1992, 2001; Lipshtat, 2007; Pineda-Krch, 2008].

2.3. Derivation of the Ensemble-Averaged Equation for Particle Activity c
To proceed with the determination of solutions to equation (11), we use an elegant and exact technique,
which can be thought of as a Laplace-like transform: the Poisson representation makes it possible to pass from

ANCEY ET AL. STOCHASTIC ADVECTION DIFFUSION 8
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Table 1. Correspondence Between the Variables Used

Real World Poisson Space

Discrete random variable N
Poisson transform
−−−−−−−−−−−−−→ a

number of moving particles Poisson rate

Continuous random variable 𝛾 = lim
Δx→0

N
Δx

b = lim
Δx→0

a
Δx

particle activity Poisson density

Ensemble-averaged variable c = ⟨𝛾⟩
mean particle activity

the discrete random variable N to the (dimensionless) continuous random variable a (here called the Poisson
rate) [Gardiner, 1983]

P(n, t) =
∏

i
∫
R+

e−ai an
i

n!
f (a, t)da (12)

where a = (ai) ≥ 0 for i = 1, 2,… and f (a, t) is the multivariate probability density function of a. Instead of
working with the discrete random variable N, we now work with the continuous random variable
a = (a1, a2,…). It is often more convenient to work in another functional space to simplify the equations
(like Fourier and Laplace transforms), but the way back to the original space may be impossible. Here we
will avoid this issue by using an interesting feature of the Poisson representation, which is the relationship
between the p factorial moments of N and the p moments of a. In particular, we have

⟨N⟩ = ⟨a⟩ and var N = var a + ⟨a⟩ (13)

which will be very useful in the following.

Substituting the Poisson expansion (12) into the forward Kolmogorov equation (11) and after a few algebraic
manipulations (see section 3 in the supporting information), we end up with a governing equation for f (a, t)

𝜕

𝜕t
f (a, t) =

∑
i

𝜇i

𝜕2aif

𝜕a2
i

− 𝜕

𝜕ai

{[
𝜆i − ai(𝜎i + 𝜈i − 𝜇i)

]
f
}
+ 𝜕

𝜕ai−1
(𝜈i−1ai−1f ) (14)

The main advantages of this transformation appear here clearly: we have reduced the degree of coupling
between the equations and the resulting set of equations is a multivariate advection-diffusion equation that
can be interpreted as a Fokker-Planck equation. Therefore, we can use the equivalence between Fokker-Planck
equations and stochastic differential (Langevin) equations [Gardiner, 1983]. The Langevin representation
equivalent to equation (14) is

dai(t) =
(
𝜆i − ai(𝜎i − 𝜇i) + 𝜈i−1ai−1 − 𝜈iai

)
dt +

√
2𝜇iaidWi(t) (15)

which holds for ai ≥ 0 (i = 2, 3…) and where Wi (s1∕2) is a Wiener process (white noise) for cell i. Under
homogeneous conditions (𝜆i = 𝜆, 𝜎i = 𝜎, and 𝜇i = 𝜇 for 1 ≤ i ≤ M), the mean steady state solution to the
Langevin equation (15) is ⟨a⟩ss =

𝜆

𝜎 − 𝜇
(16)

It is now very tempting to take the continuum limitΔx → 0 and introduce the Poisson density b (m−1), particle
activity 𝛾 (m), and ensemble-averaged particle activity c (m):

b(xi, t) = lim
Δx→0

ai(t)
Δx

, 𝛾(xi, t) = lim
Δx→0

𝜛pNi(t)
BΔx

and c(xi, t) = ⟨𝛾⟩ (17)

with xi the center of cell i, B (m) the stream width, and𝜛p (m3) the particle volume. Table 1 recaps the different
variables used and their relationships between the Poisson (probability) space and real world.

If ai were a continuous variable, it would be also very tempting to interpret the difference 𝜈i−1ai−1 − 𝜈iai as the
gradient −𝜕x(ūpb) in the continuum limit Δx → 0. If so, we should end up with a governing equation for b

𝜕

𝜕t
b(x, t) + 𝜕

𝜕x
(ūpb) = 𝜆̃ − (𝜎 − 𝜇)b +

√
2𝜇b𝜉b (18)
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where we introduce 𝜆̃=𝜆∕Δx (m−1 s−1) the entrainment rate per unit length and we define a Gaussian noise
term 𝜉b(x, t) (m−1∕2 s−1∕2) such that ⟨𝜉b(x, t)𝜉b(x′, t′)⟩=𝛿x(x − x′)𝛿t(t − t′), i.e., a white noise term that is uncor-
related in time and space, and 𝛿x (m−1) and 𝛿t (s−1) are Kronecker’s deltas (i.e., 𝛿t(t) = 0 if t ≠ 0, and 1 for t = 0).
Within our framework, the white noise term 𝜉b(x, t) is a generalization of white noise, which satisfies

lim
Δx→0

dWi(t)√
Δx

= 𝜉b(x, t)dt (19)

This definition of 𝜉b(x, t) is essential to properly encoding the white noise term in the numerical simulations.

