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a b s t r a c t 

Herschel–Bulkley materials can be set in motion when a sufficiently high shear stress or body force is 

applied to them. We investigate the behaviour of a layer of Herschel–Bulkley fluid when it is suddenly 

tilted and subject to gravitational forces. The material’s dynamic response depends on the details of its 

constitutive equation. When its rheological behaviour is viscoelastoplastic with no thixotropic behaviour, 

the material is set in motion instantaneously along its entire base. When its rheological behaviour in- 

volves two yield stresses (static and dynamic yield stresses), the material must be destabilised before 

it starts to flow. This problem is thus similar to a Stefan problem, with an interface that separates the 

sheared and unsheared regions and moves from top to bottom. We estimate the time needed to set the 

layer in motion in both cases. We also compare the solution to the local balance equations with the so- 

lution to the depth-averaged mass and momentum equations and show that the latter does not provide 

consistent solutions for this flow geometry. 

© 2017 Published by Elsevier B.V. 
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. Introduction 

Viscoplastic fluid theory has long been used to approximate the

omplex rheological behaviour of natural materials such as snow

nd mud, particularly their transition between solid- and fluid-like

tates [1] . The theory’s strength lies in its capacity to describe flow

nitiation and cessation using a single constitutive equation. Nat-

ral materials can also entrain the bed on which they flow and,

n this case, it is tempting to see basal entrainment as a form of

ielding induced by the passage of the flow [2–4] . 

Various processes are at work when bed materials are set in

otion. Among these, two are expected to play a major part: the

ncrease in the normal and shear stresses applied to the bed sur-

ace, and the decrease in the shear strength relative to gravitational

orces. The first process is certainly the easiest to investigate exper-

mentally and theoretically. The Stokes problem provides a theoret-

cal perspective: fluid is set in motion by applying a shear stress

o its boundary or by moving that boundary at a constant veloc-

ty [5,6] . The second process can be studied by suddenly apply-

ng a body force to the fluid initially at rest. For convenience, this

aper refers to this problem as Stokes’ third problem. For Newto-

ian fluids, there exists a similarity solution to this problem, which

hows that the fluid is instantaneously set in motion and virtu-

lly all of the fluid layer is entrained even though the effects far
∗ Corresponding author. 
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rom the boundary are exponentially small [6] . Herschel–Bulkley

aterials display a more complex dynamic response to a sudden

hange in the stress state than do Newtonian fluids. This is be-

ause of their ability to remain static when the stress state lies be-

ow a certain threshold, although they yield when the stress state

oves above it. This paper investigates Stokes’ third problem for

erschel–Bulkley fluids. 

The key issue in Stokes’ first and third problems is the exis-

ence of an interface separating the yielded and unyielded flows.

f this interface exists, then one should be able to determine its

ropagation velocity and, thereby, the entrainment rate (at least

n ideal cases, such as Stokes’ problems). For Stokes’ first problem

nd classic Herschel–Bulkley materials, there is no interface and

he material is set in motion instantaneously over its whole depth

7,8] . For Stokes’ third problem and Herschel–Bulkley materials ex-

ibiting thixotropy, recent studies have posited the existence of in-

erfaces moving at constant velocity [2,3] , but the formal proof is

acking. 

The problem of determining entrainment rates has also been

ddressed within the framework of depth-averaged equations (see

9] for a review). As the mass and momentum balance equations

re averaged, the interface between sheared and unsheared flows

s systematically treated as a shock wave (its propagation veloc-

ty must satisfy the Rankine–Hugoniot equation regardless of the

onstitutive equation, see Section 2.1 ). Although depth-averaging

eads to governing equations that are simpler to solve, they are

ot closed. The governing equations must be supplemented by clo-

ure equations that specify how local variables (such as the bottom

http://dx.doi.org/10.1016/j.jnnfm.2017.03.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jnnfm
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnnfm.2017.03.005&domain=pdf
mailto:christophe.ancey@epfl.ch
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Fig. 1. Setting in motion a volume of fluid suddenly tilted at an angle θ . 
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shear stress and the entrainment rate) are related to bulk quanti-

ties (such as the depth-averaged velocity and flow depth). To date,

most closure equations for non-Newtonian fluids have been based

on empirical considerations and thus lack consensus [9] . 

This paper’s objective is to explore the possibility of fluid-solid

interfaces for Stokes’s third problem and Herschel–Bulkley fluids.

It is the continuation of previous studies devoted to Stokes’ first

[7,8] and second [10] problems. We begin by setting out what

we refer to as Stokes’ third problem ( Section 2 ). We focus on

Herschel–Bulkley fluids and outline the current state of the art in

modelling Herschel–Bulkley fluids. The paper strays from the clas-

sic form of the Herschel–Bulkley constitutive equation in order to

take advantage of recent developments in the rheometrical inves-

tigation of viscoplastic materials. Indeed, the classic form assumes

that the material behaves like a rigid body when the stress state

is below a given threshold, whereas in basal entrainment prob-

lems we expect the material’s behaviour in its solid state to af-

fect the entrainment dynamics. Our literature review led us to

consider two types of Herschel–Bulkley fluids: simple Herschel–

Bulkley fluids, whose rheological behaviour is well described by a

one-to-one constitutive equation, and non-simple Herschel–Bulkley

fluids, whose rheological behaviour exhibits shear-history depen-

dence. We demonstrate that the details of the constitutive equation

have a great deal of influence on the solution to Stokes’ third prob-

lem. In Section 3 , which is devoted to simple Herschel–Bulkley flu-

ids, we show that the material is set in motion instantaneously. By

contrast, non-simple Herschel–Bulkley materials do not start mov-

ing spontaneously; they must first be destabilised. A front subse-

quently propagates through the static layer and sets it in motion

( Section 4 ). For non-simple Herschel–Bulkley materials, we also

show that in the absence of slip, the depth-averaged equations do

not require a closure equation for the entrainment rate, but the

solution to these equations is physically inconsistent. 

2. Stokes’ third problem 

The literature refers to two Stokes problems. Stokes’ first prob-

lem refers to the impulsive motion of a semi-infinite volume of

Newtonian fluid sheared by an infinite solid boundary. Stokes’ sec-

ond problem concerns the cyclical motion of this volume sheared

by an oscillatory boundary [6] . These two problems have also been

investigated for viscoplastic materials [7,8,10] . 

A related problem concerns the setting in motion of a layer of

fluid of depth H , initially at rest and suddenly tilted at an angle

θ to the horizontal (see Fig. 1 ). Contrary to the two Stokes prob-

lems above, we consider a volume that is not bounded by an in-

finite plate, but by a free surface. As this problem bears some re-

semblance to the original Stokes problem, this paper refers to it

as Stokes’ third problem (mainly for convenience). Previously, it
as partially studied for Herschel–Bulkley flows [2,3] and Drucker–

rager fluid [4] . 

.1. Governing equations 

We consider an incompressible Herschel–Bulkley fluid with

ensity ϱ; its constitutive equation is discussed in Section 2.2 . The

uid is initially at rest. There is a free surface located at z = 0 , with

he z -axis normal to the free surface and pointing downward. We

lso introduce the z ′ -axis, normal to the free surface, but pointing

pward. The x -axis is parallel to the free surface. At time t = 0 ,

he volume is instantaneously tilted at an angle θ to the horizon-

al. We assume that a simple shear flow takes place under the ef-

ects of gravitational forces and that the flow is invariant under any

ranslation in the x -direction. The initial velocity is 

 (z, 0) = 0 . (1)

t the free surface z = 0 , in the absence of traction, the shear

tress τ is zero 

= 0 at z = 0 . (2)

 key issue in Stokes’ third problem is the existence of a propa-

ation front z = s (t) (i.e. a moving interface between the sheared

nd stationary layers) and the boundary conditions at this front.

or Stokes’ first problem, shear-thinning viscoplastic fluids behave

ike Newtonian fluids: the momentum balance equation reduces to

 linear parabolic equation, and the front propagates downward in-

tantaneously [7,8] . The question arises as to whether this is also

he case for Stokes’ third problem. 

