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Abstract We study the behaviour of a low-density granular material entering a water

basin by means of a simplified two-dimensional model, with the aim to understand the

dynamics of a snow avalanche impacting a water basin like an alpine lake or a fjord. The

low density of the impacting mass induces an uplift buoyancy force and, consequently, a

complicated interaction between the solid and fluid phase. This paper provides an insight

into the motion of the impacting mass, by presenting a simplified, two-dimensional model,

where the snow is described by a low-density granular material. First, small-scale exper-

iments, based on the Froude similarity with snow avalanches, are used to evaluate the

motion of reference points of the impacting mass, i.e. the front (F), centre of mass (C) and

deepest point (L). Then, applying the mass and momentum conservation principles to a

fixed volume, we show that the mean motion of the impacting mass is similar to that of a

damped oscillator. The stretch of the impacting mass motion is described through the

motion of the reference points F and L.

Keywords Froude similarity � Impact � Small-scale experiments � Snow

avalanches � Water basin
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Fr ¼ u0
ffiffiffiffi

gh
p Avalanche Froude number

g ¼ 0

g

� �

Gravitational field vector

h Still water depth

I Identity tensor

K ¼ k
b1

Elastic coefficient of the motion law of the solid phase

centre of mass

k Relation between the relative vertical position of the

solid phase and 1 � qf

qs
r t�ð Þ

M Total mass of the avalanche

M� ¼ M
qfbh

2 Dimensionless mass

Ms tð Þ Mass of avalanche in the control volume

ny ¼
0

1

� �

Direction of the gravitational field

ri x; tð Þ Resultant of the external forces on the ith phase

Rs tð Þ Resultant of the external forces on the solid phase

s tð Þ Avalanche thickness

�s Mean avalanche thickness

�s� Dimensionless mean avalanche thickness

s� t�ð Þ ¼ s tð Þ=h Dimensionless avalanche thickness

t Time coordinate

t� ¼ t
ffiffiffiffiffiffiffiffi

g=h
p

Dimensionless time

ts tð Þ Integral of the divergence of the solid stress tensor

Ti x; tð Þ Stress tensor in the ith phase

u0 Absolute value of the velocity of the particles at impact

u0 Mean velocity of the particles at impact

u�0 ¼ u0=
ffiffiffiffiffi

gh
p

Dimensionless mean velocity of the particles at impact

ui x; tð Þ Velocity of the ith phase

�ui tð Þ Volume-averaged velocity of the ith phase

�u�s t�ð Þ ¼ �us tð Þ=
ffiffiffiffiffi

gh
p

Dimensionless volume-averaged velocity of the solid

phase

�u�sx t�ð Þ Dimensionless horizontal volume-averaged velocity of

the solid phase

�u�sy t�ð Þ Dimensionless vertical volume-averaged velocity of

the solid phase

vx0 Initial horizontal velocity of the solid phase centre of

mass

vy0 Initial vertical velocity of the solid phase centre of

mass

V Control volume

Vs tð Þ Volume of the solid phase in the control volume

x Horizontal distance from the still water shoreline

x Vector of space coordinates

xC tð Þ Position of the solid phase centre of mass

x�C t�ð Þ ¼ xC

h
Relative horizontal position of the solid phase centre of

mass

y Depth from the still water free surface
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y�C t�ð Þ ¼ yC

h
Relative vertical position of the solid phase centre of

mass

ai x; tð Þ Local volume fraction of the ith phase

b1;2 Average coefficients

em i�C
� �

Average error of the fit/predictive function for i�C
d tð Þ Volume-averaged drag function

d x; tð Þ Local drag function

g x; tð Þ Water elevation

h Inclination of the chute

k�1;2 ¼ 0:5 � �u�
y �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�u�2
y � 4K

