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Gravity-driven flows can erode the bed along which they descend and increase
their mass by a factor of 10 or more. This process is called “basal entrainment.”
Although documented by field observations and laboratory experiments, it remains
poorly understood. This paper examines what happens when a viscous gravity-driven
flow generated by releasing a fixed volume of incompressible Newtonian fluid
encounters a stationary layer (composed of fluid with the same density and viscosity).
Models based on depth-averaged mass and momentum balance equations deal with
bed-flow interfaces as shock waves. In contrast, we use an approach involving the
long-wave approximation of the Navier-Stokes equations (lubrication theory), and in
this context, bed-flow interfaces are acceleration waves that move quickly across thin
stationary layers. The incoming flow digs down into the bed, pushing up downstream
material, thus advancing the flow front. Extending the method used by Huppert
[“The propagation of two-dimensional and axisymmetric viscous gravity currents
over a rigid horizontal surface,” J. Fluid Mech. 121, 43-58 (1982)] for modeling
viscous dam-break waves, we end up with a nonlinear diffusion equation for the flow
depth, which is solved numerically. Theory is compared with experimental results.
Excellent agreement is found in the limit of low Reynolds numbers (i.e., for flow
Reynolds numbers lower than 20) for the front position over time and flow depth
profile. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4947242]

. INTRODUCTION

A fundamental property of free shear turbulent flows (e.g., jets and plumes) is that they can
entrain ambient fluid through their boundaries, and such entrainment causes them to increase
their volume. The mechanisms of ambient fluid incorporation and mixing are fairly well under-
stood in uniform (unstratified and nonrotating) environment: shear-driven instabilities (e.g., Kelvin-
Helmholtz billows) developing along the interface between the flow and quiescent fluid capture
parcels of ambient fluid and incorporate them into the flow.! Although the details of such incorpora-
tion are complicated and involve different length scales (from turbulent to laminar scales), the bulk
entrainment rate g can be related to macroscopic flow properties such as the mean flow velocity
U and interface area S: g = eSU, where e is the (dimensionless) entrainment coefficient.? The
success of this formulation lies in the simple dependence of the entrainment rate on the macroscopic
properties through dimensionless numbers (e.g., the Richardson, Froude, and Reynolds numbers),
which explains why it is routinely used for describing industrial and natural flows.>~

Another form of entrainment—hereafter referred to as basal entrainment—also occurs in natu-
ral buoyancy-driven flows down sloping beds (e.g., turbidity currents in the ocean, snow avalanches
and debris flows on mountain slopes). Many of these flows can erode the bed along which they
descend and thereby increase the volume of material initially mobilized. A field survey conducted
by Sovilla, Burlando, and Bartelt® revealed that avalanche mass could increase by a factor from
1 to 12 (the relative mass ratio between release and runout was 4.6 on average in their survey).
For debris flows, mass increase factors as large as 50 (between initiation and deposition) have
been reported.” Field observations and scaling considerations have provided ample evidence that
basal entrainment plays a key part in the dynamics of gravity driven flows. Two examples illustrate
this link between mass (or volume) and dynamics. First, the distance L traveled by the flowing
mass is usually related to the total volume L oc V" with n in the 0.25-0.39 range.® Further, erosive
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flows have higher mobility (or undergo lower bed resistance) than constant-volume flows.” Second,
gravity driven flows involving turbulent particle suspensions (e.g., turbidity currents in the ocean,
powder snow avalanche in mountain areas) increase their volume by entraining ambient fluid and
scouring the bed. Basal entrainment is a necessary condition for the flow to counterbalance the
dilution effect induced by the incorporation of ambient fluid. In the absence of basal entrainment,
the current dies out as the buoyancy force decreases.'"!!

In contrast to entrainment in free shear turbulent flows, little consensus has emerged as to how
gravity-driven flows erode their beds. Among the various scenarios proposed so far, three mechanisms
seem most plausible:”'>!3 (a) entrainment by progressive erosion of the bed along the interface be-
tween the flow and streambed,'4~!” (b) massive entrainment during passage of the front,'8 (c) stepwise
or slab-by-slab failure underneath the leading edge.'>?" Recent field surveys provided evidence that
for glaciers and debris flows, the primary mode of entrainment is progressive bed erosion,?'*?> while
for snow avalanches,%>*?* entrainment occurred within the tip region (mostly by frontal ploughing).

Elaborating a consistent theoretical framework for modeling basal entrainment has attracted
considerable attention in recent years.”> The most common approach involves depth-integrated
mass and momentum balance equations (an approach also referred to as the Saint-Venant approach
in reference to the pioneering work of Adhémar Barré de Saint-Venant to model flood propagation

in rivers). Within the Saint-Venant framework, the mass balance equation reads>28
oh 0
9+ 2 (i) = E, |
ot 6x( ) M

where E denotes the entrainment rate [m s~'], i the depth-averaged velocity, & the flow depth, ¢ time,
x the downstream position (the x-axis lies approximately parallel to the bed). While this equation can
be derived rigorously by taking the depth-average of the local mass balance equation and applying
proper kinematic boundary conditions, it is not closed as the entrainment rate E is unresolved. Little
is known about the parametric dependence of E on the flow variables it and 4. For saturated granular
materials, Iverson'> used scaling arguments to suggest that E o« 7i~!, but the most recent experiments
focusing on dry granular flows reveal more complicated behavior.” For turbidity currents, Parker
et al.'* found that E is a strongly varying function of the bottom shear stress (or shear velocity), but
there is considerable scatter among their data such that this function provides only a mean trend.

In the absence of closure equations for E, authors have questioned the relevance of using
a mass balance in the form given by (1). For instance, for dry granular flows, Capart, Hung,
and Stark? suggested tracking the interface between the stationary layer and flow by using the
depth-averaged kinetic energy balance equation, while mass conservation was considered over a
large control volume including the stationary and flowing grains. There are further impediments to
the use of depth-averaged mass balance equation (1).

First, erosion is a process along an interface, which involves local variables such as the shear
rate, shear and normal stresses whereas the depth-averaged governing equations rely on the global
flow variables & and /. Any averaging procedure implies loss of information and there is no guarantee
that the entrainment rate can be expressed in the form of a simple algebraic relationship E = f (i, h).