Let us admit that the interface moves at a finite velocity v f .

he dynamic boundary condition at this interface is given by a

ankine–Hugoniot equation 

 −� u ( u · n − v f ) + σ · n � = 0 , (3)

here � f � denotes f ’s jump across the interface [11,12] . In the ab-

ence of slip 

 = 0 at z = s (t) , (4)

his equation implies the continuity of the stresses across the in-

erface 

 τ � = 0 and � σzz � = 0 , (5)

here σ zz is the normal stress in the z -direction. If the mate-

ial slips along the bed-flow interface at a velocity u s , then the

ankine–Hugoniot equation implies that the shear stress exhibits a

ump across the interface, while the normal stress is continuous 

 τ � = −�u s v f and � σzz � = 0 . 

he first relationship has often been used in the form v f =
� τ � / (�u s ) , which fixes the entrainment rate when the other vari-

bles are prescribed [3,13,14] . Internal slip in viscoplastic materials

s only partially understood. It may be a consequence of shear lo-

alisation or shear banding in thixotropic viscoplastic fluids [15,16] .

n the rest of the paper, we assume that the no-slip condition ap-

lies at the interface, and so the boundary condition is given by

quation (5) . 

For this problem, the governing equation is derived from the

omentum balance equation in the x -direction 

 

∂u 

∂t 
= �g sin θ − ∂τ

∂z 
. (6)

o solve the initial boundary value problem (2) –(6) , we need to

pecify the constitutive equation. 
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Fig. 2. Evolution of the velocity profile for De = 0 . 1 , Re = 10 , Bi = 0 . 5 and n = 1 / 3 . 

We report the computed velocity profiles at times ˆ t = 0 . 1 , 0.2, 0.5, 1, 2, 5 and 10. 

Numerical simulation with N = 10 0 0 nodes. 
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.2. Constitutive equation 

For simple shear-flows, the Herschel–Bulkley constitutive equa-

ion reads 

˙ γ = 0 if τ < τc , 

τ = τc + κ| ̇ γ | n if τ ≥ τc , 
(7) 

here τ c denotes the yield stress, ˙ γ = d u/ d z the shear rate, n the

hear-thinning index (as in most cases n ≤ 1) and κ the con-

istency. This equation essentially relies on a phenomenological

asis. A tensorial equation can be derived by using a von Mises

ield criterion to define the yield surface (i.e. the surface sepa-

ating sheared from unsheared regions) [1] . The interpretation of

q. (7) is classic: for the material to flow, the shear stress τ must

xceed a threshold τ c , called the yield stress. When τ < τ c , the

aterial remains unsheared. 

The existence of a true yield stress was long debated. It is now

ell accepted that for a class of fluids referred to as simple yield-

tress fluids , Eq. (7) closely describes the rheological behaviour in

teady-state simple-shear flows [17,18] , and in a tensorial form, the

erschel–Bulkley equation offers a correct approximation of three-

imensional flows, notably with regards to the von Mises criterion

or yielding [19] . This means that for these fluids in steady state

iscometric flows, the shear rate tends continuously to zero when

he shear stress approaches the yield stress. For non-simple yield

tress fluids, e.g. those exhibiting thixotropy, the shear rate cannot

e given a value when τ → τ c : indeed, there may be no homoge-

eous steady-state flow when the shear rate drops below a finite

ritical value ˙ γc [17–22] . This also entails that the material exhibits

 static yield stress τ 0 > τ c that differs from the dynamic yield

tress τ c in Eq. (7) . The steady state constitutive equation reads 

= τc + κ| ̇ γ | n if | ̇ γ | ≥ ˙ γc , (8)

ith τ0 = τc + κ ˙ γ n 
c . For 0 < | ̇ γ | ≤ ˙ γc , the rheological behaviour ex-

ibits complex properties (time dependency, a thixotropy loop,

hear banding, aging and shear rejuvenation, or minimum in the

ow curve) depending on the material [16–18] . Various approaches

ave been proposed to incorporate the effect of shear history in

he constitutive equation, but a general framework of the underly-

ng mechanisms is still lacking [16,20,23,24] . For the sake of sim-

licity, we assume that as the shear rate increases from zero, the

hear stress must exceed τ 0 for a steady state flow to occur. When

he shear rate decreases from a sufficiently high value in a steady-

tate regime, the shear stress follows the flow curve (7) continu-

usly even for | ̇ γ | < ˙ γc [21,25–27] . Thus, flow cessation and fluidi-

ation cannot be described by a one-to-one constitutive equation. 

Prior to yielding, a Herschel–Bulkley material is often consid-

red to behave like an elastic solid. A simple idea is then to sup-

lement the constitutive equation (7) with an equation reflecting

he elastic behaviour for τ < τ c , but this leads to inconsisten-

ies such as the non-uniqueness of the yield function due to fi-

ite deformations (and thus normal stresses) in the solid mate-

ial [28] . One alternative is to use a viscoelastoplastic constitutive

quation [29] , which extends Oldroyd’s viscoelastic model to plas-

ic materials [30] . Although the model is consistent from a con-

inuum mechanics’ point of view and experimentally [31] , it in-

olves nontrivial differential operators (Gordon–Schowalter deriva-

ives), which make analytical calculations intricate. Here, we follow

acaze et al. [32] , who suggested neglecting the nonlinear differ-

ntial terms in order to end up with an approximate constitutive

quation for simple shear flows 

1 

G 

∂τ

∂t 
= ˙ γ − max 

(
0 , 

| τ | − τc 

κ| τ | n 
)1 /n 

τ, (9) 

here G is the elastic modulus. Under steady state conditions, this

quation leads to the Herschel–Bulkley model (7) . 
. Solution to Stokes’ third problem for simple 

erschel–Bulkley fluids 

.1. Dimensionless governing equations 

We introduce the following scaled variables 

 → U ∗ ˆ u , z → H ∗ ˆ z , t → T ∗ ˆ t , and τ → 

μU ∗
H ∗

ˆ u (10)

ith U ∗ = �gH 

2 sin θ/μ the velocity scale, H ∗ = H the length scale,

 ∗ = H ∗/U ∗ the time scale, μ = κ(U ∗/H ∗) n −1 the bulk viscosity. We

lso introduce the Reynolds, Bingham and Deborah dimensionless

umbers 

e = 

�U ∗H ∗
μ

, Bi = 

τc 

μU ∗
H ∗

, and De = 

μU ∗
GH ∗

. (11)

he governing equations reduce to a nonhomogeneous linear hy-

erbolic problem 

e 
∂ ̂  u 

∂ ̂  t 
= 1 + 

∂ ̂  τ

∂ ̂  z ′ , (12) 

e 
∂ ̂  τ

∂ ̂  t 
= 

∂ ̂  u 

∂ ̂  z ′ − F ( ̂  τ ) , (13)

ith F ( ̂  τ ) = max 
(
0 , | ̂  τ | − Bi 

)1 /n 
ˆ τ/ | ̂  τ | . The boundary and initial

onditions are ˆ u = 0 at ˆ z ′ = 0 , ˆ τ = 0 at ˆ z ′ = 1 , and ˆ τ = ˆ u = 0 at
ˆ 
 = 0 . The analysis of the associated characteristic problem shows

hat the material starts moving at its base instantaneously when

he initial thickness H is sufficiently large, i.e. for Bi < 1 (see

ppendix A ). The disturbance propagates toward the free surface

t velocity ˆ c = 1 / 
√ 

Re De . The time of setting in motion is defined

ere as the time 

ˆ 
 c = 1 / ̂  c = 

√ 

Re De (14) 

eeded for this disturbance to reach the free surface. If we use the

raditional form (7) for the Herschel–Bulkley constitutive equation

i.e. with a rigid behaviour for τ < τ c ), then this time drops to zero

s G → ∞ and De → 0. In the absence of elastic behaviour, no re-

axation phase occurs and the setting in motion is instantaneous

the velocity profile also matches the steady state profile instanta-

eously). 