q
� �

Coefficients of the exponential part of the solution of

the vertical motion

ph ¼ Fr�s�0:5

M� Combination coefficient for the predictive function

qi Density of the ith phase

q0 Bulk density of the solid phase at impact

r tð Þ Submerged fraction of solid volume

r x; tð Þ Local fraction of the solid phase interacting with the

fluid phase

/0 Solid fraction of the granular bulk at impact

u tð Þ Dissipative tensor

u� tð Þ Dimensionless dissipative tensor

u�
x t�ð Þ First component of u� tð Þ

u�
y t�ð Þ Last component of u� tð Þ
�u�
x ¼

u�
x t�ð Þ
b1

Dissipative coefficient of the horizontal component of

the motion law of the solid phase centre of mass

�u�
y ¼

u�
y t�ð Þ
b1

Dissipative coefficient of the vertical component of the

motion of the solid phase centre of mass

w t�ð Þ ¼ u�
y t�ð Þ _y�C t�ð Þ Dissipation of the vertical motion

Subscript
f Fluid phase

s Solid phase

1 Introduction

An increasing interest on the problem of snow avalanches striking water basins has been

fostered by a number of events occurred in the last two decades. Several water basins

placed near dwellings were struck by snow avalanches: the lake above the village of

Göschenen (Switzerland) in February 1999; a reservoir for artificial snow production in

Pelvoux (France) in March 2006; the fjord of Súðavı́k (Iceland), where a 10-m high wave

damaged several structures in October 1995; and the Lillebukt bay in the island of

Stjernoya in the Altafjord (Northern Norway), impacted by avalanches sliding from the

Nabbaren mountains (Frauenfelder et al. 2014).

The main concern of researchers and engineers has been the characterization of the

avalanche-generated impulse waves (Fuchs et al. 2011; Naaim 2013; Zitti et al. 2016),

because of its destructive potential, but there is no study on the motion of the impacted

mass to the authors’ knowledge. However, the description of the motion and deformation

of the snow bulk after entering water is of great interest. In particular, the knowledge of the
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bulk geometry and its underwater motion is important for engineering purposes, e.g. to

properly describe the induced hydrodynamics and the wave formation, and to better predict

the wave propagation and the following flooding.

Our current understanding on snow avalanches striking water basins is based on analogy

with other phenomena, mainly with landslides striking water basins. For rock avalanches

and landslides, many studies have been carried out and most of them focused on the

dynamics of landslide-generated impulse waves (Noda 1970; Kamphuis and Bowering

1970; Slingerland and Voight 1979; Harbitz et al. 1993; Pelinovsky and Poplavsky 1996).

Many laboratory experiments have been conducted to gain insight into the physics of

impulse waves and provided empirical equations for computing the impulse wave features

(Huber and Hager 1997; Fritz et al. 2003a, b; Fritz and Hager 2004; Zweifel et al. 2006; Di

Risio et al. 2009; Heller and Hager 2014; Romano et al. 2016). Because of their high

cohesion and density, landslides are often modelled as rigid bodies that slide over a given

slope, until they come to a halt (Monaghan et al. 2003; Grilli and Watts 2005; Lynett and

Liu 2005; Montagna et al. 2011; Vacondio et al. 2013). Since rigid bodies are partially

representative of landslides, granular materials have also been used to model them (e.g.

Fritz et al. 2003a, b; Heller et al. 2008). Further, some results are available on the dynamics

of landslides striking water basins. In particular, experimental studies on crater formation

were carried out by Fritz et al. (2003a, b), while Fuchs and Hager (2015) studied the

landslide deposition.

All these models, mimicking the landslide behaviour, are characterised by a high par-

ticle density, with the exception of some experiments (Heller and Hager 2010), and a small

increase in slide volume (dilatancy up to 20%), typical of granular material after short flow

distances (Fritz 2002). In fact, the density of the bulk materials used in most of these

experiments closely matched that of natural landslide materials (i.e. density in the region of

1700 kg m-3). The problem is that for snow avalanches, the bulk density ranges, on

average, between 10 and 500 kg m-3, depending on the avalanche type. It is unclear

whether models calibrated for dense flows (e.g. rock avalanches) can be applied to flows

involving lightweight materials (e.g. snow avalanches, pyroclastic flows). In other words,

does the density influence the impact dynamics? Intuitively we can anticipate two traits

that distinguish snow avalanches from dense flows. First, as snow avalanches involve a

mixture of ice grains and air, possibly with a low liquid water content, the impact dynamics

is controlled by the momentum exchange occurring at the particle scale (from 1 mm to

10 cm, on average, depending on the size of ice grains and snow chunks). The discrete

nature of the flows is, thus, expected to be a key parameter. Second, ice density (about

950 kg m-3) is lower than water density, and therefore, once immersed, ice grains (or

snow chunks when snow is cohesive) experience a positively buoyant force, which causes

them to rise to the free surface.