Making use of the relation (13) between the a and n moments and the rule ⟨√2𝜇b𝜉b⟩ = 0, we deduce that
the ensemble average of equation (18) leads to a simple advection equation for the particle activity c

𝜕

𝜕t
c(x, t) + 𝜕

𝜕x
(ūpc) = s(c) (20)

where s(c) = 𝜆′ − (𝜎−𝜇)c is the linear source term and 𝜆′ = 𝜛p𝜆̃∕B (ms−1) is the volumetric entrainment rate.
A caveat is in order here: the treatment of the colored noise term

√
2𝜇b𝜉b in equation (18) can be achieved

following two different approaches [Gardiner, 1983]: in the Itô interpretation, the value of b is taken before the
jump; an important consequence is that ⟨√2𝜇b𝜉b⟩ = 0. Another possibility is the Stratonovich interpretation,
which takes the mean of b before and after the jump (and in that case ⟨√2𝜇b𝜉b⟩ ≠ 0). The latter interpreta-
tion is often seen as the most natural choice from a physical standpoint [Ridolfi et al., 2011], but unfortunately
it leads to substantial mathematical difficulties when trying to solve stochastic differential equations analyti-
cally. So, following the usage in the physics of reaction-diffusion problems [Gardiner, 1983], we have adopted
the Itô convention. Comparing equations (1) and (20), we note that the advection terms are not strictly sim-
ilar (except if the advection velocity does not depend on x): in the original advection-diffusion equation (1),
the operator 𝜕t + ūp𝜕x is the material derivative and represents the rate of change of particle activity observed
by particles. Equation (20) is the conservative form of the advection-diffusion equation (1) and the advection
term 𝜕x(ūpc) represents the flux of particle activity through a vertical slice.

The statistical properties of c can be inferred from equations (18)and (13). Under homogeneous steady state
conditions, we find (see section 4 in the supporting information) for the mean Poisson density, the spatial
cross correlation, and variance

⟨b⟩ss =
𝜆̃

𝜎 − 𝜇
, ⟨b(x)b(x + r)⟩ss = ⟨b⟩ss

𝜇𝛿r(r) + 𝜆̃

𝜎 − 𝜇
and varss b = 𝜇𝜆̃

(𝜎 − 𝜇)2
𝛿r(0) (21)

where 𝛿r(r) (m−1) is Kronecker’s delta and for the autocorrelation function

𝜌(t) = exp(−(𝜎 − 𝜇)t) (22)

Surprisingly, these properties are independent of the advection velocity ūp. This may seem a priori plausible
in that advection is just a mode of transport of particles, which under steady state conditions fades out. Note
also that these properties are independent of the position and so they hold true for any x or over any con-
trol volume. It also follows that the analytical results obtained for one-cell systems (M = 1) should hold true
here; in particular, the probability density function of ai (under steady state conditions) should be the gamma
distribution Ga(𝛼, 𝛽) with parameters 𝛼 = 𝜆∕𝜇 and 𝛽 = 𝜇∕(𝜎 − 𝜇) [Ancey and Heyman, 2014].

However, as shown just below (see section 3), numerical simulations of the Langevin equations (15) reveal
that the story is a bit more complicated. They demonstrate that diffusion-like effects occur and thus, the link
between the advection equation (20) (giving a picture of the system at the bulk scale) and the underlying
Langevin equations (15) (describing the system at the microscale) is more subtle than what the derivation
above suggests.

3. Numerical Tests

In the following, we will analyze the microscopic behavior in particular cases by solving the system of
Langevin equations (15) and compare the results with the macroscopic features predicted by the continuum
formulation (20) or the expected statistical properties (21).
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Figure 3. Example of simulation of the Langevin equations (15) with 𝜆 = 2 s−1, 𝜎 = 5 s−1, 𝜇 = 4 s−1, and 𝜈 = 5 s−1

(D∗ = 2.5 m s−2). The dots represents the mean particle activity averaged over 500 samples obtained by solving
equation (15) numerically using an Euler scheme [Iacus, 2008] with a time step dt = 0.01 s. The dashed line shows the
pure advection behavior of equation (20) at times t = 0, 1, 2, 4, 8 s. The exact solution to equation (20) is provided in
section 11 of the supporting information. The initial (t = 0 s) conditions are shown in purple. The boundary conditions
are c = 0. We show only the first 25 cells.

We solved the system of Langevin equations (15) numerically using an Euler scheme with time step dt = 0.01 s
(see section 5 in the supporting information) [Higham, 2001; Iacus, 2008]. The computational domain was
split into M = 100 cells of length Δx = 1 m. The sample mean and variance, ⟨n⟩ and var a for each cell were
computed over 500 simulations. Note that making use of equations (13) and (17), we also find the relationship
between c and ⟨N⟩

⟨c⟩ss =
𝜛p

BΔx
⟨N⟩ss and varss a = Δx2varss b (23)

since the variance of b is found to be independent of x. The continuum formulation (20) is a simple hyperbolic
partial differential equation that can be solved exactly using the method of characteristics (see section 11 in
the supporting information).

3.1. Mean Behavior of the Particle Activity
Let us first consider a sharp gradient in the particle activity and let us see how this particle activity evolves
with time when at the microscale, the particles are advected at constant velocity ūp. Figure 3 shows the prop-
agation of an initial pulse of sediment: the evolution of the initial (triangle-shaped) pulse is dictated by the
displacement, deposition, and entrainment processes (5), (8), and (9). In the numerical simulations (dots) at
t = 1 s, the initial peak is rapidly smoothed out while on the right, the particle activity tends continuously to
a constant value. This contrasts with the advection solution (dashed line), which conserves the initial shape,
i.e., a peak and a sharp transition from the peak to the plateau. This simple example shows that the advec-
tion equation (20) captures the mean behavior fairly well, but it fails to provide the correct values in regions
marked by a discontinuity in the particle activity gradient. This is an indication of nonlocal or diffusive effects,
which smear out sharp variations in c.