.2. Numerical solutions 

Numerical solutions to the problem (12) –(13) can be obtained

sing the method of characteristics (see Appendix A ). Fig. 2 shows

n example of the evolution of the velocity profile for a particular

et of values of De, Re, Bi and n . In short time periods ( ̂ t < ̂

 t c ), the
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Fig. 3. Evolution of the shear-stress profile for De = 0 . 1 , Re = 10 , Bi = 0 . 5 and n = 

1 / 3 . We report the computed velocity profiles at times ˆ t = 0 . 1 , 0.2, 0.5, 1, 2, 5 and 

10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Flow curve. We assume that when the material is at rest, it behaves like a 

rigid body. When the shear stress exceeds a threshold called the static yield stress 

τ 0 , it starts moving, but until the shear rate exceeds a critical shear-rate ˙ γc , there 

is no steady state. When the shear rate is increased above this critical value, the 

material behaves like a Bingham fluid. If the shear rate is decreased from a value 

˙ γ > ˙ γc , then the shear stress follows another path marked by the down arrow. In 

that case, it can approach the zero limit continuously, when the shear stress comes 

closer to the static yield stress τ c . Inspired from Ovarlez et al. [15] . 
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material starts deforming along its base and accelerating as a re-

sult of the body force. The velocity varies linearly close to the bot-

tom, whereas the upper layers of the material remain unsheared.

At ˆ t = ̂

 t c , the initial disturbance reaches the free surface and the

entire depth is now sheared. For ˆ t slightly longer than t c , there is

a phase of elastic adjustment, reflected by a strong deceleration

(by a factor of 5 in Fig. 2 ) and a bumpy velocity profile. At longer

time periods ( ̂ t > 5 ̂ t c ), the velocity approaches its steady-state pro-

file, characterised by a shear region for ˆ z ′ ≤ Bi and a plug flow for

ˆ z ′ > Bi . 

Fig. 3 shows the stress evolution. At short time periods ( ̂ t < ̂

 t c ),

the shear stress varies linearly near the bottom and is zero in the

upper layers. The elastic adjustment phase entails the propagation

of shear waves that dampen quickly. At long time periods ( ̂ t > ̂

 t c ),

the shear stress is close to its steady state profile ˆ τ = 1 − ˆ z ′ . 

4. Solution to Stokes’ third problem for non-simple 

Herschel–Bulkley fluids 

When the fluid exhibits a static yield stress τ 0 that is larger

than its dynamic yield stress τ c , it is sufficiently rigid to stand

sudden tilting without deforming instantaneously as long as τ 0 >

ϱgH sin θ . However, in such a case, if the material is destabilised lo-

cally (see below), a front may propagate downwards from the point

of destabilisation. This is the result of the fluid’s destructuration

during yielding . For the sake of simplicity, we focus on a Bing-

ham fluid ( n = 1 ), the results of which can be easily extended to

Herschel–Bulkley fluids. 

We consider a thixotropic Bingham fluid, whose constitu-

tive equation depends on its shear history, as follows (see

Section 2.2 and Fig. 4 ) [15] { 

˙ γ = 0 if τ < τc , 

τ = τc + κ| ̇ γ | if τ ≥ τ0 for increasing ˙ γ , 

τ = τc + κ| ̇ γ | if τ ≥ τc for decreasing ˙ γ . 

(15)

In Stokes’ third problem, when the layer is suddenly tilted, the

shear stress adopts a linear profile in the absence of motion (i.e.

when the material behaves like a rigid body): τ (z) = �gz sin θ . If

the layer thickness exceeds the critical depth h 0 = τ0 / (�g sin θ ) ,

the whole layer is set in motion instantaneously because its base

yields instantaneously (see Section 3 ). We therefore consider layers

whose thickness H satisfies h 0 > H > h c with h c = τc / (�g sin θ ) .

If this layer is not disturbed, it will stay at rest indefinitely. Con-

trary to the previous section, we need to alter the initial condition

in order to create motion. There are many ways of doing so and,

therefore, many initial boundary value problems can be addressed

depending on the initial velocity disturbance and stresses applied

to the boundaries. Here, we consider the simplest case, in which
e apply a constant shear stress τ c at the free surface (so that the

hole layer is prone to yielding) and we impose an initial velocity

isturbance, which is necessary to destabilise the layer. If the shear

tress applied at the bottom surface is lower than τ c , then a plug

unsheared) layer quickly forms between the free surface and shear

ow, and we thus have to track two interfaces: one correspond-

ng to τ = τ0 (bed erosion) and the other to τ = τc (plug layer),

hich makes the problem more complicated. So, in the following

ubsection, we will not address every possible boundary condition,

ut merely focus on a simple case. Furthermore, we will show that

he initial velocity disturbance cannot be arbitrary, but must sat-

sfy certain constraints for the interface to propagate through the

tatic layer (see Section 4.2 ). 

.1. Dimensionless governing equations 

We make the problem dimensionless using the same scales as

n Section 3 . The dimensionless initial boundary value problem is

e 
∂ ̂  u 

∂ ̂  t 
= 1 + 

∂ 2 ˆ u 

∂ ̂  z 2 
, (16)

ubject to the boundary conditions at the free surface ˆ z = 0 

∂ ̂  u 

∂ ̂  z 
(0 , ̂  t ) = 0 . (17)

here is a moving boundary at ˆ z = ˆ s ( ̂ t ) for which the no-slip con-

ition holds 

ˆ 
 ( ̂  s , ̂  t ) = 0 (18)

hile the stress continuity (5) across this interface gives 

∂ ̂  u 

∂ ̂  z 
( ̂  s , ̂  t ) = − ˆ γc with ˆ γc = ˆ τ0 − Bi > 0 . (19)

he initial condition is 

ˆ 
 ( ̂ z , 0) = 

ˆ u 0 ( ̂ z ) for 0 ≤ ˆ z ≤ ˆ s 0 , (20)

ith ˆ u 0 > 0 . For the initial and boundary conditions to be consis-

ent, we also assume that ˆ u ′ (0) = 0 and ˆ u ′ ( ̂ s 0 ) = − ˆ γc . 
0 0 
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t̂

ẑ

A (ŝ0, dt̂)O

B (ŝ0 + dŝ, dt̂)C

û = 0 and ∂ẑû = −a∂ẑû = 0

û(ẑ, 0) = û0(ẑ)

Fig. 5. Incipient motion around point O (0, 0). At time t = 0 , we impose a velocity 

profile (20) to the layer 0 ≤ ˆ z ≤ ˆ s 0 , and so that the front is initially at point A. At 

time d ̂ t , the front has reached point B located at ˆ s + d ̂ s . Along segments OC and AB, 

boundary conditions (17) , and (18) together with (19) apply, respectively. 
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This initial boundary value problem is close to the Stefan

roblem, which describes the evolution in temperature within a

edium experiencing a phase transition. As in the Stefan problem,

he evolution equation (16) is a linear parabolic equation, but the

hole system of equations is nonlinear [33] ; this results from the

xistence of a moving boundary ˆ s ( ̂ t ) , which has to be determined

hile solving the system (16) –(19) . The present problem shows

wo crucial differences from the Stefan problem: firstly, there is a

ource term in the diffusion equation (16) , and secondly, the po-

ition ˆ s ( ̂ t ) of the moving boundary does not appear explicitly in

qs. (16) –(19) . These two differences have crucial effects on the so-

ution, notably the existence of a solution at all times. We address

his point in the next subsection. 