Hence, the present paper takes advantage of the discrete nature of snow flows by using

the analogy between avalanches and granular flows made up of positively buoyant parti-

cles. In a recent paper (Zitti et al. 2016), we proposed a simple model based on mixture

theory for estimating the momentum transfer between the granular flow and water phases

(in particular, wave amplitude and energy dissipation varied with the avalanche proper-

ties), without any information about the behaviour of the avalanche, as a whole, once it has

penetrated the water basin. In this work, the complex behaviour of immersed granular

avalanches made up of positively buoyant particles is documented. To simplify the

description of the avalanche motion, we focus on some specific reference points: (1) the

motion of the centre of mass (C) provides useful information about the bulk dynamics, and
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(2) the motion of the deepest (L) and frontal (F) points of the avalanche describes how the

bulk stretches in the water basin.

The paper is structured as follows. Section 2 describes the experimental set-up and

illustrates the complex behaviour of immersed granular avalanches through a detailed

example. Section 3 analyses all the experimental results, to infer a representative function

of the immersed bulk’s mean motion and spreading. To do so, we apply the mass and

momentum conservation principles to a fixed volume, corresponding to the impact zone, in

which a granular avalanche enters, relaxing the previous hypothesis of diluted and sub-

merged solid phase. The theoretical analysis provides the structure of the representative

function that is calibrated with the available experimental data. Some conclusions close the

paper.

2 Experiments

The same experimental set-up of the small-scale experiments conducted by Zitti et al.

(2016) and Zitti (2016) has been used for the present study. For this reason, neither the

experimental set-up nor the protocol is here described in detail; hence, the reader is

referred to the references for further information. The model reproduces the two-dimen-

sional simple problem of a diluted mass striking the water surface in a flume. This scenario

is far from being three-dimensional like real-world events, but it is useful for our purpose

of gaining insight in the behaviour of a low-density bulk entering a water basin (see also

the comparison between 2D and 3D results obtained for landslide-tsunamis by Heller and

Spinneken 2015).

To devise the experimental protocol, we use the Froude similarity between real-world

and laboratory avalanches. The set-up was composed of a wooden chute, with slope angle

h ¼ 30�, whose downstream end was in contact with a 3 m-long prismatic flume filled with

water. Both chute and flume were 0.11 m wide. A bulk, composed of expanded clay

particles, was released from a reservoir placed at the upstream end of the chute. The bulk

then slid along the smooth chute and hit the water basin, generating a water wave that

propagated along the flume. The density of each particle, whose diameter was of 9 mm,

was of 955 kg m-3, while the bulk density ranged between 67 and 240 kg m-3 prior to

impact. As both particle and bulk densities fall within the typical ranges for snow, we

assumed that the expanded clay could mimic many of the snow properties. Three different

water depths were used: h = 0.11, 0.14 and 0.18 m. For each value of h, two lengths of the

slide path were used, i.e. 0.66 and 1.21 m, in order to vary the velocity at impact u0. The

released mass M was varied from 100 g to 700 g, by increments of 100 g. An high-speed

camera, located in front of the shoreline/impact zone, acquired 256 9 785-pixel images at

a rate of 1000 frames per second (fps) from the sidewall. Coloured images were converted

into black-and-white images, in which the white pixels corresponded to particles and the

black pixels corresponded to water or air. These images allowed us to measure the velocity

u0 and the thickness s tð Þ of the avalanche upon impact. A summary of the experimental

dataset is reported in Table 1.