Second, the bed-flow interface may change nature when taking the depth-average of local
conservation equations. For incompressible fluids that satisfy the no-slip condition at solid bound-
aries, the bed-flow interface can be defined as the surface along which the particles start to be
entrained and accelerate from zero to a finite velocity. As sketched in Figure 1, the local ve-
locity field is continuous in the vicinity of the interface, while the shear rate exhibits a jump
across the interface. The interface is thus a second-order singular surface called an acceleration
wave (as first-order kinematic fields are continuous, but those of order 2 are discontinuous).>? For
compressible materials and fluids that do not satisfy the no-slip condition, the bed-flow interface
is a first-order singular surface called a shock wave,*® associated with a jump in the fluid velocity
and/or density. In the Saint-Venant approach, the moving material flows at a constant velocity i(x,)
across the depth, and so there is a velocity jump between the bed and flow. In that case, the bed-flow
interface is also a shock wave and so, for incompressible Newtonian fluids, it changes nature.

Third, shock waves are mathematical idealizations of transition layers seen as infinitely thin.
Actually, transition layers have a finite thickness (in the present case, the transition layer is the
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velocity profile shear rate profile

FIG. 1. Sketch of the bed-flow interface. When the no-slip condition applies, the shear rate profile is discontinuous across
the bed-flow interface, while the velocity profile is continuous (no jump).

layer within which bed particles accelerate vigorously and reach the bulk flow velocity i#z). When in
practice, the thickness of the transition layer is not much smaller than the eroding flow’s depth scale,
determining the position of the bed-flow interface is complicated. For instance, in experiments con-
ducted by Armanini et al.’! on saturated granular flows and loose beds, there was no sharp transition
between motionless and moving particles, which made it difficult to estimate the thickness of the
transition layer and the position of the bed-flow interface.

For all these reasons, it is advantageous to address a simple problem of basal entrainment, for
which we do not need to appeal to the Saint-Venant approach to derive the equations of motion.
In this paper, we investigate the motion of a finite volume of an incompressible Newtonian liquid
suddenly released on a horizontal surface. This is the so-called dam-break problem, which has been
intensively studied in recent years, especially in the context of lubrication theory.3>*° In contrast to
the Saint-Venant approach, the governing equations are obtained by expanding the local mass and
momentum equations into power series of the aspect-ratio number € = H, /L., where H, and L, are
flow depth and length scales, respectively, and seeking matched asymptotic solutions. In the absence
of entrainment, there is a self-similar solution to the first-order problem, referred to as Huppert’s
solution.>* The innovative point of this paper is to investigate the effect of basal entrainment on the
flow dynamics: let us imagine that over a certain length (£} in the following), the flow can erode a
finite-thickness layer composed of the same liquid. How are the flow dynamics (e.g., front position
with time xg(¢), flow depth profile 4(x,t)) altered by basal entrainment? Can we track the bed-flow
interface b(x,t) and estimate an entrainment rate?

We begin by outlining Huppert’s approach to viscous dam-break waves and by addressing how
it can be extended to take basal entrainment into account (see Sec. II). While the dam-break prob-
lem for homogeneous Newtonian fluids is well known within lubrication theory, basal entrainment
involves tracking a moving interface (which is an acceleration wave), and so adds considerable
complexity to the initial problem. Scaling considerations demonstrate that this interface moves
quickly and rapidly reaches the fixed bottom when the stationary layer is shallow or comparable to
the flow depth. On this basis, one can justify ignoring the initial phase during which the acceleration
wave propagates throughout the stationary layer and sets fluid in motion. It is then straightforward
to extend Huppert’s approach. We will then continue with a careful description of the experimental
protocol in Sec. III. In Sec. IV, we present and discuss our experimental results.

Il. THEORY
A. General problem

Let us consider that at time ¢ = 7, an elongated Newtonian gravity-driven flow encounters a
stationary layer of Newtonian liquid bounded by a lower solid boundary B(x) and the free boundary
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z=h(x, )

erodible bed

X z=B(x)
step

FIG. 2. Configuration of the flow. For x > xp, the viscous gravity current is in contact with a stationary layer composed of
the same material. The interface between the flow and bed is an acceleration wave of equation z = b(x, t). The fixed bottom
is denoted by B(x). A material surface is the contact discontinuity d(x,¢), which can be tracked experimentally by using
colored fluids (see Sec. III).

z = 0 (see Fig. 2). The Newtonian flow spreads along the stationary layer and entrains part of it. The
flow and stationary bed are composed of the same incompressible Newtonian liquid of viscosity u
and density o. Surface tension effects are assumed to be negligible compared to viscous forces.

Our analysis takes its inspiration from Huppert’s model** of viscous gravity-driven flows, and
so we will first recall how Huppert’s solution is derived within the framework of lubrication theory.
Then, we show how this solution can be extended to take basal entrainment into account when
the stationary layer is shallow or its thickness is comparable to the flow depth. In both cases, we
consider a two-dimensional flow in x and z, ignoring the cross-plane direction y.

B. Huppert’s solution for rigid bases

The elongated viscous flow is created by suddenly releasing a fixed volume of Newtonian
liquid from a reservoir at time ¢ = 0. Initially, this liquid flows over a rigid solid boundary until
the front reaches the stationary layer at x = xy,,. Within lubrication theory, i.e., in the limit of low
Reynolds and small aspect ratio numbers (the flow Reynolds number is Re = U.H./v where U,
denotes the velocity scale and v = p/0),** motion is dictated by the balance between the stream-
wise gradient of the pressure d,p and the cross-stream gradient of the shear stress d, 7, where p
and 7 denote the fluid pressure and shear stress, respectively. To first order, the pressure adopts a
hydrostatic form p = pg(h — z) and the shear stress reads T = ud,u (where u denotes the horizontal
velocity component). In this way we deduce the velocity scale

ap 0%u eL%g
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2

The first-order governing equations are then obtained by scaling the Navier-Stokes equations and
removing terms of order € or higher,
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where symbols with a hat represent dimensionless variables
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with ¢ time, (u,w) the velocity components in the Cartesian coordinate system of Fig. 2, h(x,t) the
free surface, and V}, the total volume of fluid (per unit width) released by opening the reservoir gate.
Conservation of mass leads to an exact equation for £
oh 19 (,50h
——--—=|P=—=|=0. 4
of 30x ( (9)2) @
There exists a similarity solution to this nonlinear diffusion equation when the volume of fluid V; is
fixed.>*3* This similarity solution for the flow depth is referred to as Huppert’s solution (it is also

known as the Barenblatt-Pattle solution in nonlinear diffusion problem),

N 3 13
hu(2,1) = “‘/S(E(f} - fz)) : (5)

where the similarity variable is
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where I' denotes the gamma function. Hereafter we use the superscript H to refer to self-similar
solution (5) derived by Huppert.3* The front position is denoted by