3.2. Statistical Behavior of the Particle Activity
Another example is provided by the computation of the expected statistical features of the particle activ-
ity, here the mean and variance of a under steady state conditions. We use the relationship (13) relating the
moments of N and a together with the definition of the particle activity (18). We solved an initial boundary
value problem with the initial condition ai = 1 for 1 ≤ i ≤ M (equivalently c(x, 0) = 1) and the following
boundary condition on the left of the domain a0(t) = 0 (ghost cell) for t > 0 (equivalently c(0, t) = 0). These
two conditions are not strictly compatible initially at x = 0; we imposed a nonzero initial state to preclude
generating negative ai values in the initial steps. Figure 4 shows numerical simulations of this initial boundary
value problem. As expected, the process ai(t) tends toward the steady state value ⟨a⟩ss = 𝜆∕(𝜎−𝜇) = 10 given
by equation (16): Figures 4a and 4c show that both the spatial and the time variation of the process ai(t) are
well captured by the analytical solution to the advection equation (20). Under steady state conditions, the val-
ues ai(t) fluctuate randomly around the mean steady state value, but the computed sample variance is much
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Figure 4. Example of simulation of equation (15) with 𝜆 = 10 s−1, 𝜎 = 5 s−1, 𝜇 = 4 s−1, 𝜈 = 1 s−1. (a) Variation of ⟨ai⟩ as
a function of the position i (1 ≤ i ≤ M) at time t = 20 s. (b) Particular realization of the process ak(t) for k = 50 (middle of
the computational domain). (c) Time variation of ⟨ak(t)⟩ for k = 50. (d) Probability distribution function of ak for k = 50;
the solid line is the gamma distribution Ga(𝛼̃, 𝛽), whose parameters have been calculated using the mean and variance
obtained iteratively in section 3.3 (approximation of varss a∕⟨a⟩ to order K = 20). The dots represents the simulated
values ai . Averages and probabilities were computed over 500 samples once steady state has been reached (in practice
for t ≥ 10 s). For Figures 4a to 4d, the dots and gray lines show the numerical simulations. For Figures 4a to 4c the
dashed line shows the pure advection behavior obtained by solving the advection equation (20) using the method of
characteristics (see section 11 of the supporting information) and employing equation (23); for Figure 4d, it is the
gamma distribution Ga(𝛼, 𝛽) with parameters 𝛼 = 𝜆∕𝜇 and 𝛽 = 𝜇∕(𝜎 − 𝜇).

lower than the theoretical value given by equation (21): for instance, for cell k = 50, we found varss ak = 23.19
in our simulations, whereas the theoretical value is 40. A closer look at the empirical probability distribu-
tion (see Figure 4d) reveals that the theoretical gamma distribution Ga(𝛼, 𝛽) roughly describes the empirical
probabilities. The difference is especially visible in the tail of the distribution (for ak > 20), for which theory
overestimates the probabilities significantly. Figure 5 shows the empirical autocorrelation function and its
theoretical expression (22). Theory clearly overestimates the autocorrelation.

As a summary, we have found that the mean behavior is closely described by the advection equation (20):
the steady state and the transient to this regime are fairly well described, but deviations from the simulated
behavior are seen in regions characterized by sharp transitions in the particle activity. Moreover, there is clear
evidence that the theoretical statistical properties (here variance and autocorrelation) are poorly estimated
by equation (21).

Simulations were performed for other sets of values 𝜆, 𝜎, 𝜇, and 𝜈, and we systematically observed that theory
goes right with the prediction of the mean behavior in the absence of sharp variations in c and goes awry in
the estimation of the statistical properties. Figure 6 shows how the sample variance varies with the emigration
rate 𝜈: there is a clear drop in the variance varss a with 𝜈, which is visible for 𝜈 values as low as 𝜈 = 0.1 s−1. For
𝜈 = 1 s−1, there is a factor of 2 between theory and simulation and for 𝜈 = 10 s−1, this factor exceeds 4.

3.3. Analysis
To understand the origin of the discrepancy between theory and simulations, we need to return to the orig-
inal Langevin equations (15), which are the fundamental equations from which we derived the continuum
version (18). If we ignore the noise term in equation (15), we note that they also bear close resemblance to
the discretized equations obtained from finite-difference (upwind scheme) and finite-volume methods used
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Figure 5. Autocorrelation function for cell k = 50 (averaged over 500 samples once the steady state has been reached)
with 𝜆 = 10 s−1, 𝜎 = 5 s−1, 𝜇 = 4 s−1, and 𝜈 = 1 s−1. The dots represent the empirical autocorrelation function. The
dashed line shows the pure advection behavior given by equation (22). The solid line represents the first-order
correction given by (33).

for solving the deterministic advection equation [LeVeque, 2002], and we will use this analogy to interpret the
observed discrepancy (see section 3.4).

We start with the calculation of the second-order moment for cell i

d
dt

⟨a2
i ⟩ = 2𝜆⟨ai⟩ − 2(𝜎 + 𝜈 − 𝜇)⟨a2

i ⟩ + 2𝜈⟨aiai−1⟩ + 2𝜇⟨ai⟩ (24)

where we have made use of the Itô rule for calculating da2
i from dai [Gardiner, 1983]. This equation involves

the unknown cross correlation ⟨aiai−1⟩. Assuming that a homogeneous steady state regime has been reached,
we have 𝜆⟨ai⟩ss = 𝜆⟨a⟩ss for any cell i, we then obtain for the second-order moment

2(𝜎 + 𝜈 − 𝜇)⟨a2⟩ss = 2𝜆⟨a⟩ss + 2𝜈⟨aiai−1⟩ss + 2𝜇⟨a⟩ss (25)

We need to calculate ⟨aiai−1⟩ss. This is readily done by multiplying equation (15) by ai−1 and by doing the same
for this equation applied to cell i − 1. An equation for the cross correlation ⟨aiai−1⟩ is then obtained

d
dt

⟨aiai−1⟩ = 𝜆(⟨ai⟩ + ⟨ai−1⟩) − 2(𝜎 + 𝜈 − 𝜇)⟨aiai−1⟩ + 𝜈⟨a2
i−1⟩ + 𝜈⟨aiai−2⟩ (26)