Small-scale flume experiments are affected by some limitations due to: (1) scale effects

and (2) the two-dimensional approximation of a three-dimensional problem. The scale

factor between our experiments and real-world avalanches is approximately 100, and the

typical snow chunk size is in the 7–12 cm range; hence, the particles used in our exper-

iments did not satisfy the geometrical scaling, but using smaller particles would have
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Table 1 Experimental data
Exp M (g) h (m) u0 (m s-1) M� �s� Fr

50 101 0.14 1.590 0.047 0.094 1.356

51 200 0.14 1.521 0.093 0.118 1.298

52 300 0.14 1.507 0.139 0.132 1.286

53 400 0.14 1.484 0.186 0.148 1.266

54 500 0.14 1.434 0.232 0.167 1.224

55 601 0.14 1.438 0.279 0.152 1.227

56 700 0.14 1.442 0.325 0.171 1.230

57 100 0.14 2.182 0.046 0.082 1.862

58 200 0.14 2.052 0.093 0.108 1.751

59 299 0.14 2.025 0.138 0.107 1.728

60 402 0.14 2.033 0.186 0.112 1.735

61 498 0.14 1.914 0.231 0.133 1.633

62 600 0.14 1.854 0.278 0.145 1.582

63 685 0.14 1.806 0.318 0.127 1.541

64 98 0.18 1.551 0.028 0.038 1.167

65 198 0.18 1.496 0.055 0.042 1.126

66 300 0.18 1.424 0.084 0.059 1.072

67 400 0.18 1.469 0.112 0.056 1.105

68 497 0.18 1.394 0.139 0.064 1.049

69 597 0.18 1.240 0.168 0.081 0.933

70 689 0.18 1.112 0.193 0.069 0.837

71 101 0.18 1.942 0.028 0.026 1.461

72 199 0.18 2.024 0.056 0.041 1.523

73 300 0.18 1.930 0.084 0.045 1.453

74 401 0.18 1.801 0.112 0.055 1.355

75 484 0.18 1.945 0.136 0.053 1.464

76 599 0.18 1.818 0.168 0.063 1.368

77 696 0.18 2.012 0.195 0.072 1.514

108 101 0.11 1.975 0.076 0.081 1.901

109 200 0.11 1.867 0.150 0.119 1.797

110 297 0.11 1.916 0.223 0.121 1.845

111 396 0.11 1.841 0.298 0.112 1.772

112 500 0.11 1.841 0.376 0.178 1.772

113 600 0.11 1.943 0.450 0.107 1.871

114 701 0.11 1.696 0.526 0.162 1.633

115 101 0.11 1.587 0.076 0.085 1.527

116 192 0.11 1.623 0.144 0.126 1.562

117 300 0.11 1.524 0.226 0.132 1.467

118 400 0.11 1.528 0.300 0.129 1.471

119 495 0.11 1.373 0.372 0.169 1.321

120 588 0.11 1.412 0.442 0.211 1.359

121 702 0.11 1.242 0.527 0.306 1.196
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entailed undesirable effects, related, among other aspects, to surface tension (see Zitti et al.

2016). Heller et al. (2008) showed that Froude similarity results in significant scale effects,

due to surface tension and fluid viscosity, which affect the impulse wave amplitude when a

reduced water depth (h\ 0.20 m) is used for a 0.50 m wide flume. The particle dimen-

sions in our experiments minimize surface tension effects, but the relatively small size of

the flume likely entails scale effects. Hence, we are aware that the results of the experi-

ments, especially those associated with the smaller water depths, are affected by scale

effects. However, though Heller et al. (2008) stated that scale effects cause a decrease in

wave amplitude when h\ 0.20 m, we did not observe any decrease in the scaled wave

amplitude spanning from the deepest to the shallowest flow experiments (for more details,

the reader may refer to section 6 of Zitti et al. 2016).

Black-and-white images were also used to track the evolution of the avalanche front.