Rp(t) = 7' 7)

This solution sheds light on the flow behavior at sufficiently long times, i.e., after the influ-
ence of the initial conditions is no longer felt. At short times, the flow is influenced by inertia.
The transition between the inertia-dominated and long-term viscous regimes depends on the flow
Reynolds number and aspect ratio of the reservoir.** Dimensional arguments®* show that the
typical transition time during which the viscous and inertial forces are comparable is very short:
Ly ~ (V04g‘2v‘3)1/ 7= 0(0.1) s for the experiments presented in Sec. IV. Earlier experiments carried
out with highly viscous fluids confirm the relevance of this scaling.

~ 141175, (6)

C. Extension of Huppert’s solution for stationary layers

At time ¢ = t(, the flow front is about to enter the erodible domain, where a layer of fluid is
held initially at rest behind a backwards step (see Fig. 2). The stationary fluid lies between z = 0 and
z = B(x) < 0, defining a rigid base below which entrainment is impossible. The bed-flow interface
is denoted by b(x,t) and as discussed above, this interface is an acceleration wave. Another material
surface is of interest: the contact discontinuity d(x,t) separates the fluid coming from the reservoir
and that initially at rest (as we will see later, this interface can easily be tracked by using liquids of
different color in the flow and bed).

We consider the entrainment process to be made up of two successive phases: as the stationary
layer is initially at rest, there should be a short acceleration phase during which the bed material is
set into motion by the incoming current. Once in motion, the fluid from the bed flows together with
the fluid from the current in the total domain. During the acceleration phase, the kinematic boundary
condition at the bottom is replaced with a jump condition along the acceleration wave b(x,t)

[o-n] =0, ®)

where [[-] denotes the jump of the total stress across the acceleration wave b(x,t) oriented by the
normal vector n (o is the total stress tensor).>° There is no pressure jump across this interface and so
jump condition (8) expresses the balance between the shear stress and normal stresses on the surface
b(x,t). The no-slip condition also applies

u-n=0. )

The system of governing equations—consisting of the Navier-Stokes equations subject to boundary
conditions (8) and (9)—are too complicated to gain analytical traction. Yet, our guess is that the
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characteristic time ¢, associated with the acceleration phase is very short, typically ¢, ~ B2/v, where
B, denotes the depth scale of the stationary layer. This time arises, for instance, in the Stokes’
first problem (also called the Rayleigh problem), in which a sudden shear is applied to a quiescent
Newtonian fluid, and the Blasius problem, in which the growth of the viscous boundary layer is
studied.*! If we compare the typical time of viscous diffusion ¢. = B?/v to the flow time scale
T.=L,/U., we get

2,73
A~ tc B* gL*
o= = GS(E) = (10)

In the experiments presented below, we have € = O(1072) and B,/H, = O(1) so that . = 0(1073)
(for L, ~ 1 mand v ~ 1073 m? s!), which means that . is negligibly small compared to the typical
flow time scale. This implies that the characteristic time of the setting into motion of the fluid is so
short that the acceleration wave b(x,t) reaches the fixed bottom B(x) nearly instantaneously. In the
stationary layer, the fluid is sheared and separates from the upstream end of the bed, while the space
it creates is rapidly filled by the incoming current. In short, the first of the two processes happens so
quickly that it can be ignored, and the second process becomes dominant.

We are now in position of extending Huppert’s solution by considering that for xy,, < x <
Xstep + €hea, the no-slip condition no longer applies on a solid boundary at z = 0, but on the fixed
bottom z = B(x). The dimensionless velocity field is found to be

10h , , X
) = —— —2hz — B+ 2hB
u(x,z,t) > 9% (z z + ).
1 (6% (7 5 , 2B )
w(x,z,t) = -3 (W (g—hz +2hBz - B Z+T_h3) (11)
on\* dh B
— ) 2Bz-7*-B?) +—— (hz— Bz + B> - hB
+(8x)( e )+6x6x(z or ))

where the hats have been removed for the simplicity. Mass conservation implies that for x,, < x <
Xgtep + Chea the evolution equation for & reads

oh 10

oh 5\
o (a(hoc,r) - B(x)) ) = 0. (12)

Naturally, setting B = 0 leads to usual nonlinear diffusion equation (4). The total fluid in the system
is conserved, i.e., the volume per unit width of the fluid released by the dam-break (V;) together
with the bed fluid (£.,0/). When fluid is displaced below z = 0, this is balanced by fluid uplift
downstream, advancing the front xg(t), as shown in Fig. 2. Thus conservation of fluid gives

xp(t)
/ h(x,t)dx =V,
0

where xg(¢) is the value of x at the front such that A(xg,t) = 0. The upwards forcing of the bed fluid
means that xp, the actual front, lies further downstream than x g, the front position of the Huppert
solution on a rigid bed in (7) (see Fig. 2).

An asymptotic solution to the problem was sought as the dimensionless Huppert solution plus a
correction of order 64 = —B (the small depth of the bed), yet no solution was found that satisfied the
no-flux boundary condition at x = 0 whilst also remaining bounded in time. As the full analytical
solution to this problem was not readily obtained, we looked to numerical methods. While final
governing equation (12) is not dramatically different from that derived by Huppert,** the changes
mean that it is no longer possible to work with analytical solutions.