Figure 6. Steady state variance varss a as a function of the emigration rate 𝜈. The dots show the numerical simulations
with 𝜆 = 10 s−1, 𝜎 = 5 s−1, and 𝜇 = 4 s−1. The dash-dotted line, dotted line, and solid line represent the variance to
order K = 2, 5, and 20, respectively, calculated iteratively from the cross correlations ⟨aiai−k⟩ (see section 6 in the
supporting information for further detail). The red dotted line is the variance given by equation (37) for a purely diffusive
process with D∗ = 𝜈Δx2∕2.
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which under steady state conditions gives

2(𝜎 − 𝜇 + 𝜈)⟨aiai−1⟩ss = 2𝜆⟨a⟩ss + 𝜈⟨a2⟩ss + 𝜈⟨aiai−2⟩ss (27)

which depends on ⟨aiai−2⟩ss. Repeating the procedure for ⟨aiai−2⟩ss and longer-range terms, we end up with
a hierarchy of coupled equations for the spatial cross correlations.

To close the system to order 2, let us assume that the last term 𝜈⟨aiai−2⟩ss in equation (27) is zero, then

⟨aiai−1⟩ss =
𝜆

𝜎 + 𝜈 − 𝜇
⟨a⟩ss +

𝜈

2(𝜎 + 𝜈 − 𝜇)
⟨a2⟩ss (28)

and after substitution into equation (25), we get

2(𝜎 + 𝜈 − 𝜇)⟨a2⟩ss = 2(𝜆 + 𝜇)⟨a⟩ss + 2𝜈

(
𝜆

𝜎 + 𝜈 − 𝜇
⟨a⟩ss +

𝜈

2(𝜎 + 𝜈 − 𝜇)
⟨a2⟩ss

)

from which we deduce the following approximation of the variance for 𝜈 ≪ 1

varss a = 𝜆𝜇

(𝜎 + 𝜈 − 𝜇)2

(
1 + 𝜈

𝜎 + 𝜈 − 𝜇
+ 1

2

(
3 − 𝜆

𝜇

)
𝜈2

(𝜎 + 𝜈 − 𝜇)2
+ O(𝜈2)

)
(29)

which depends on 𝜈 and gives equation (21) in the limit 𝜈 → 0 (when dividing it byΔx2). Higher-order approx-
imations can be obtained iteratively by calculating the correlations ⟨aiai−k⟩ss in the same way and closing the
system by assuming that at order K , the last correlation term ⟨aiai−K−1⟩ss is zero (see section 6 in the sup-
porting information). Figure 6 shows the variance calculated iteratively to order K = 2, 5, and 20. High-order
expansions are needed to match the numerical simulations for 𝜈 > 0.1 s−1. For instance, for 𝜈 = 1 s−1, we
found numerically that varss a = 23.19. With K = 2 (given by the approximation (29)), 5, and 20, we found
varss a = 8.57, 22.81, 23.09, respectively.

If now we use the value of the variance obtained by this iterative procedure, we can update the parameters of
the gamma distribution (𝛼̃ = ⟨a⟩2

ss∕varss a and 𝛽 = varss a∕⟨a⟩ss) and plot the corresponding probability dis-
tribution function. Figure 6 shows that the updated theoretical distribution compares well with the numerical
data. The slight deviations seen in the tail (for ak > 35) result from the low number of extreme values in the
numerical simulations. The good agreement between the theoretical curve and numerical data demonstrates
that the advection velocity does not affect the type of the distribution but merely the variance varss a.

The calculations show that in contrast with theoretical predictions, the variance of the simulated samples
decreases with increasing 𝜈 because the cross correlation exhibits a longer-range dependence than theory
predicts. This introduces nonlocal effects, which take the appearance of diffusion. This is why the emigration
rate 𝜈 affects the statistical properties of the particle activity in contrast with the theoretical predictions (21).

In the sediment transport literature, the concept of nonlocal effects is used to describe situations in which the
particle flux in a given place depends not only on local conditions but also on hillslope conditions far upstream
or downstream of the point of measurement [Furbish and Roering, 2013]. For models based on random walks,
nonlocality is often associated with large jumps of the particles (relative to the size of the system) or correla-
tion of velocities [Tucker and Bradley, 2010]. Here nonlocality arises because the spatial cross correlations are
nonzero (see below) and the calculation of the local variance (in cell i) requires the knowledge of the spatial
cross correlations over a significant distance from cell i (depending on the emigration rate 𝜈), whereas for a
genuinely local advection process in a steady state, these spatial cross correlations should vanish. Another way
of looking at the issue of nonlocality is to express the mean Poisson rate ⟨ai⟩ as a convolution sum. Assuming
that the system reaches a steady (but not necessarily homogeneous) state and taking the ensemble average
of the Langevin equations (15), we can recast the latter system of equations in matrix form

A ⋅ ⟨a⟩ = 𝚲 (30)

where 𝚲 is the column vector (𝜆i)1≤i≤M and A is an M × M lower bidiagonal matrix, whose main diagonal
elements are 𝜎i − 𝜇i + 𝜈i (1 ≤ i ≤ M) and the lower diagonal entries are −𝜈i−1 (2 ≤ i ≤ M) (all other entries are
zero). The inverse of a lower bidiagonal matrix is a lower triangular matrix L, whose entries can be calculated
exactly (see section 12 in the supporting information). So we deduce that