Only the immersed part was analysed. First, the centre of mass C and the boundary of such

immersed avalanche were determined and stored for each frame. The horizontal and

vertical position x ¼ x

y

� �

of each stored point was defined as the horizontal distance from

the shoreline and the vertical distance downward from the initial free surface, respectively

(see Fig. 1). The front and bottom edges were tracked. A few particles drifted away

significantly from the bulk, and so they were ignored in the boundary determination. This

does not affect the calculation of the mass to any significant degree, because they are a

small percentage of the particles. The frontal point of the avalanche F was defined as the

farthest point from the shoreline, while the lowest edge point L was taken to be the deepest

point. An image of the impacting mass is shown in Fig. 1, where the white line represents

the avalanche boundary and some drifted particles are visible outside the boundary.

Figure 2 shows a typical example (experiment 68, mass of about 500 g and impact

velocity of about 1.4 m s-1) of the available data. The two panels illustrate the evolution in

time of the horizontal (top panel) and vertical (bottom panel) coordinates of the reference

points. The green, blue and red lines give the centre of mass C, the front point F and the

lowest edge point L, respectively.

It has been assumed that the mean position of the immersed particles can be approxi-

mated with the position of the immersed bulk’s centre of mass xC ¼ 1
Vs tð Þ r

Vs tð Þ
xdV , being

Vs tð Þ the volume of the immersed solid phase. The horizontal coordinate (green line in the

Fig. 1 Example of the image processing (experiment 68, frame 700). The horizontal dotted line represents
the initial still water surface, the marked line around the mass is the portion of the boundary used to evaluate
the check points, while the dotted line is the neglected portion (a slot of 10 mm close to the chute, where the
image processing is sometimes affected by the particles’ shadow on the chute, is not considered). The check
points are reported: frontal point F in blue, the lower edge point L in red and the centre of mass C in green
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top panel of Fig. 2) always increased with decreasing slope, which means that the bulk

moved, on average, with a decreasing velocity. By contrast, the vertical coordinate (green

line in the bottom panel of Fig. 2) was typical of the water entry of lightweight particles:

they first sink and, subsequently, float to the free surface.

The evolution of the frontal and deepest points had a more complicated behaviour. At

short times, the horizontal position of the front F coincided with the position of the deepest

point L, which means that during the initial phase of penetration, when the immersed bulk

was composed of few particles only, the front was in the lowest part of the mass. When the

avalanche started to spread in the water, the two points F and L were distinguishable. The

horizontal coordinate of F always increased: first with decreasing slope and, eventually,

with a constant slope. The horizontal coordinate of L first increased, then reached a

maximum value (at t & 0.75 s) and, eventually, started decreasing, but at a small rate.

With regard to the vertical motion of F and L, we noted that, initially, the vertical coor-

dinates increased, then decreased, in agreement with physical intuition, but the front F rose

significantly faster than the lowest edge point L: as the former almost immediately went

back up to reach a constant value (y & 0.01 m), the latter rose slowly and continuously.

The slow backward and rising motion of L can be explained by the densification that

occurs in time at the rear of the avalanche, due to the incoming particles.

While the vertical motion of the centre of mass bears resemblance with a damped

oscillator, the other reference points (F and L) reveal a more complicated behaviour: a fast

expansion if we focus on F, and a slow stretching if we look at L.

Fig. 2 Motion of the check points for experiment 68 (see Table 1 for the corresponding avalanche
characteristics). Evolution of the horizontal and vertical components of the motion (initial time corresponds
to the first particle entering the water), respectively, in the top and bottom panel
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3 The motion of the impacting mass

The motion of a dilute positively buoyant granular mixture hitting a water basin can be

described through the bulk’s space-averaged motion and the expansion of its boundaries.

The time evolution of the centre of submerged mass is a good indicator of the average

motion, while the reference points F and L can be used as proxies of the avalanche

spreading in the water. The motion of the reference points for all the experiments is

reported in Figs. 3, 4 and 5 (black dots). We also show the ensemble averages (calculated

over the entire experimental set-up, the initial time being defined as the time at which the

first particle enters the water). This generalizes what we observed for Run 68 (see Fig. 2).

3.1 The mean motion of the impacting mass

The impacting bulks’ centre of mass defines a smooth curve (see Fig. 3) that can likely be

captured by a simple equation. Here we take inspiration from the approximate multi-phase

model proposed in Zitti et al. (2016), where the mass and momentum balance equations are

applied to a fixed volume (see Fig. 6), but relaxing the hypothesis of diluted and sub-

merged solid phase. The derivation has been shifted to Appendix 1 for the sake of brevity.