D. Numerical solution

The parabolic solver pdepe in MatLab was used to solve dimensionless problem (12) in order
to make a comparison with the experimental results. Note that the Galerkin method*? used in this
solver is unable to cope with shocks. We therefore smoothed the topography discontinuities at



053101-7 Bates, Andreini, and Ancey Phys. Fluids 28, 053101 (2016)

each end of the step by approximating the step as B(x) = —6h/2(tanh(a(x — X)) — tanh(a(x —
Xsep — Creq))) Where a is a free parameter. In practice, setting a = 1000 provided good results (for
a mesh size Ax = 0.5 mm, the thickness of the regularized step was 4 mm, i.e., 8Ax). The function
B(x) was chosen to approximate the stepped base as smoothly as possible. Using no-flux boundary
conditions at each end, we solved governing equation (12) for the flow depth. Then using Eq. (11),
we determined the velocity field for B < z < h(x,1).

Figures 3(a)-3(c) give examples of flow depth evolution for different stationary layer depths,
while Fig. 3(d) shows the effect of the bed thickness 6/ on front position. The position of the step
was Xye, = 50 cm and its length £,; = 50 cm. Initially, the fluid was contained in a reservoir of
length £,.; = 30 cm and the volume per unit width was V = 8 x 1073 m?. So the initial condition was
h = ho = Vy/Cres for 0 < x < €5 and zero elsewhere. The length and depth scales were L. =1 m
and H, = Vp/L, = 0.008 m. The front position xz was determined numerically as the furthest point
satisfying & > € with € = 107" m (e = Ax/5). For dry beds, front position did not depend on e,
but for stationary layers, the change in the flow depth profile near the leading edge made the front
position very sensitive to €.
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FIG. 3. Fluid collapse onto a stationary layer of length ¢ bed =0.5. ((a)—(c)) Flow depth profiles with progression from ¢ =2 s
to =100 s (from 7 =0.012 to 7 =0.63 dimensionless time). Profiles are plotted for 1 =2's, 8 s, 16 s, 26 s, 40 s, and 100 s
(=0.012, 0.05, 0.1, 0.16, 0.25, and 0.63 in dimensionless time). (a) Bed depth Sh=0 (non-entrainment). (b) 5h=0.375
(3 mm). (¢c) 6 h=0.75 (6 mm). (d) Front position with time for different heights & h of the stationary layer: solid line & h=0
(non-entrainment), dashed line Sh= 0.375, dotted-dashed line Sh= 0.75, dotted line Sh=1.5. The grey area indicates the
stationary layer. Computations for a Newtonian fluid of viscosity ¢ = 1 Pa s and density o = 1257 kg m™>.
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Several features emerge from Fig. 3. The first noticeable difference among the numerical solu-
tions to Eq. (12) with or without entrainment is the change in the flow depth profile. In the solution
for the no-entrainment case [see Fig. 3(a)], the head takes the form of a blunt nose whereas for
eroding flows, the head makes an acute angle with the bed surface. The second feature is that
the flow travels more quickly when it can entrain loose material. This can be anticipated if we
consider that the incoming flow slips along the bed surface and so can reach higher velocities than
non-eroding flows. Yet, the process is more complicated than this simple picture because front
acceleration depends on the stationary layer depth o4, as shown by Fig. 3(d). A more subtle feature
is the existence of waiting time solutions when the head approaches the stationary layer’s down-
stream limit: the flow forms an acute wedge-shaped leading edge until it reaches the end. Then the
front comes to a halt, while the fluid behind it continues to flow. The front steepens, and eventually
resumes its motion. This behavior can be expected since it is typical of the diffusive behavior of
viscous films with an acute leading edge.*** Figure 3(d) reveals that basal entrainment causes
the leading edge to stretch rapidly. Front acceleration is vigorous, and its strength depends on the
stationary layer depth dh. Yet, there is also a vigorous deceleration once the front has passed the
stationary layer’s rightmost end. At long times, there is little difference between solutions with and
without entrainment, and still less when the stationary layer increases in depth. So, in that case, the
local effects of basal entrainment on the flow dynamics are much more pronounced than the global
effects.

lll. EXPERIMENTAL FACILITY AND PROTOCOL
A. Experimental method and equipment

A 3.5 mlong by 10 cm wide inclinable flume was used for the experiments. The flume was made
with a poly(methyl methacrylate) (PMMA) base and had a 50 cm long viewing window on each
side. The observation area was fixed, so for this article a mobile pneumatic lock-gate was added in
order to release the material at the appropriate distance. Two shallow sheets of PMMA were placed
horizontally along the flume bottom and separated by a gap filled with fluid, so that the dam-break
current initially flowed over a rigid base, then over a finite layer of loose material—the stationary
layer—before continuing over a rigid base (see Fig. 4). The flume inclination was set to 0°.

A 2 W Diode-Pumped Solid State Nd:YAG laser with wavelength 532 nm was used with the
optical setup shown in Fig. 5 to create a vertical laser sheet down the center of the flume in the
observation zone, so that particle image velocimetry (PIV) could be performed. PIV is a flow visual-
ization technique in which a seeded flow is filmed at high speed so that the instantaneous velocities
can be found by comparing the distribution of seeds in two consecutive images.*® The seeds used in
this study were 20 um polyamide beads tagged with rhodamine 6G, a stain which is fluorescent in

mobile pneumatic lock-gate

e

camera 2: plan view

mobile reservoir back wall

laser sheet

back-lit panel Tstep step

{5 (@ camera 3: side view
L

Lped - camera 1: PIV with orange filter

entrainable zone

run-out zone

FIG. 4. Experimental setup including reservoir, lock-gate, step and stationary layer, and the location of the laser sheet. The
flume inclination is 8 = 0°, and the bed dimensions are £p.4 long by 6k deep.



053101-9 Bates, Andreini, and Ancey Phys. Fluids 28, 053101 (2016)
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Transparent bottom

Laser sheet
Prism

Scheimpflug condition

PIV Camera

FIG. 5. Sketch of the measurement system for the velocity profiles within the moving fluid. Because of the fluid/air interface
and the three-dimensional nature of the flows, we were forced to film the flow from below. When shooting images with a
camera whose sensor (CCD) is not parallel with the object, one can use the Scheimpflug principle, which involves tilting the
camera until the image plane (on the CCD), the lens plane, and the object plane (lit by the laser sheet) have a common line
of intersection.

green light. In this way only the particles in the central laser sheet were illuminated and only they
were filmed.