⟨a⟩ = L ⋅ 𝚲 (31)
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Figure 7. Covariance (spatial cross correlations) ⟨aiai+r⟩ss − ⟨ai⟩2
ss for the Langevin equations (15) (dots) under steady

state conditions, with 𝜆 = 10 s−1, 𝜎 = 5 s−1, 𝜇 = 4 s−1, 𝜈 = 1 s−1, and for the process b(x, t) given by equation (21)
(solid line).

or said differently, this means that the Poisson rate at cell i depends on what happens upstream of it

⟨ai⟩ = i∑
k=1

Lij𝜆j for 1 ≤ i ≤ M (32)

Similar iterative calculations can be made with the autocorrelation function (see section 7 in the supporting
information) and to first order, we find

𝜌(t) = exp(−(𝜎 + 𝜈 − 𝜇)t), (33)

which introduces a dependence on 𝜈. Note that this autocorrelation function is the same as the one found in
one-cell systems [Ancey et al., 2008]. Figure 5 compares the approximate and empirical autocorrelation func-
tions for 𝜈 and shows a fairly good agreement between both, confirming the effect of 𝜈 on the autocorrelation
time: the higher the emigration rate, the shorter the autocorrelation time tc = (𝜎 + 𝜈 − 𝜇)−1.

As a summary, the analysis of the Langevin equations (15) shows that the common assumption
(𝜈iai − 𝜈i−1ai−1)∕Δx → 𝜕x(ūpb)—used above in the derivation of equation (18)—is valid only when Δx → 0.
For finite lengths Δx (a case that is mostly encountered whenever we perform laboratory experiments or
numerical simulations using discretized equations), the approximation 𝜕x(ūpb) ≈ (𝜈iai − 𝜈i−1ai−1)∕Δx is
incorrect. The essential difference with deterministic motion is that ai fluctuates randomly and so does the
difference ai−1 − ai , which means that even under steady state conditions (zero gradient on average), there is
particle transport due to local fluctuations of particle activity. As shown by Figure 7, the analysis of the spatial
covariance shows that the covariance ⟨aiai+r⟩ss−⟨ai⟩2

ss is non zero for neighboring cells (up to |r| = 2), whereas

theory predicts a zero covariance (see equation (21)). Fluctuations attenuate the peak of covariance at r = 0
(i.e., the variance varss a) but exacerbate correlations between neighboring particles. This also explains why
diffusion-like effects occur when there are sharp gradients in the particle activity (see Figure 3).

The moral of the story is that for a finite cell size Δx, using birth-death Markov processes is quite useful
for describing the local behavior of particles, but taking the ensemble average does not lead exactly to the
desired advection equation for the particle activity. Slight deviations between the actual and predicted par-
ticle activities may occur as a result of finite spatial correlations between neighboring particles that produce
diffusion-like spreading of particles. This behavior brings to mind the recent findings by Furbish and Roering
[2013]: these authors defined the particle flux in the form of a convolution integral involving the distribu-
tion of particle travel distances and mobilization rates at all upslope positions (this is the hallmark of nonlocal
transport). Next, they demonstrated that under certain conditions (the first two moments of the travel dis-
tance distribution must be finite), this particle flux can also be recast in the form of an advection-diffusion
equation, giving the appearance of local behavior. Similarly, we find that the apparently diffusive effect reflects
a nonlocal process (nonzero spatial correlation, expression of ai as a convolution sum). Even though diffu-
sion is absent from the original process in equation (15), the nonlocal properties can be approximated by a
local diffusion operator. The mean behavior is slightly disturbed by this effect, but the statistical properties of
particle activity (analyzed through the Poisson density b) are profoundly affected.
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Figure 8. Example of simulation of the Langevin equations (15) with 𝜆 = 2 s−1, 𝜎 = 5 s−1, 𝜇 = 4 s−1, and 𝜈 = 5 s−1

(D∗ = 2.5 m s−2). The dots represents the mean activity averaged over 500 samples obtained by solving equation (15)
numerically. The solid line shows the advective diffusive behavior predicted by equation (36) at times t = 0, 1, 2, 4, and
8 s. Same conditions as for Figure 3.

3.4. Approximation of the Diffusive Behavior
We have seen that nonlocal effects occur in the advection of particles at constant velocity and that these
effects look like diffusion. The idea developed here is to interpret the difference 𝜈iai − 𝜈i−1ai−1 as transport
and diffusion but with a diffusivity coefficient that depends on the cell length Δx. In this way, if we are only
interested in the mean behavior, we can mimic the results obtained by solving the Langevin equations (15)
using deterministic partial differential equations such as equation (20). To this end, we will draw an analogy
with the numerical diffusion introduced by upwind methods when solving advection equations numerically
[e.g., see LeVeque, 2002, section 8.6.1].

The idea is to introduce a central difference scheme. Let us break down the difference 𝜈i−1ai−1 −𝜈iai as follows

(𝜈iai − 𝜈i−1ai−1) =
1
2
(𝜈i+1ai+1 − 𝜈i−1ai−1) −

Δx2

2

𝜈i+1ai+1 + 𝜈i−1ai−1 − 2𝜈iai

Δx2
(34)

According to the classical decomposition used in finite-difference methods, this equation can be interpreted
as follows: the first term on the right-hand side represents advection at rate 𝜈, which is modulated by the
second contribution representing diffusion at rate D∗ = 𝜈Δx2∕2 = ūpΔx∕2. This scheme is known to lead to
unstable schemes for deterministic problems with s = 0 [LeVeque, 2002], but here we will show that it mimics
the diffusive effects induced by noise transmission from cell to cell and furthermore, from the numerical point
of view, it is conditionally stable (see section 8 in the supporting information).