.2. Existence of a solution 

Contrary to the Stefan problem, the moving boundary ˆ s ( ̂ t ) will

ot start moving spontaneously. Part of the fluid must be desta-

ilised prior to incipient motion, and that is the meaning of the

nitial condition (20) . This is also consistent with the thixotropic

ehaviour described by constitutive equation (15) . 

To show this, let us consider what happens in the earliest mo-

ents of motion by using the Green theorem. Initially the interface

osition is at ˆ s (0) = ˆ s 0 (point A in Fig. 5 ), and after a short time
ˆ t , it has moved to ˆ s 0 + d ̂ s (point B in Fig. 5 ). The displacement

ncrement can be determined by differentiating the boundary con-

ition (18) 

d 

d ̂

 t 
ˆ u ( ̂  s , ̂  t ) = 

∂ ̂  u 

∂ ̂  z 

∣∣∣∣
ˆ s 

d ̂

 s 

d ̂

 t 
+ 

∂ ̂  u 

∂ ̂  t 

∣∣∣∣
ˆ s 

= 0 . (21)

sing evolution equation (16) and boundary condition (19) , we de-

uce 

ˆ γc 
d ̂

 s 

d ̂

 t 

∣∣∣∣
0 

= 

1 + u 

′′ 
0 ( ̂  s 0 ) 

Re 
. (22) 

e then deduce that the front has moved a distance d ̂ s = (1 +
 

′′ 
0 ( ̂ s 0 )) d ̂

 t / ( ̂  γc Re ) . 

Applying the Green theorem to the oriented surface OABC

ives 

 

OABC 

(
Re 

∂ ̂  u 

∂ ̂  t 
− ∂ 2 ˆ u 

∂ ̂  z 2 

)
d ̂

 z d ̂

 t = 

∫ 
OABC 

Re ˆ u d ̂

 z + 

∂ ̂  u 

∂ ̂  z 
d ̂

 t . 

he only condition on the path CB is that the velocity must be pos-

tive: 
∫ 

CB ˆ u d ̂ z > 0 . Making use of boundary conditions (17) –(19) and

nitial condition (20) , we find the necessary condition for motion

 ˆ s 0 

0 

ˆ u 0 d ̂

 z > 

ˆ γc + 

ˆ s 0 
Re 

d ̂

 t + 

1 + u 

′′ 
0 ( ̂  s 0 ) 

2 ̂  γc Re 
d ̂

 t 2 . (23) 
owever, no solution satisfies this condition in the limit s 0 → 0. A

ufficiently high shear must be applied to the upper layer over a

hickness ˆ s 0 for the flow to start. 

.3. Similarity solution 

There is no exact similarity solution to the problem of equa-

ions (16) –(19) , but we can work out an approximate solution

hich describes the flow behaviour in the vicinity of the interface

ˆ  ( ̂ t ) . To that end, we seek a solution in the form ˆ u ( ̂ z , ̂  t ) = ̂

 t F (ξ , ̂  t ) ,

ith ξ = ˆ z / ̂ t as the similarity variable. Substituting ˆ u in this form

nto governing equation (16) gives 

e F (ξ , ̂  t ) + Re ̂ t 
∂F 

∂ ̂  t 
= Re ξ

∂F 

∂ξ
+ 1 + 

1 

ˆ t 

∂ 2 F 

∂ξ 2 
. (24)

e then use the expansion F (ξ , ̂  t ) = F 0 (ξ ) + ̂

 t ν1 F 1 (ξ ) + . . . +
ˆ 
 

νi F i (ξ ) + . . . , with F i functions of ξ alone and ν i > 0. To leading

rder and in the limit ˆ t 	 1 , Eq. (24) can be reduced to a first or-

er differential equation 

e F 0 = 1 + Re ξF ′ 0 , (25)

ubject to F (ξ f ) = 0 and F ′ (ξ f ) = − ˆ γc , where ξ f = ˆ s / ̂ t is the posi-

ion of the interface. The solution is 

 0 = 

1 

Re 
− ˆ γc ξ . (26) 

he solution satisfies boundary conditions (18) and (19) at the

nterface, but not boundary condition (17) at the free surface. A

oundary layer correction should be used to account for the influ-

nce of this boundary condition. As shown by the numerical solu-

ion in Section 4.4 , the approximate similarity solution (26) offers

 fairly good description of the solution, thus we will not go fur-

her in this direction. 

From this calculation, we deduce that the interface behaves

ike a travelling wave, whose velocity is constant and fixed by the

ritical-shear rate: ˆ v f = ( Re ̂  γc ) −1 . The interface position is then 

ˆ 
 = s 0 + 

ˆ t 

Re ˆ γc 
. (27) 

he velocity profile is linear in the vicinity of the interface 

ˆ 
 = 

ˆ t 

Re 
− ˆ z ̂  γc . (28) 

t can easily be shown that the travelling wave’s structure does not

epend on the shear-thinning index n . Indeed, the details of the

onstitutive equation affect the structure of the diffusive term in

he momentum balance equation, however, in the vicinity of the

nterface, this contribution is negligible compared to the source

erm. Whatever the value of n , the time required for the interface

o travel the distance ˆ H = 1 is thus 

ˆ 
 c ∼ Re ˆ γc . (29) 

.4. Numerical solution 

We used a finite-difference scheme to solve system (16) –(19)

see Appendix B for the details). In Figs. 6–8 , we show an example

f a simulation for ˆ τc = Bi = 0 . 5 , ˆ τ0 = 1 , and thus ˆ γc = ˆ τ0 − Bi =
 . 5 . For the initial disturbance, we assumed that the velocity pro-

le was 

ˆ 
 = 

ˆ γc 

2 

ˆ s 0 

( 

1 −
(

ˆ z 

ˆ s 0 

)2 
) 

, 

ith ˆ s 0 = 0 . 6 . The mesh size was h = 10 −3 . This velocity profile

atisfied boundary conditions (17) –(19) . The initial thickness had to

e selected such that the condition (23) was satisfied. Furthermore,
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Fig. 6. Interface position ˆ s ( ̂ t ) over time. Initially, the interface is at ˆ s (0) = 0 . 6 . The 

solid line shows the numerical solution to system (16) –(19) , whereas the dashed 

line represents approximate solution (27) . The dotted line shows the position of 

the bottom ˆ z = 1 . The numerical solution was computed for ˆ γc = ˆ τ0 − Bi = 0 . 5 and 

Re = 1 . 