Three different high-speed cameras were used in the experiments. Camera 1 filmed the illu-
minated internal section of the flow through an orange filter: the light emitted by rhodamine had a
longer wavelength than that absorbed and the orange filter blocked the green light of the laser but
allowed the transmission of the emitted light. This camera was placed below the flume and filmed
through the transparent base and a prism, using a tilted lens for the Scheimpflug principle*® in
order to obtain clear images from a focal plane which was non-parallel to the image plane. Usually
PIV is performed by filming from the side, but the flow front in many of our experiments was
significantly curved in the cross-stream direction, and so images were acquired through the base to
avoid distortion at the flow front.

Camera 1 was a Basler A403kc camera, and was calibrated for each experiment using a grid
immersed in fluid in the flume. PIV measurements were taken in a 6.5-cm long central streamwise
section in the entrainment zone. Camera 2 (also a Basler A403k) filmed from above to show the
progression of the flow front, through a red filter if the laser was on. Camera 3 was used to film
through the observation panel in the side of the flume in order to obtain the flow and bed surface
elevation during entrainment. This was a Basler acA2000-165um USB 3.0 camera. A LED panel
provided backlighting.

To obtain measurements from camera 1’s images, we employed the velocity field calculated
using PIV between two images an appropriate time-step apart. This was then filtered with a signal
to noise ratio (SNR) of 1.3 and a local filter of 2.7, then all removed vectors were interpolated
linearly. All measurements were corrected for perspective using a calibration grid. The PIV soft-
ware used was the open source package MatPIV.*’ Strong velocity gradients reduce measurement
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accuracy,*® so steps were taken to minimize errors, such as choosing the optimum seeding density
and correlation window size. See the Appendix for uncertainties on the measurements.

B. Newtonian fluids

The experiments were carried out using glycerol (supplied by Alfa Aesar GmbH, Germany)
diluted to a 98.5% volume concentration aqueous solution for the first experimental campaign.
This was done because glycerol has a high affinity for water, and is unstable at high concentra-
tions, absorbing water vapour quickly from its surroundings. At this concentration, its density is
1257.5 kg m™3 + 0.5 kg m~3. As glycerol has a highly variable viscosity with temperature and
concentration, its viscosity was closely monitored and experiments were performed as close to
20 °C as possible.

Three experimental campaigns were undertaken (see Tables I and II). For campaign A, the fluid
was dyed with methylene blue and filmed from above over the entire flow length, and through the
50 cm long transparent side-panels, in order to obtain information about the bulk flow characteris-
tics, namely, the front position with time and the flow depth profile during entrainment. In campaign
B, the flow was seeded and filmed for PIV at the entry to the entrainment zone, in order to study the
internal dynamics of interaction between the incoming flow and the bed. Campaign C was devised
to determine the influence of inertia on the front propagation: to this end, larger volumes of fluid
were used. The experiments are detailed in Table II. In these experiments, we could no longer use
the transparent side panels, as the stationary layer was much longer and further downstream. Instead
the fluid was mixed with titanium dioxide powder so that it became white, and a red laser sheet was
projected diagonally from the flume side onto the flume bottom, so that over the stationary layer, the
front position could be estimated by looking at how the laser position moved.

The reservoir length ¢,.; was kept constant at 30 cm for most experiments of campaign A, and
50 cm for campaign C; only in the two runs A9 and A10 in which 1500 ml fluid was released was
the reservoir the shorter length of 20 cm. Taking inspiration from Didden and Maxworthy,*® we
chose X 50 that xy, > (0°gVy/u?)!/7, where Vj is the volume per unit width. This guaranteed
a dominant balance between gravity and viscous forces, with inertia playing a less significant role.
As xgep is the distance from the reservoir back wall to the step, it also includes the length of the
reservoir. The length of the stationary layer ;.4 was varied between 10 and 100 cm, and its depth
was either 3, 6, 9, or 12 mm.

TABLE I. Features of the experiments performed using glycerol for campaigns A and B: V initial volume released, €.
length of the reservoir, xyep, position of the step (stationary layer), £p.q length of the stationary layer, 6h bed depth, u
dynamic viscosity, H, flow depth scale, € aspect ratio, U, velocity scale, Re flow Reynolds number. The length scale was set
to L, =1 m for non-eroding flows and L. = X, for eroding flows.

Vv Cres Xstep oh Ched © H H, U.
Run (ml) (cm) (cm) (mm) (cm) (kg m™) (Pas) (cm) € (cms™h Re
Al 800 30 .. .. .. 1257 1.041 0.8 0.008 0.6 6
A2 800 30 50 3 50 1257 0.916 1.6 0.032 11.0 2
A3 800 30 50 6 50 1257 1.038 1.6 0.032 9.7 2
A4 800 30 50 9 50 1257 0.902 1.6 0.032 11.2 2
A5 800 30 50 6 30 1257 1.007 1.6 0.032 10.0 2
A6 800 30 50 6 10 1257 1.009 1.6 0.032 10.0 2
A7 800 30 60 6 30 1257 1.011 1.3 0.022 4.8 1
A8 800 30 70 6 30 1257 0.984 1.1 0.016 2.7 0.4
A9 1500 20 - e e 1257 0.843 1.5 0.015 4.9 1
Al0 1500 20 60 6 50 1257 0.835 2.5 0.042 38.5 14
Bl 800 30 50 3 50 1257 1.121 1.6 0.032 9.0 2
B2 800 30 50 6 50 1257 1.121 1.6 0.032 9.0 2
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TABLE II. Features of the experiments performed using glycerol for campaign C: V initial volume released, £,., length
of the reservoir, X, position of the step (stationary layer), £peq length of the stationary layer, 5k bed depth, u dynamic
viscosity, H, flow depth scale, € aspect ratio, U, velocity scale, Re flow Reynolds number.