Making use of the decomposition (34), we find that the continuum equivalent of the Langevin equations (15)
is a stochastic partial differential equation

𝜕

𝜕t
b(x, t) + 𝜕

𝜕x
(ūpb) = 𝜕2

𝜕x2
(D∗b) + 𝜆̃ − (𝜎 − 𝜇)b +

√
2𝜇b𝜉b (35)

Now taking the ensemble average of equation (35) leads to the evolution for c(x, t) in the form of an
advection-diffusion equation

𝜕

𝜕t
c(x, t) + 𝜕

𝜕x
(ūpc) = s(c) + 𝜕2

𝜕x2
(D∗c) (36)

with s(c) = 𝜆′ − (𝜎−𝜇)c. Here we touch a sore point of this approximation. In the classical advection-diffusion
equation (1), the diffusivity does not depend on the spatial scale, whereas here D∗ depends on the cell (mesh)
size Δx. Rigorously, for Δx → 0, we have D∗ → 0 since ūp remains finite. So this approximation is just an
expedient to mimic the expected mean behavior for c.

As an example, we consider the spreading of an initial pulse of sediment, which has been studied in Figure 3.
Figure 8 shows the same data as shown in Figure 3 and the numerical solution to the advection-diffusion
equation (36) (obtained using the method of lines and Adam-Moulton technique). This solution captures well
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the particle activity behavior at different times, confirming the occurrence of the diffusion-like effects in the
Langevin equations (15) where there are sharp activity gradients. We also tested the capacity of the underlying
Langevin equation (35) to predict the statistical properties of particle activity. For instance, it can be shown
(see section 9 in the supporting information) that for processes affected by diffusion, the sample variance for
a cell of length Δx is

var a = 𝜇𝜆

𝜅2

𝓁c

Δx2

(
Δx
𝓁c

+ exp

(
−Δx
𝓁c

)
− 1

)
(37)

with 𝓁c =
√

D∗∕(𝜎 − 𝜇) the correlation length. Figure 6 shows the sample variance varss a as a function of 𝜈.
There is clearly a significant decrease in varss a with increasing 𝜈. The theoretical curve (37) including
space-dependent diffusion roughly captures the data and so can be used as a first approximation of the
sample variance.

4. Inclusion of Particle Velocity Fluctuations

As highlighted in section 1, much of the attention in the literature has been paid to diffusion-reaction
equations and in that particular case, there are sound results showing how diffusion-reaction equations
(equation (1) with ūp = 0) can be derived within the framework of birth-death Markov processes [Gardiner,
1983; Gillespie and Seitaridou, 2013]. Concerning sediment transport, we have recently shown that under
flow conditions that are very commonly encountered, particle motion can be broken down into advection
and diffusion. In that case, diffusion refers to the spreading of particles arising from the velocity fluctuations
(i.e., the differences between the mean velocity ūp and their instantaneous velocity us) [Ancey and Heyman,
2014]. There is an ongoing debate about the probability distribution of the particle velocities, with at least two
distinctive results: exponential distribution [Lajeunesse et al., 2010; Furbish and Schmeeckle, 2013; Fan et al.,
2014] and Gaussian-like distribution [Martin et al., 2012; Ancey and Heyman, 2014]. Regardless of the actual
distribution for us, it can be shown that particle diffusion is the limit of a local jump process, i.e., particles can
be transferred from one cell i to its neighboring cells i − 1 or i + 1 with probabilities, respectively,

p4
i = Prob

(
N = n + ri−1

i ; t + 𝛿t
)
= diNi𝛿t (38)

and
p5

i = Prob
(

N = n + ri+1
i ; t + 𝛿t

)
= diNi𝛿t (39)

where di is the local diffusion rate. The forward Kolmogorov equation (11) must then be updated. The reader is
referred to Ancey and Heyman [2014] for the detail. Making use of the Poisson representation, we have shown
that this updated forward Kolmogorov equation (11) is equivalent to the Langevin equations

dai(t) =
(
𝜆i − ai(𝜎i − 𝜇i) + 𝜈i−1ai−1 − 𝜈iai + di(ai+1 + ai−1 − 2ai)

)
dt +

√
2𝜇iaidWi(t) (40)

which are similar to equation (15) apart from the terms di(ai+1 + ai−1 − 2ai). If we define the (bulk)
diffusivity D as

D = lim
Δx→0

Δx2di (41)

then the continuum version of these new Langevin equations when Δx → 0 is

𝜕

𝜕t
b(x, t) + 𝜕

𝜕x
(ūpb) = s(b) + 𝜕2

𝜕x2
(Db) +

√
2𝜇b𝜉b (42)

We deduce that the ensemble average of equation (42) leads to an advection-diffusion equation for the
particle activity c

𝜕

𝜕t
c(x, t) + 𝜕

𝜕x
(ūpc) = s(c) + 𝜕2

𝜕x2
(Dc) (43)

which is very close to the classical form equation (1). The statistical properties of the Langevin equations (42)
have been investigated in our earlier papers [Ancey and Heyman, 2014]. For a homogeneous steady state, we
have found for the mean value, the covariance, and the variance

⟨b⟩ss =
𝜆̃

𝜎 − 𝜇
, covss b(r) = 1

2
𝜇

𝜎 − 𝜇

⟨b⟩ss

𝓁c
exp−r∕𝓁c , and varss b = 1

2
𝜇

𝜎 − 𝜇

⟨b⟩ss

𝓁c
(44)
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with 𝓁c =
√

D∕(𝜎 − 𝜇) the correlation length. Again, we can express surprise as these properties are unaf-
fected by the advection velocity. Numerical simulations of the Langevin equations (40) (see section 10 in
the supporting information) lead to the same observations as for pure advection: the mean behavior is fairly
well described, but the statistical properties (variance and autocorrelation time) are poorly estimated by
equation (44).