Fig. 7. Velocity profiles for ˆ t = 0 , 0.1, 0.2 and 0.4. Numerical solution to Eqs. (16) –

(19) for ˆ γc = ˆ τ0 − Bi = 0 . 5 and Re = 1 . 

Fig. 8. Excess shear-stress profiles for ˆ t = 0 , 0.1, 0.2 and 0.4. Numerical solution to 

Eqs. (16) –(19) for ˆ γc = ˆ τ0 − Bi = 0 . 5 and Re = 1 . The excess shear stress is defined 

as 	 ˆ τ = ˆ τ − ˆ τc . 
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the initial interface velocity d ̂ s 0 / d t given by (22) implies that there

is a lower bound ˆ s 0 the initial interface velocity cannot be positive.

Here, we found ˆ s 0 > ˆ γc . We therefore selected ˆ s 0 = 0.6. As the initial

layer had a thickness ˆ z = 1 , this means that 60% of the layer had

to be destabilised for the interface to propagate downward. 

Fig. 6 shows the interface position ˆ s ( ̂ t ) as a function of time.

Analytical The curve given by analytical solution (27) is parallel

to the numerical solution at later time periods (see Fig. B.11 for

behaviour at later time periods), confirming that the disturbance

grows and propagates as a travelling wave over sufficiently long
ime periods. However, the convergence to the similarity solution

ay be slow (depending on the initial velocity), and the interface

ˆ  reaches the bottom ˆ z = 1 before it converges to the similarity

olution. Here, the bottom ˆ z = 1 (indicated by the dotted line in

ig. 6 ) is reached at ˆ t = 0 . 44 , whereas the similarity solution gives

he time ˆ t = 0 . 2 . 

Fig. 7 shows the velocity profiles at different times. These pro-

les show that approximate similarity solution (28) provides a

airly good description of the velocity profile for 50% of the depth,

ut as the initial condition was a parabolic profile, this is not sur-

rising. Fig. 8 shows the shear-stress profiles, which were obtained

y the numerical integration of the numerical solution. The shear

tress spans the range [ ̂  τc , ̂  τ0 ] (as expected, considering the bound-

ry conditions imposed) and exhibits a nonlinear profile (except

or the initial time of disturbance, at which it is linear). 

.5. Comparison with earlier contributions 

A few authors have addressed Stokes’ third problem in recent

ears. Eglit and Yakubenko [2] solved the problem for a non-simple

ingham fluid numerically. They regularised the constitutive equa-

ion by using a biviscous fluid. They observed that the interface

oved as a travelling wave with velocity v f = μg sin θ/ (τ0 − τc ) ,

s we did, but their numerical simulations were not in full agree-

ent with our results: they found that the thickness of the plug

egion grew indefinitely and that the interface velocity depended

n consistency when the fluid was shear-thinning. The thickness

f the plug region is usually considered to be bounded by h c =
c / (�g sin θ ) and thus not to grow indefinitely. We found that lo-

ally, the interface behaved like a travelling wave whose velocity

epended solely on the stress difference 	τ = τ0 − τc , regardless

f n . As Eglit and Yakubenko [2] did not give much detail to their

umerical solution, it is difficult to appreciate the reasons for this

isagreement. 

Issler [3] investigated Stokes’ third problem for non-simple

erschel–Bulkley fluids but, to remove time dependence, he as-

umed that the mobilised material was of constant thickness. By

ssuming the existence of a travelling wave solution, he found an

xpression of the interface velocity v f , but due to his working as-

umption, there is no agreement between his solution and our cal-

ulations. 

Bouchut et al. [4] also studied Stokes’ third problem, but for

lastic materials with a Drucker–Prager yield criterion (i.e. with a

ield surface that depends on the first invariant of the stress ten-

or). They worked out an exact solution for purely plastic materials

i.e. with zero viscosity κ = 0 ) that showed that motion dies out

uickly after an initial disturbance (this is in agreement with our

ondition for incipient motion in Section 4.2 ). They did not provide

 closed-form analytical solution for the general case κ > 0. 

.6. Comparison with the solutions for depth-averaged equations 

Here we consider the depth-averaged mass and momentum

quations (C.4) and (C.7) derived in Appendix C . For the present

ow geometry (no basal slip, invariance to any invariance in the

 direction), a uniform layer grows in size in the z -direction, and

hese equations reduce to 

d h 

d t 
= v f , (30)

d h ̄u 

d t 
= gh sin θ − τb 

� 

, (31)

ith τ b the basal shear-stress approximated by Eq. (C.8) , h the

ayer thickness, and ū the depth-averaged velocity. Boundary con-

ition (5) , at the base of the flowing layer, implies that 
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b = τ0 = τc + 2 κ
ū 

f (h ) 
(32) 

ith f (h ) = (h − h c )(2 + h c /h ) /h given by Eq. (C.8) . This boundary

ondition thus provides us with a relationship between h and ū : 

¯
 = 

	τ

2 κ
f (h ) (33) 

ith 	τ = τ0 − τc . 

In a dimensionless form, governing equations (30) and (31) can

e cast in the form 

d ̂

 h 

d ̂

 t 
= 

ˆ v f , (34) 

e 
d ̂

 h ̂

 u 

d ̂

 t 
= 

ˆ h − ˆ τ0 . (35) 

ntroducing F ( ̂ h ) = ˆ u ̂ h = 	 ˆ τ ˆ h f ( ̂ h ) / 2 , we can rewrite Eq. (35) 

e F ′ (h ) 
d ̂

 h 

d ̂

 t 
= 

ˆ h − ˆ τ0 , (36)

nd thereby, we end up with a differential equation for ˆ h 

d ̂

 h 

d ̂

 t 
= 

1 

Re 

ˆ h − ˆ τ0 

F ′ ( ̂ h ) 
. (37) 

s Bi < ̂

 h < ˆ τ0 , we deduce that ˆ h ′ < 0 , which does not reflect the

aterial’s expected behaviour. The depth-averaged equations do

ot provide a consistent solution to our entrainment problem. In

his section, we used the simplest closure equation for the bottom

hear stress. As highlighted in Appendix C , there are more elabo-

ate expressions for the bottom shear stress, but their use would

ot change the final outcome. Similarly, using empirical equations

or the entrainment rates, as has been done in a number of geo-

hysical models (see Iverson and Ouyang [9] for a discussion),

ould lead to inconsistencies in the governing equations (in the

articular case addressed here, the system of equations would be

verdetermined). 

When diagnosing the failure of the depth-averaged equations,

ne obvious explanation is that boundary condition (32) makes

he bottom shear-stress constant, and therefore the source term

n the momentum balance equation (31) is negative. Furthermore,

s boundary condition (32) also implies that the velocity is fixed

y the flow depth, the depth-averaged equations lead to shrinking

ow layers ( h ′ ( t ) < 0), whereas thickening flowing layers are ex-

ected here. 

. Concluding remarks 

In this paper, we investigated Stokes’ third problem with the

im of calculating the speed of propagation of the interface sep-

rating static and flowing materials. For simple Herschel-Bulkley

uids, the base of the layer is unable to resist a shear stress and

he material starts moving instantaneously. The characteristic time

f motion ( t c ) is then defined as the time needed for the initial dis-

urbance to propagate from the bed to the free surface. We found

hat ˆ t c = 

√ 

Re De or, dimensionally, t c = H 

√ 

�/G . In the traditional

ormulation for Herschel–Bulkley fluids, there is no associated vis-

oelastic behaviour. In other words, the elastic modules G is infi-

ite, thus t c = 0 (instantaneous adjustment), and the fluid velocity

rofile reaches its steady state instantaneously. There is no signif-

cant difference between Stokes’ first and third problems with re-

ards to the existence of moving interfaces between sheared and

nsheared regions. 