\4 t res Xstep oh €bed o H H. U.
Run (ml) (cm) (cm) (mm) (cm) (kg m~?) (Pas) (cm) € (cms™h Re
C1 3200 50 e 0 e 1252 0.535 32 0.032 75.2 56
Cc2 4800 50 e 0 e 1252 0.525 4.8 0.048 258.7 296
C3 4800 50 140 12 100 1252 0.509 34 0.024 69.5 59
C4 3200 50 140 12 100 1252 0.497 2.3 0.016 21.1 12
C5 3200 50 140 6 100 1252 0.485 2.3 0.016 21.6 13
C6 4800 50 140 6 100 1252 0.480 34 0.024 73.7 66
(oy) 4800 50 140 3 100 1252 0.475 34 0.024 74.4 67
C8 3200 50 140 3 100 1248 0.468 2.3 0.016 22.3 14
c9 4800 50 140 3 50 1248 0.461 34 0.024 76.5 71
C10 3200 50 140 3 50 1248 0.452 2.3 0.016 23.1 15
Cl1 3200 50 140 12 50 1248 0.443 2.3 0.016 23.6 15
Cl12 4800 50 140 12 50 1248 0.436 34 0.024 80.8 79
C13 4800 50 140 6 50 1248 0.429 34 0.024 82.2 82
Cl4 3200 50 140 6 50 1248 0.423 2.3 0.016 24.7 17
C15 3200 50 231 6 50 1248 0.417 1.4 0.006 34 1
C16 4800 50 231 6 50 1248 0.413 2.1 0.009 11.5 7
C17 4800 50 231 12 50 1248 0.409 2.1 0.009 11.6 7
C18 3200 50 231 12 50 1248 0.406 1.4 0.006 3.5 1
C19 3200 50 231 3 50 1248 0.403 1.4 0.006 3.5 1
C20 4800 50 231 3 50 1245 0.397 2.1 0.009 11.9 8

For campaigns A and C, both the bed and the reservoir fluids were dyed the same color, but
for campaign B, two configurations were used for visualizing the flow. In a “reservoir run,” the
fluid released from the reservoir was seeded and the bed fluid was largely without seeds. The idea
here was to show a clear and measurable interface (the contact discontinuity d(x,#) in Figs. 1
and 6 (Multimedia view)) between the substrate and the avalanche. A “combined run” (where all
fluid was seeded) provides detailed velocity measurements in all of the system, but the interface
is not shown. The reader is referred to an earlier publication® detailing the tracking of the contact
discontinuity d(x,t). The reader can see the online video from which Fig. 6 (Multimedia view)
was extracted. In practice, it was easier to track the contact discontinuity surface d(x,?) than the
acceleration wave b(x,t): as shown in the video, the acceleration wave propagated quickly, but
its was associated with minute changes in the fluid velocity, which were barely detected by our
system.

FIG. 6. Raw image for the “reservoir run” configuration. The flow boundaries are highlighted. The incoming fluid is seeded
with polyamide microbeads tagged with rhodamine 6G. A vertical laser sheet lightens the flow and stationary layer. The
contact discontinuity d(x, ) is a material surface that deforms continuously with incoming fluid. As the image was taken
from below using the Scheimpflug principle (see Fig. 5), part of the flow behind the lit vertical plane is seen on the image.
(Multimedia view) [URL: http://dx.doi.org/10.1063/1.4947242.1]
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IV. EXPERIMENTAL RESULTS
A. Front position

We begin by analyzing the experiments performed to investigate the bulk dynamics of en-
training gravity-driven flows. The flow depth profile /(x,7) and the flow front position xp(r) were
studied, and compared with numerical solutions to extended Huppert’s model (12).

In Fig. 7 the flow front is plotted with time for campaign A. The most influential parameter is
the length of the stationary layer ;.4 as the front position is significantly increased with increasing
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FIG. 7. Front position against time: (a) effect of the stationary layer depth 64; (b) effect of the bed length £y; (c) effect of
the stationary layer location X .. In panel (a), the grey area indicates the stationary layer.
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FIG. 8. Comparing the numerical and experimental results for front progression in experiment A7: the dashed line marked
with dots shows the experimental measurements, while the solid line represents the numerical solution to extended Huppert’s
equation (12). The grey area indicates the stationary layer.

Crea [see Fig. 7(b)]. The bed depth 64 has a small effect [see Fig. 7(a)]: we retrieve the behavior
exhibited by numerical simulations [see Fig. 3(d)] with a vigorous acceleration controlled by the
bed depth, followed by a deceleration with, at long times, little difference between the different
curves. The position of the bed has no significant effect within the range considered in the long term
as the curves collapse on the same curve at long times [see Fig. 7(c)].

Figure 8 shows the (dimensional) front position with time for run A7. A numerical simula-
tion was performed and the front position was identified as the furthest point downstream with
h > 10~* m (this was slightly lower than the resolution of camera 3 used for tracking the front). The
comparison shows a close agreement over the entire domain—before the front reaches the station-
ary layer, while the front passes over the bed and after the front has left the bed—thus showing that
the extended Huppert’s model performs well at low Reynolds numbers.

How the basal entrainment affects front position can be explained using two arguments: a
current on a higher step has extra gravitational potential energy when it sinks into the bed and it
pushes downstream fluid upwards; and the increased distance between the current and the base leads
to reduced friction at z = 0 over the length of the stationary layer. The first factor enhances the front
position whilst it travels over the stationary layer, but this is expected to be reversed when the front
exits the erodible region over the forward step. The second factor must thus play an important role
in flow evolution.

B. Flow depth

Figure 9 shows the flow depth profiles at time intervals of 6 s for a non-entraining and an
entraining dam-break waves (runs Al and A7, respectively). When the flow first contacts the sta-
tionary layer, the flow depth profile is composed of the original dam-break wave plus the initially
flat surface of the stationary layer. The mobility of the bed then allows the discontinuity at the
front to be quickly smoothed out in a diffusive way. For example, comparing experiment A7 with
experiment Al in Fig. 9 shows the significant influence of the stationary layer on the flow depth
profile. This is in agreement with the numerical results of Fig. 3. Further, there is a kink in the
surface just downstream of the step, which connects the incoming dam-break wave with the flow
over the stationary layer at all times (this kink can be defined as a local curvature maximum). This
shows that after the material has moved out onto the stationary layer, it flows away faster than the
supplying gravity-driven flow.

When the flow front reaches the end of the stationary layer, it is seen to slow down significantly
and even stop while the surface elevation increases (causing a significant change in the shape of the
leading edge), before flowing over the rigid base once more. Examining the side-view images, it
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FIG. 9. Flow depth profile (measurements taken at 6-s intervals). (a) Run Al (no entrainment). (b) Run A7 (with entrain-
ment). The initial profile was taken at the same time 7 (corresponding to the contact of the front with the stationary layer).

seems that the leading edge must steepen before the flow front is able to exit the erodible zone. This
phenomenon recalls the waiting-time behavior observed during the spread of viscous films with an
acute edge.**™ This is again in agreement with the numerical simulations presented in Sec. IT D.