5. Concluding Remarks

An essential question for all modelers is the choice of the governing equations and the scale of representa-
tion. In morphodynamic models, the use of phenomenological equations such as the Meyer-Peter and Müller
equation has long been the common choice for modeling bed load transport. The key problem is that sed-
iment transport exhibits considerable spatial and temporal fluctuations, whereas morphodynamic models
predict mean behaviors for water, bed, and sediment transport. This makes the direct comparison between
theory and observation quite difficult in practice [Recking et al., 2012]. These models are also less successful
at providing relevant responses to key issues such as bed form formation [Balmforth and Provenzale, 2001].
This failure has often been seen as the lack of physical details in the governing equations [Seminara, 2010].
For the water phase, models of greater complexity are now commonly used, e.g., two- or three-dimensional
Reynolds equations with simple closure equations for turbulence [Wu, 2007]. For sediment transport and bed
dynamics, how to develop more realistic models while keeping a reasonable level of complexity remains a
challenge [Paola, 2011]. In this respect, we are firmly convinced that the theory of birth-death Markov pro-
cesses offers a convenient framework for describing the dynamics of sediment transport. Its main strength
lies in its proximity to the fundamental principles of mechanics: we define control volumes and perform mass
balances over them. In the strict limit Δx → 0, we are able to formally derive an advection-diffusion equation
for c —equation (43)—that is fairly close to the classic form (1).

In this paper, we take a stab at modeling the dynamics of sediment transport, but we do not aim to describe
its full complexity. To render the problem of microscopic description tractable, we used the following working
assumptions: (i) we considered particles of the same size (so there is neither grain sorting nor bed armor-
ing, two processes that are known to play an important part in sediment transport), (ii) we do not distinguish
between saltating and rolling particles (whereas there is evidence that particle velocity depends significantly
on the type of movement), (iii) particle activity is the key random variable that controls the strength of fluctua-
tions of particle transport rate and bed elevation, and (iv) transport rates are sufficiently low for the birth-death
framework to be relevant (if many events occur within a short time span, then this framework cannot be
applied).

While the treatment of the diffusion term on the microscale and macroscale is well-established, we have seen
with the stochastic numerical simulations of section 3 that for finite cell sizes Δx, the advection term intro-
duces diffusion-like effects. The important consequence is that in most practical applications, for which we
work with finite values of Δx, the actual observed diffusion of particles D̂ is slightly higher than the intrinsic
particle diffusivity D:

D̂ = D + D∗ = D
(

1 + 1
2

Pe
)

(45)

with D∗ ≈ ūpΔx∕2 and Pe = ūpΔx∕D is the Péclet number. Depending on Péclet number (i.e., the respec-
tive values of D, Δx, and ūp), the difference between the observed and intrinsic diffusivities may be quite
significant and lead to errors in the calculation of the statistical properties of particle activity. Our numerical
simulations show that this “trick” is sufficient to provide more realistic predictions of the sample variance and
autocorrelation function (see section 10 of the supporting information) for Pe ≥ 2. For Pe < 2, the use of
the intrinsic diffusivity alone is sufficient to provide correct estimates of the variance (or other moments) and
autocorrelation function.

We have also illustrated with examples that the error created in using the advection-diffusion equation (1) for
computing mean particle activity is small except in regions marked by sharp variations in the particle activ-
ity or activity gradients. Similar observations were made with the stochastic Burgers equation, a nonlinear
equation that is close to the advection-diffusion equation (1) and in which particle activity is replaced by veloc-
ity: the solution to which the scheme converges depends on the mesh size [Hairer and Voss, 2011] and velocity
discontinuities are smoothed out even in the absence of diffusive terms [Audusse et al., 2015]. This peculiar

ANCEY ET AL. STOCHASTIC ADVECTION DIFFUSION 18



Journal of Geophysical Research: Earth Surface 10.1002/2014JF003421

behavior of stochastic advection seems to be a common feature of stochastic partial differential equations
(as the topic is quite recent, we may miss the broader view). We have also shown that the diffusion-like effect
reflects a nonlocal transport behavior (see section 3.3). Similarly to the recent findings by Furbish and Roering
[2013], we have found that this nonlocal behavior can be closely approximated by scale-dependent diffusion,
i.e., a mathematical operator related to local conditions.

As a last remark, we would like to emphasize that the comparative advantages of birth-death Markov pro-
cesses over other microscopic approaches lie in the possibility of deriving simple continuum equations that
represent the mean behavior at the macroscale and the availability of numerical techniques to solve the for-
ward Kolmogorov equation (11) or its Poisson representations (15) and (40). Sediment transport is discrete
by nature, but it is highly desirable that continuum equations are made available to keep the computational
cost of numerical simulations as low as possible to facilitate their incorporation into morphodynamics models.
The most recent random walk models lead to anomalous advection-diffusion equations involving fractional
derivative operators [Schumer et al., 2009; Ganti et al., 2010; Zhang et al., 2012; Sun et al., 2015], for which numer-
ical techniques are much more complicated than those used for solving the advection-diffusion equation (1).
Discrete particle models and automaton models have attracted growing attention in recent years [Narteau
et al., 2009; Tucker and Bradley, 2010; Hodge and Hoey, 2012; Gabet and Mendoza, 2012]. While their numeri-
cal implementation is simple, there is no technique for deriving continuum equations from the rules used to
describe particle behavior in this environment.