For non-simple Herschel–Bulkley fluids, the material needs to

e destabilised. Eq. (23) provides a necessary condition for the ini-

ial disturbance to create motion. Different solutions can be ob-
 h  
ained depending on the stress applied when creating this ini-

ial disturbance: there is thus no unique solution. In the partic-

lar initial boundary value problem studied here, we showed that

he disturbance propagates down to the bottom and asymptotically

eaches a constant velocity ˆ v f = ( Re ̂  γc ) 
−1 . The time needed for the

isturbance to cross the static layer is of the order ˆ t c = ( Re ̂  γc ) or,

imensionally, t c = O (H(τ0 − τc ) / (μg sin θ )) . 

One important result of this study was to shed light on the role

layed by dynamic yield stress in a time-dependent problem like

asal entrainment. When the dynamic and static yield stresses co-

ncide and the fluid behaves like a viscoelastoplastic material, the

overning equations are linear and hyperbolic: there is no moving

oundary separating sheared and unsheared regions. The situation

oes not differ from that found for Stokes’ first problem [7,8] ex-

ept that in the present case, even shear-thickening fluids ( n > 1)

o not produce moving boundaries. When the dynamic yield stress

xceeds the static yield stress and the fluid behaves like a rigid

ody in the static regime, the governing equations are nonlinear

nd parabolic: there is a moving interface separating the static and

owing layers. However, this interface does not start moving spon-

aneously when a body force is applied; part of the layer must be

ufficiently destabilised. 

In the literature on geophysical fluid mechanics, the Herschel–

ulkley equation has often been used to model snow avalanches

nd debris flows [2,3,34–39] . When the material flows over an

rodible static layer made of the same material, the incoming flow

s often expected to gradually erode the static layer [2–4] . The clas-

ic Herschel–Bulkley equation (in which the material behaves like

 rigid body in the absence of shear rate) and its extended form (in

hich the material behaves like a viscoelastoplastic material) pro-

uce interfaces (between the static and flowing regions) that move

t infinite speed [7,8] (see Section 3 ). This means that the entire

tatic layer is mobilised instantaneously when its thickness H ex-

eeds the critical depth h c = τc / (�g sin θ ) . For this reason, simple

erschel–Bulkley fluids are not suited to basal entrainment prob-

ems. Adding some thixotropy, i.e. considering static and dynamic

ield stresses, produces interfaces moving at a finite velocity (see

ection 4 ). In our problem, the material must be sufficiently desta-

ilised for the interface to propagate, and the condition (23) is

ather a stringent one, as a large part of the layer must be dis-

urbed initially. In conclusion, therefore, even if this formulation

as some advantages over the classic Herschel–Bulkley equation, it

s not without its problems. It is also noteworthy that many real-

orld scenarios involve elongated flows over shallows erodible lay-

rs. If erosion occurs quickly—as shown here by the estimates of

he time required for setting in motion t c —then a radical but ef-

cient assumption is that the whole basal layer is set in motion

hen the surge passes over it. We explored this scenario in a com-

anion paper and found that it led to a reasonably good prediction

f surge dynamics for the dam-break problem [40] . 

Another topical issue in geophysical fluid dynamics hinges upon

he proper way of dealing with basal entrainment in mass and

omentum depth-averaged equations. This issue lacks a con-

ensus [9] . In the present paper, we showed that when using

epth-averaged equations and Herschel–Bulkley fluids, the prob-

em is closed (i.e. we do not need further closure equations)

n the absence of basal slip. However, the solution is physically

nconsistent—the flowing layer does not grow, but shrinks. In the

resence of basal slip, this inconsistency can be removed , but two

losure equations must be provided (one for the entrainment rate

nd the other for basal slip). One merit of Stokes’ third problem

s that it sheds light on the nature of the moving interface be-

ween sheared and unsheared materials. Many investigations (re-

orted by [9] ) have considered this interface to behave like a shock

ave, whose dynamics could be prescribed independently of what

appens inside the flowing layer. In both the present paper and a
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recent related contribution on Drucker–Prager fluids [4] , the inter-

face is a part of the problem to be solved, and thus there is only a

small possibility that we can relate its dynamic features to its bulk

quantities (such as flow depth and depth-averaged velocity). 
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Appendix A. Characteristic problem 

In this appendix, we show how the problem (12) –(13) can be

cast in characteristic form and how this can be used to solve the

problem numerically. 

The initial boundary value problem (12) –(13) addressed in

Section 3 can be cast in matrix form 

∂ 

∂t 
X + A · ∂ 

∂z ′ X = B (A.1)

subject to u = 0 at z ′ = 0 , τ = 0 at z ′ = 1 , and τ = u = 0 at t = 0 .

The hat annotation has been removed for the sake of simplicity.

We have introduced 

X = 

(
u 

τ

)
, A = −

(
0 Re −1 

De −1 0 

)
, and B = 

(
Re −1 

−De −1 F (τ ) 

)
. 

(A.2)

We now introduce the Riemann variables r = −ηu + τ and s =
ηu + τ, where η = 

√ 

Re / De . The eigenvalues of A are constant and

of opposite sign: ± λ with λ = 1 / 
√ 

Re De , which means that the

characteristic curves are straight lines (see Fig. A.9 ): z ′ = ±λt + c

(with c a constant). The characteristic form of (A.1) is 

d r 

d t 
= R (τ ) = −λ − De −1 F (τ ) along 

d z ′ 
d t 

= λ, (A.3)

d s 

d t 
= S(τ ) = λ − De −1 F (τ ) along 

d z ′ 
d t 

= −λ, (A.4)

with the boundary conditions r = s at z ′ = 0 and r = −s at z ′ = 1 .

The initial conditions are r = s = 0 at t = 0 . As the source term is
Fig. A.9. Characteristic diagram showing the two families of characteristic curves. 
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onlinear in τ , this system of equations has no analytical solution,

ut it lends itself more readily to numerical solutions. 

The domain is divided into N − 1 intervals whose nodes are

 i = iδx, with δz = 1 /N, for 0 ≤ i ≤ N . The center of each inter-

al is z i +1 / 2 = (z i + z i +1 ) / 2 . The numerical integration of the sys-

em (A .3) –(A .4) involves two steps. We assume that we know the

alues r 2 k 
i 

and s 2 k 
i 

of r and s at each node at time t = 2 kδt with

t = δx/ 2 /λ. At time t + δt, a first-order discretisation of (A.3) –

A.4) is 

 

2 k +1 
i +1 / 2 

= r 2 k i + R (τ 2 k 
i ) δt and s 2 k +1 

i +1 / 2 
= s 2 k i +1 + S(τ 2 k 

i +1 ) δt, (A.5)

or 0 ≤ i ≤ N − 1 . At time t + 2 δt, we have 

 

2 k +2 
i 

= r 2 k +1 
i −1 / 2 

+ R (τ 2 k +1 
i −1 / 2 

) δt and s 2 k +2 
i 

= s 2 k +1 
i +1 / 2 

+ S(τ 2 k +1 
i +1 / 2 

) δt, (A.6)

or 1 ≤ i ≤ N − 1 , while at the boundaries, we have 

 