Figure 10 shows the flow depth profiles for experiment A7. Both experimental and computa-
tional data are reported. The numerical solution to extended Huppert’s model (12) captures the flow
depth profile well. As it initially flows along the rigid bed, it is a non-entraining gravity current.
When the flow front arrives at the step, it meets the erodible material, and two important flow
changes occur. First, the current is no longer subject to the no-slip condition at z = 0 in this region,
instead this now applies at z = —¢h. Second, as the flow front makes contact with the bed surface,
there is no longer a contact line between the fluid and the rigid surface. Instead, the flow front
contacts the bed surface, creating a flow depth profile extending to the end of the stationary layer,
but which is initially zero downstream of the flow front.

When the flow front reaches the end of the bed, the flow depth increases until it is a few
millimeters high before it continues to flow over the rigid base. As no surface tension has been
considered, the model’s good reproduction of this bulging behavior means that it can be attributed
to the viscosity of the fluid alone, which controls the velocity gradient. The front must again travel
over a rigid base, with zero velocity at z = 0 and so the surface must be a certain elevation for it to
flow at a detectable velocity.

C. Internal velocity field

The bed fluid was set into motion almost instantaneously when the flow front made con-
tact with its surface. The motion was predominantly due to streamwise shear as the horizontal
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FIG. 10. Flow depth profiles for run A7 every 6 s from ¢ =0 s to # =36 s. The dots show the experimental data, while the
solid lines represent the numerical solution to nonlinear diffusion equation (12).
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velocity in the front was greater than the vertical velocity. After the bed fluid was set into mo-
tion, the current sank downwards near the step to replace the material that had been advected
downstream, explaining the convex shape of the contact discontinuity that we observed in our
experiments (see Fig. 6 (Multimedia view)). Using the “reservoir runs” (see Sec. III B), it was
possible to study the progression of the current as it flowed across the stationary layer surface,
by measuring the position of the flow parameters d,,,(t) (the maximum depth of the contact
discontinuity wave d). During the acceleration phase, d,,,, increased rapidly with ¢, then its progres-
sion slowed, and finally it tended towards a constant value &/, when the rigid base stopped
any further displacement from occurring. The progression of d,,,, can be fitted by the power-
law function cfmax(t) = A;#Bi + C; where {A3, B3,C3} = {-0.007,-0.573,0.186} and {A¢, Bs,Cs} =
{-0.0155,-0.6,0.334} for 3-mm- and 6-mm deep beds. This confirms that the acceleration phase
during which an acceleration wave propagated across the stationary layer was very short. The
typical duration ws 7. = 0(0.01) (i.e., 0.1 s in dimensional time).

In Fig. 11, the velocity components (i, @) at Az = 1 s (1 s after entry into the stationary layer)
found from run B2, are shown as contours and a vector field. The time At = 1 s corresponded to
the end of the second phase (long-time behavior). The motion was predominantly horizontal, as
shown by the vectors in the velocity field. The horizontal velocity & was strongest just above the
step. For run B2 (experiment with the deeper bed), the flow was faster than for run B1, and fluid was
in motion farther downstream after the same amount of time. For vertical velocity, the deeper bed
also induced stronger velocities, but it is more enlightening to look at the direction of the flow. Near
the flow front some regions of positive & were found, indicated by red arrows, which showed that
when the incoming flow penetrated into the stationary layer, it induced uplift of bed material further
downstream. This explains why, if the flow front x z(¢) was defined as the furthest point downstream
with A(x,t) > 0, it was further downstream than the front of the non-entraining flow xg(7). Note
there was a stagnant corner next to the step where there was no visible flow (as the fluid was
Newtonian, this corner was likely to be occupied by viscous eddies, whose velocities were barely
detectable during our experiments). Simulations (not shown here) showed that during entrainment,
the horizontal velocity was strongest above the step and decreased downstream and that there was a
region of upwards motion near the flow front. This is in agreement with the velocity fields obtained
from experiments after the same amount of time.

ul/U,

001 0.02 0.03 0.04 0.65

001 002 003 004 005
x/L*

FIG. 11. Velocity fields for horizontal and vertical velocities after 1 s with velocity vectors for a 6-mm deep stationary layer
(run B2). In the vertical velocity plot, the positive velocity vectors are highlighted in red.
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FIG. 12. Velocity profiles in 6 mm deep bed, after 1 s flow (run B2): comparison between PIV measurements (solid lines
and arrows) and model predictions (dashed lines).

Figure 12 shows the horizontal velocity profiles, which are typical of viscous fluids, except
for next to the step, where the velocity profile has a concave shape. Fluid in this corner was not
entrained or replaced by incoming fluid. The modelled internal flow features are compared with the
results from the experiments performed. The velocities are quantitatively similar to those observed:
the velocity magnitude and the shape of the profiles resemble the predictions. Near the step the
model performs well. Further downstream, the flow depth is overestimated, and thus the velocities
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FIG. 13. Front position with time. (a) Run C14, Re = 14. (b) Run C5, Re=13. (c¢) Run C3, Re =59. (d) Run C12, Re="79.
Dashed line: numerical solution to Eq. (12). Solid line: experimental data.
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are overestimated, yet the predicted values are well within the same order of magnitude as the
measurements. Note that for Newtonian flows under nonuniform flow conditions, the discrepancy
between theory and experiment reaches the same order of magnitude.’® The most likely reason for
this is the great sensitivity of u to errors in the computation of 4 and d,A.

D. Inertial effects

Comparing the modelled front position with the front position found from experiments, we
are able to infer some limitations of the model. Figure 13 shows the front position with time for
Reynolds numbers ranging from 13 to 79. The comparison with run A7 [see Fig. 8] shows that
the earlier stages of front propagation were very sensitive to the Reynolds number. For Re close to
unity, the extended Huppert’s model captures front position from the earliest times (after the gate
opening) to the longest. For Re = O(10), the numerical solution to Eq. (12) slightly overestimates
front position until the front reached the stationary layer. Then, there is a decent agreement between
the experimental and numerical data with a deviation that does not exceed a few percent [see
Figs. 13(a) and 13(b)]. At larger Reynolds numbers, the deviation further increases between the
experimental data and the numerical solution. The gap is reduced at long times once the front has
passed the downstream end of the stationary layer. While the deviation between data and simulation
is noticeable in Figs. 13(c) and 13(d) at short and intermediate times, the lag time between these
remains short (typically less than 1 s).