Appendix A: Experimental Conditions

The data presented in Figure 1 were presented in an earlier publication [Heyman et al., 2014]. The time series
data along with a Mathematica notebook for computing the particle transport rate and visualizing the time
series can be obtained from the following data repository http://dx.doi.org/10.6084/m9.figshare.1480646.
Further information on the experimental facility can be found in two PhD theses [Mettra, 2014; Heyman, 2014]
(available from http://http://library.epfl.ch/theses/).

The flume was 2.5 m long and 8 cm wide. The mean streambed inclination 𝜃 was 7% (4.0∘), but the mean
bed slope varied between 6% and 8.4% over time due to bed form development. The water flow depth was
h = 1.37 cm on average, leading to a depth-averaged water velocity u = 53 cms−1. The sediment was made of
gravel with mean diameter d50 = 6.25 mm (d30 = 6.0 mm and d50 = 6.8 mm) and density 𝜌p = 2690 kgm−3.
The flume was supplied with gravel at a constant feeding rate qs = 0.37 pps (about 0.12 gs−1).

The resulting Shields number was Sh = 𝜌wh sin 𝜃∕((𝜌p−𝜌)d50) = 0.09 (𝜌w =103 kg2 m−3 the water density), the
Froude number Fr = u∕

√
gh = 1.44, the flow Reynolds number Re = uWh∕(W + 2h)∕𝜈w = 5400 (W = 8 cm

the channel width, 𝜈w = 10−6 m2 s−1 the kinematic viscosity of water), the boundary Reynolds number
Re′ = u∗h∕𝜈w = 605 (u∗ =

√
gh sin 𝜃 the shear velocity). We deduce that the flow is fully turbulent and super-

critical. Additional experiments have shown that the critical Shields number (threshold for incipient motion)
determined by visual inspection should be slightly lower than 0.07 [Mettra, 2014]. The Shields diagram gives
an upper bound for the critical Shields number Shc close to 0.06 [Buffington, 1999] for Re′ ≈ 600. If we take this
value, the transport stage is T = Sh∕Shc − 1 = 0.5 and so we are just above the threshold of incipient motion.
Note that the relative submergence h∕d50 = 2.2 is low (very shallow flow).

Upon leaving the channel, each particle hits a metallic plate and the impact is recorded by a small accelerom-
eter operated at 20,000 Hz and tied to the plate. A peak-over-threshold method is then applied to detect
the times of consecutive particle impacts [Mettra, 2014]. If sufficient damping is provided to avoid spurious
vibrations of the plate, this method ensures excellent time resolution in passage detection. As the grain size
distribution is narrow, little error is made when converting the number of particles per unit time to a (vol-
umetric) sediment transport rate. The same measurement system is used at the flume inlet to measure the
incoming sediment transport rate.

Using the accelerometer, we record the arrival time of particles at the flume outlet. We count the number n(t)
of particles hitting the plate at the outlet between times t and t + Δt (with Δt = 60 s the sampling time) and
define the sediment transport rate as

qs(t) =
n(t)
Δt

. (A1)
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The experiment was run for 50 h. As the experiment started with a flat bed, a near-equilibrium state was
observed after a few hours (once the mean streambed slope was adjusted and bed forms developed). The
raw data included 67,972 events. We decided to keep the last 60,000 events. Said differently, the time series
shown in Figure 1 corresponds to data acquired for times t > 8.73 h after the experiment started. The number
of events was selected somewhat arbitrarily: we knew that the effects of the initial conditions (flat bed) must
be dissipated before the system reached a near-equilibrium state, but as this state was poorly constrained (as
shown by Figure 1), we had limited capacity to determine when the system reached steady state by merely
looking at the time series qs(t). Monitoring the mean streambed slope (averaged over the flume length) in
parallel with qs(t) revealed that it took approximately 6 h for this slope to converge to its steady state [Mettra,
2014].

Notation

Here we provide the list of variables used in the paper, their meaning, physical units, and the reference to the
equations or sections, in which they were introduced.

Variable Meaning
a, a Poisson rate.

ai Poisson rate for cell i, equation (12).
b Poisson density (m−1) equation (16).
B flume width (m).
c mean particle activity (m).

D particle diffusivity (ms−2).
di local diffusion rate (m−1 s−2), equation (36).

D∗ fake diffusivity (ms−2), equation (40).
 deposition rate per unit area (s−1), equation (7).
 entrainment rate per unit area (s−1), equation (6).
f probability density function in the a space.
g gravity acceleration g = 9.81 ms−2.
𝓁c correlation length (m), equation (39).
N number of moving particles within the window.⟨N⟩ mean number of particles within the window.
P probability density function.

Pe Péclet number Pe = ūpΔx∕D.
q̄s time-averaged particle sediment rate (pps).
qs instantaneous particle sediment rate (pps).

r position vector (m).
t time (s).

tc autocorrelation time (s).
ūp mean particle (advection) velocity in ms−1.
W Wiener process (s1∕2).
Wi local Wiener process (s1∕2), equation (15).

x streamwise coordinate (m).
𝛿r , 𝛿t , 𝛿x Kronecker’s delta ((m−1), (s−1), (m−1), respectively).

𝛿t time increment (s).
Δx space increment (m).
𝛾 particle activity (random variable) (m).
𝜅 difference 𝜅 = 𝜎 − 𝜇 (s−1).
𝜆 entrainment rate (s−1).
𝜆̃ entrainment rate per unit length (m−1 s−1).
𝜆′ volumetric entrainment rate (ms−1).
𝜇 collective entrainment rate (s−1).
𝜈 emigration rate (s−1).
𝜌 autocorrelation function.
𝜌p particle density (kg m−3).
𝜎 deposition rate (s−1).
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𝜛p particle volume (m3).
𝜉 Gaussian noise increment (s−1∕2).
𝜉b space and time Gaussian noise increment (m−1∕2 s−1∕2) .
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