2 k +2 
0 = s 2 k +2 

0 and s 2 k +2 
0 = s 2 k +1 

1 / 2 + S(τ 2 k +1 
1 / 2 ) δt, (A.7)

nd 

 

2 k +2 
N = r 2 k +1 

N−1 / 2 + R (τ 2 k +1 
N−1 / 2 ) δt and s 2 k +2 

N = −r 2 k +2 
N . (A.8)

t each time step, the velocity and shear stress are thus 

j 
i 

= 

1 

2 

(r j 
i 
+ s j 

i 
) and u 

j 
i 
= 

1 

2 η
(s j 

i 
− r j 

i 
) . (A.9)

ppendix B. Numerical solution to the Stefan-like problem 

In this appendix, we propose a finite-difference algorithm for

he Stefan-like problem (16) . Various techniques have been devel-

ped to solve Stefan problems [33,41–44] , but the change in the

oundary condition (19) (the gradient is constant in our problem,

hereas it is linearly related to interface velocity in the classical

tefan problem) makes the numerical problem more difficult. Here

e take inspiration from Morland [45] (see Section B.1 ). By modi-

ying the boundary condition (19) (and thus returning to the orig-

nal Stefan problem), we can work out a similarity solution which

s then used to test the algorithm accuracy (see Section B.2 ). 

.1. Numerical scheme 

For the sake of brevity, we omit the hat annotation in this ap-

endix. We make the following change of variable 

 (z, t) = 

˜ u (z, s ) , 

here time has been replaced by s . Assuming that s ( t ) is a contin-

ous monotonic function of time and ˙ s (t) > 0 , the Jacobian of the

ransformation is non-zero. The advantage of this change of vari-

ble is that the front position appears explicitly in the governing

quations and the domain of integration now has known bound-

ries. We must solve the following initial boundary value problem

e α(s ) 
∂ ̃  u 

∂s 
= 1 + 

∂ 2 ˜ u 

∂z 2 
with α(s ) = 

d s 

d t 
(B.1)

ubject to the boundary conditions at the free surface 

∂ ̃  u 

∂z 
(0 , s ) = 0 . (B.2)

here is a moving boundary at z = s (t) for which the no-slip con-

ition holds 

˜ 
 (s, s ) = 0 . (B.3)

he stress continuity (5) across this interface gives 

∂ ̃  u 

∂z 
(s, s ) = − ˙ γc with ˙ γc = τ0 − Bi > 0 . (B.4)

he initial condition is 

˜ 
 (z, s 0 ) = 

˜ u 0 (z) for 0 ≤ z ≤ s 0 . (B.5)

https://dx.doi.org/10.6084/m9.figshare.3496754.v1
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Fig. B.10. Domain of integration. The change of variable t → s makes it possible to 

work on a fixed domain, where the upper bound s is fixed in advance: s = s 0 + z. 
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Fig. B.11. Interface position ˆ s ( ̂ t ) over time. The solid line shows the numerical so- 

lution to system (16) –(19) whereas the dashed line represents the approximate so- 

lution (27) . Numerical solution for Bi = 0 . 5 , ˆ τ0 = 1 , ˆ γc = ˆ τ0 − Bi = 0 . 5 and Re = 1 . 

We used the parameters r = 0 . 5 and k = 0 . 

N  

c  

t

r  

w

r  

A  

t

P

w  

w  

a  

T

s

w  

r∣∣
U  

t  

t  

c

t

B

 

s

 

w  

s

u  
nce the solution ˜ u (x, s ) has been calculated, we can return to the

riginal variables by integrating α( s ) 

 = 

∫ s 

s 0 

d s ′ 
α(s ′ ) . (B.6) 

The numerical strategy is the following. The domain of integra-

ion is discretised using a uniform rectangular grid with a fixed

esh size h . Time t , and thus parameter α, are calculated at each

teration so that the front has moved a distance h (see Fig. B.10 ).

he value of the numerical solution at z = ih and s = jh is de-

oted by u 
j 
i 
. The front position at time step jh is denoted by

 

j = s 0 + jh . We use an implicit finite-difference scheme for dis-

retising the spatial derivatives and an explicit forward Euler for

he time derivative in Eq. (B.1) : 

ru 

j+1 
i −1 

+ (2 r + a j+1 ) u 

j+1 
i 

− ru 

j+1 
i +1 

= h 

2 + (1 − r) u 

j 
i −1 

+ (a j − 2(1 − r)) u 

j 
i 
+ (1 − r) u 

j 
i +1 

, (B.7) 

or 0 ≤ i ≤ j + 1 . We have introduced the weighting coefficient 0

 r ≤ 1 and a j = Re hα j+1 / 2 , where α j+1 / 2 = kα j + (1 − k ) α j+1 . In

ractice, we take r = 1 / 2 (Crank–Nicolson scheme) and 0 ≤ k ≤
.25. 

The scheme (B.7) involves ghost cells at i = −1 (for time j and

j + 1 ) and i = j + 1 (for time j ). For the free surface, we introduce

he ghost cell u 
j 
−1 

. The gradient is approximated as ∂ z u = (u 
j 
1 

−
 

j 
−1 

) / (2 h ) + o(h 2 ) . The boundary condition (B.2) implies u 
j 
−1 

= u 
j 
1 
.

aking Eq. (B.7) for i = 0 , we then get 

(a j+1 + 2 r) u 

j+1 
0 

− 2 r u 

j+1 
1 

= h 

2 + 2(1 − r ) u 

j 
1 

+ (a j+1 − 2(1 − r)) u 

j 
0 
.

or the interface, we introduce another ghost cell u 
j+1 
j+2 

(at time j +
 ). The boundary condition (B.4) implies u 

j+1 
j+2 

= u 
j+1 
j 

− 2 h ̇ γc . Taking

q. (B.7) for i = j + 1 leads to 

(a j+1 + 2 r) u 

j+1 
j+1 

− 2 ru 

j+1 
j 

= h 

2 − 2 h ̇ γc + 2(1 − r) u 

j 
j 
+ (a j+1 − 2(1 − r)) u 

j 
j+1 

. 

he scheme involves the value u 
j 
j+1 

outside the domain of integra-

ion. We use a second-order Taylor-series extrapolation 

 (s + h, s ) = u (s, s ) + hu z (s, s ) + 

h 

2 

2 

u zz (s, s ) + o(h 

2 ) . 

e use the boundary condition (B.3) ( u (s, s ) = 0 ), the bound-

ry condition (B.4) ( u z (s, s ) = − ˙ γc ), and the governing equation

B.1) together with (21) ( u zz (s, s ) = Re α ˙ γc − 1 ). We then obtain 

 

j 
j+1 

= − ˙ γc h − 1 

h 

2 (1 − Re α j ˙ γc ) . (B.8)

2 
ote that under some conditions, the interface velocity exhibits os-

illations. This may be cured by discretising the boundary condi-

ions as follows. The boundary condition (B.2) is discretised by 

 u 

j+1 
2 

− r u 

j+1 
1 

= (1 − r ) u 

j 
1 

+ (1 − r ) u 

j 
2 
, (B.9)

hile the boundary condition (B.4) gives 

 u 

j+1 
j+1 

− r u 

j+1 
j−1 

= (1 − r ) u 

j 
j−1 

+ (1 − r ) u 

j 
j+1 

− 2 h ̇ γc . (B.10)

t time step j + 1 , we thus have to solve the system of j + 2 equa-

ions 

 (r, h, α j+1 ) · U 

j+1 = Q (r, h, α j+1 ) · U 

j+1 + R (h, ˙ γc ) , 

here P and Q are tridiagonal matrices and R is a constant vector,

hose entries are given by Eqs. (B.9) - (B.8) . The coefficient α j+1 is

djusted until the boundary condition (B.3) is satisfied: u 
j+1 
j+1 

= 0 .