V. CONCLUSION

This paper presents a simplified analysis of the mechanisms and effects of basal entrainment by
laminar gravity-driven flows. The motivation was the highly complex problem of basal entrainment
by geophysical flows such as avalanches and debris flows. A simple theoretical model was derived
from the Navier-Stokes equations within the framework of lubrication theory. This was permitted
as the time scale for the acceleration of the bed material from rest was found to be very short
(typically 0.1 s in our experiments). Mass conservation was used to form evolution equation (12).
The resulting system was similar to that of Huppert®* with a correction due to a shallow stationary
layer below z = 0. The problem was not analytically tractable, and so, in order to compare it with
our experimental results, we computed the flow depth and internal velocities by solving Egs. (12)
and (11) numerically.

Dam-break experiments were devised, in which a viscous dam-break flow was generated by the
sudden release of a fixed volume of fluid along a horizontal boundary. The bottom first comprised
a rigid base and then a bed of erodible material (the same material as the fluid in the flow). When
the released current made contact with the surface of the shallow stationary layer for the first
time, it almost instantaneously accelerated the bed fluid from rest. Afterwards, the current flowed
under gravity down the step, displacing the bed fluid downstream, and forcing some downstream
fluid upwards, thus advancing the flow front. In this way the front position underwent a permanent
increase after entrainment compared to the no-entrainment case. Yet, as soon as the front had
reached the end of the stationary layer, it underwent a vigorous deceleration and in the end, there
is little difference in the front position between flows with or without basal entrainment. PIV was
used in the entrainment zone to measure internal velocities away from the sidewalls, and it was
found that velocities were stronger when the depth of the stationary layer was increased. Differential
seeding of the bed and the current allowed the identification of the flow/bed interface, which made it
possible to monitor its progression.

With our physical intuition, we did not anticipate that a simple lubrication model like Hup-
pert’s would perform so well in this situation. The model showed good agreement in the following
comparisons:

e The modeled surface was a good reproduction of that found in experiments.
e In both model and experiments, the presence of a stationary layer accelerated the flow front

XF(I).
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e The progression of the flow front was in close agreement in model and experiments.

o Similar velocity distributions were found in the PIV analysis and the model results, but the
relative error between theory and experiment was as high as 50%.

e The model performed fairly well over longer distances, even with a lower viscosity fluid
(i.e., at higher Reynolds numbers).

While the Newtonian model has sometimes been used to describe the flow behavior of natural
materials such as snow and debris suspensions,’'3? the majority of existing approaches rely on
more elaborate constitutive equations.’> Moreover, for natural gravity-driven flows, basal entrain-
ment occurs mostly on steep slopes, whereas here we focus on a horizontal setup. So there is
no direct application of the results presented here to real flow conditions. Yet, our study sheds
light on the mechanisms involved in basal entrainment and the most convenient way to quantify
these. We provide evidence that the whole layer of loose material is entrained quickly once the
flow makes contact with the stationary layer: an acceleration wave propagates across the bed and
sets fluid into motion. As this process occurs on very short times (typically less than 0.1 s in
our experiments), we can consider that the whole layer underneath the incoming flow is mobi-
lized instantaneously. The consequence is that the modeling is quite simple: the flow depth is
instantaneously increased by the thickness of the stationary layer. Experiments show that resulting
governing equation (12) performs well in the limit of low Reynolds numbers. This process brings to
mind other instances of fast basal entrainment of loose material in avalanches'® and debris flows.?’
It should also be noted that extended Huppert’s equation (12) can be cast in a form reminiscent of
mass balance equation (1) used within the Saint-Venant approach for modeling eroding flows by
taking it = —og(h — B)*0.h/(3u) and E = 0 (consistently with our results, which show that basal
entrainment occurs instantaneously and so the entrainment rate £ should drop to zero).
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APPENDIX: ERROR QUANTIFICATION

Quantification of errors in PIV is difficult, and therefore defining strict error bounds on (&, w) is
troublesome. The other errors originating from measurements are discussed here.

o Volume/mass of fluid. The mass was measured by weighing the container before and after the
fluid had been extracted to be put in the flume reservoir. This was accurate to within 10 g.
During the flow, some fluid was lost down the sides of the inserted steps. The maximum
estimate for lost fluid is 1.5 ml based on the size of the two thin gaps either side, which is
maximum 0.18% of the 800 ml Newtonian fluid released for campaign A.

e The setup lengths were measured with a tape measure or ruler with 1 mm markers, and
therefore are accurate to within around 1 mm.

e Viscosity of glycerol. This was a tricky parameter to control due to the great sensitivity of
u to any change in air temperature or humidity. An Ostwald viscometer tube was used to
measure viscosity for campaigns A and C. From the different tests we made, we deduced that
the uncertainty on u was around 1%. The PIV experiments of campaign B were performed
earlier than campaigns A and C. For that campaign, the viscosity was calculated by measuring
specific gravity of the glycerol concentration (using a hydrometer) and reading its viscosity
from a table.

o Measurements from cameras 2 and 3. Using the calibration grids, camera 2’s resolution was
roughly 2 pixels/mm and camera 3’s resolution was around 3 pixels/mm. Thus measurements
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FIG. 14. Space-time plot of flow front from camera 2.

from these two cameras (flow depth and front position) can be estimated to be accurate to
within 1 mm, taking into account effects such as shadows in camera 2 and surface curvature
in camera 3. In Fig. 14, a time-space plot is shown to illustrate the progression of the front.
It was created by sampling a central line of pixels at each time step. This figure shows the
problem of calculating the position of the front as it passed over the stationary layer. The
front position was found using image processing techniques in MatLab, which identified the
interface between the dark color of the flowing material and the light color of the rigid base.
The flow front contains uplifted bed material, and so the stationary layer was also chosen to
be dyed blue. Unfortunately, this meant that camera 2 could not provide accurate flow front
measurements over the stationary layer, and measurements had to be supplemented with data
from camera 3.
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