o that end, we use the secant method: 

 

j+1 , (k +1) = s j+1 , (k ) − s j+1 , (k ) − s j+1 , (k −1) 

u 

j+1 , (k ) 
j+1 

(s j+1 , (k ) ) − u 

j+1 , (k −1) 
j+1 

(s j+1 , (k −1) ) 

here s j+1 , (k +1) the k th iteration to find s j+1 . The stopping crite-

ion is 

s j+1 , (k +1) − s j+1 , (k ) 
∣∣ < h 

2 
∣∣s j+1 , (k ) 

∣∣. 
sually, only a few iterations are required to find α j+1 . To estimate

ime t , we integrate Eq. (B.6) numerically by approximating the in-

egrand using a second-order polynomial. We can then iteratively

alculate t j 

 

j+1 = t j−1 + 

h 

3 

(
1 

α j+1 
+ 

4 

α j 
+ 

1 

α j−1 

)
. 

.2. Testing the algorithm 

The initial boundary value problem (B.1) –(B.4) has no similarity

olution, but if we replace the boundary (B.4) with 

∂ ̃  u 

∂z 
(s, s ) = −as, (B.11)

here 0 < a < 1 is a free parameter, then we can work out a

imilarity solution 

 (x, t) = tU(η) with η = 

x 

b 
√ 

t 
, b = 

√ 

2 

1 − a 

a 
, (B.12)
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Fig. B.12. Comparison of the numerical solution (solid line) and the analytical so- 

lution (dashed line) given by Eq. (B.13) . Simulation for a = 0 . 5 and h = 10 −3 . 
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and 

(η) = 

b 2 

2 + b 2 
( 1 − η2 ) . 

The front position is given by 

s (t) = s 0 + b 
√ 

t . (B.13)

The algorithm of Section B.1 was adapted to take the change in

the boundary condition into account. Fig. B.12 shows a comparison

between the numerical solution and the analytical solution (B.13) .

The initial condition is the solution (B.11) reached by u at time

 0 = (s 0 /b) 2 . The initial front position is arbitrarily set to s 0 = 50 h .

There is a fairly good agreement, but even if the algorithm is a sec-

ond order one, errors accumulate. In the example in Fig. B.12 , the

error reaches 0.8% after 10,0 0 0 iterations. 

Appendix C. Depth-averaged equations 

In this appendix, we derive the depth-averaged equations for

a Bingham fluid and erodible bottoms. As the derivation of these

equations is classic, we will look especially at the changes induced

by the erodible bottom. The reader is referred to [35,46–48] for

a more complete derivation of the depth-averaged equations for

Bingham fluids, and to [9] for the treatment of mass exchanges. 

A Bingham fluid flows over an erodible bottom, as sketched in

Fig. C.13 . The free surface is located at z = s (x, t) ; the basal layer

lies at z = b(x, t) . The free surface is a material boundary. The basal

layer is a non-material interface whose displacement speed in the

normal direction n b is denoted by v f n b , where n b is the unit nor-
mal. 

Fig. C.13. Flowing layer bounded by two interfaces, z = s (x, t) and z = b(x, t) . 
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e  
For the dynamic boundary conditions, we assume that there

s no stress acting on the free surface: σ · n s = 0 where n s is the

nit normal pointing outward. For the basal layer, the Rankine–

ugoniot relation (3) holds, and in the absence of slip, this relation

mplies the stress continuity across the interface (5) . 

For the kinematic conditions, we introduced the functionals,

 b and F s , that are implicit representations of the base and free-

urface interfaces, respectively [12] : F b = −z + b(x, t) = 0 and F s =
 − s (x, t) = 0 . The functionals are defined such that the unit nor-

al n i = ∇F i / | F i | (with i = b, s ) points outward from the flowing

ayer. For the free surface, the kinematic condition is 

 s = 0 and 

∂F s 

∂t 
+ u s · ∇F s = 0 , (C.1)

here u s = (u s , w s ) is the fluid velocity at the free surface. For the

asal surface, the kinematic condition involves the interface veloc-

ty v b = u b + v f n b , where u b = (u b , w b ) is the fluid velocity at the

ase. 

 b = 0 and 

∂F b 
∂t 

+ v b · ∇F b = 0 ⇒ 

∂F b 
∂t 

+ u b 

∂F b 
∂x 

= w b − v f |∇F b | 
(C.2)

ntegrating the local mass balance equation over depth h = s − b

ives 

 s 

b 

(
∂u 

∂x 
+ 

∂w 

∂z 

)
d z = 

∂ 

∂x 
(h ̄u ) −

[
u 

∂z 

∂x 
− w 

]s 

b 

= 0 , (C.3)

here we have introduced the depth-averaged velocity 

¯
 (x, t) = 

1 

h 

∫ s 

b 

u (x, z, t) d z. 

aking use of Eqs. (C.1) and (C.2) , we obtain 

∂ 

∂t 
h + 

∂ 

∂x 
(h ̄u ) = e, (C.4)

ith e = v f |∇F b | the entrainment rate. We now consider the mo-

entum balance equation in the x -direction 

∂u 

∂t 
+ u 

∂u 

∂x 
+ w 

∂u 

∂z 
= g sin θ + 

1 

� 

(
∂σx 

∂x 
+ 

∂τ

∂z 

)
, (C.5)

hose integration over the flow depth provides 

∂ 

∂t 
(h ̄u ) + 

∂ 

∂x 
(h u 

2 ) + 

[
u 

(
∂z 

∂t 
+ u 

∂z 

∂x 
− w 

)]s 

b 

= gh sin θ − τb 

� 

+ 

1 

� 

∫ s 

b 

∂σx 

∂x 
d z, (C.6)

here τ b is the basal shear stress. Making use of Eqs. (C.1) and

C.2) , we obtain 

∂ 

∂t 
(h ̄u ) + 

∂ 

∂x 
(h u 

2 ) = u b e + gh sin θ − τb 

� 

+ 

1 

� 

∫ s 

b 

∂σx 

∂x 
d z. (C.7)

he depth-averaged equations are not closed. The relationship be-

ween ū and u 2 , the bottom shear-stress τ b , the depth-averaged

ormal, and the entrainment rate e stress must be specified. In

he present context, we will focus on the determination of τ b . One

ommon approach is to assume that in gradually varied flows, the

ottom shear-stress is the same as that exerted by a steady uni-

orm flow with the same flow depth and depth-averaged velocity

1,35,47] , which leads to the following expression 

b = τc + 2 κ
ū 

f (h ) 
with h = (h − h c ) 

(
2 

3 

+ 

h c 

3 h 

)
, (C.8)

ith h c = τc / (�g sin θ ) the critical depth. The problem with this

quation is that it holds for slightly non-uniform flows and flow
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epths in excess of h c . Alternative approaches have been devel-

ped, however they end up with different expressions for τ b . For

nstance, Pastor et al. [49] proposed a second-order polynomial

pproximation to the bottom shear-stress. Fernández-Nieto et al.

48] presented a more rigorous treatment of the depth-averaged

quations based on asymptotic expansions of the velocity field.

hey proposed an expression for τ b that supplements (C.8) with

igher-order spatial derivatives of h . 
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