We end up with the following dimensionless governing equation for the mean value of the

velocity of the solid phase �us tð Þ (Eq. 31 in ‘‘Appendix 1’’):

b1

d�u�s t�ð Þ
dt�

þ u� t�ð Þ�u�s t�ð Þ ¼ s� t�ð Þ
r
t�

0 s� sð Þds
u�0 þ 1 � qf

qs

r t�ð Þ
	 


ny ð1Þ

Fig. 3 Evolution in time of the centre of mass C for all the experiments (black dots) and ensemble averages
(green line). The initial time corresponds to the first particle entering the water. The horizontal and vertical
components are reported, respectively, in the top panel and in the bottom panel
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Fig. 4 Evolution in time of the front point F for all the experiments (black dots) and ensemble averages
(blue line). The initial time corresponds to the first particle entering the water. The horizontal and vertical
components are reported, respectively, in the top panel and in the bottom panel

Fig. 5 Evolution in time of the lowest edge point L for all the experiments (black dots) and ensemble
averages (red line). The initial time corresponds to the first particle entering the water. The horizontal and
vertical components are reported, respectively, in the top panel and in the bottom panel
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where �u�s is the dimensionless mean velocity of the solid phase, t� is the dimensionless

time, b1 is an average coefficient of the solid phase momentum (i.e. the ratio of the mean

momentum to the product of the mean mass and mean velocity of the solid phase), u� t�ð Þ
is the dimensionless dissipation function, s� t�ð Þ is the relative avalanche thickness, u�0 is

the relative mean velocity of the solid phase upon impact, qf is the fluid density, qs is the

solid density, r t�ð Þ is the dimensionless fraction of the submerged mass, and the unit vector

ny points in the vertical direction (for a clearer description, the reader is referred to

‘‘Appendix 1’’). Equation (1) is a differential equation of the mean velocity of the solid

phase and is representative of the motion of the centre of mass of the impacting bulk, i.e.

_x�C t�ð Þ ¼ 1
h
_xC t�ð Þ� �u�s t�ð Þ, where the over-dot means time derivation. The equation is

rather simple and fairly similar to the equation of a forced harmonic oscillator with time-

depending coefficients. The number of time-depending coefficients prevents us from

finding a close solution without further assumptions. Instead of searching for a close

solution, we are going to derive a representative function for the mean motion of the solid

phase by taking advantage of the similitude of Eq. (1) with the harmonic oscillator. Since

the general solution of the differential equation of an harmonic oscillator provides the

shape of the solution, we neglect the inhomogeneous part, i.e. the first term on the right-

hand side of Eq. (1), which represents the external force for the differential equation. The

last term on the right-hand side is included in the homogenous part of the differential

equation, as the submerged mass fraction r t�ð Þ implicitly depends on the mean position of

the submerged mass. Hence, we find that the x and y projections of Eq. (1) are:

b1€x
�
C t�ð Þ þ u�

x t�ð Þ _x�C t�ð Þ ¼ 0 ð2aÞ

b1€y
�
C t�ð Þ þ u�

y t�ð Þ _y�C t�ð Þ ¼ 1 � qf

qs

r t�ð Þ
	 


ð2bÞ

where u�
x t�ð Þ and u�

y t�ð Þ are the two components of the diagonal dissipation tensor u� tð Þ.
The two projected equations are then studied separately.

From Eq. (2a) we get the following relation between mean acceleration and mean

velocity:

€x�C t�ð Þ ¼ �u�
x t�ð Þ
b1

_x�C t�ð Þ ð3Þ

Since
u�
x t�ð Þ
b1

is always positive, Eq. (3) states that the horizontal acceleration is always

opposite to the horizontal velocity. Therefore, the initial velocity being positive, the initial

Fig. 6 Schematic of the control
volume
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acceleration is negative, thus causing the velocity to vanish (see Fig. 7a). Consequently,

the horizontal displacement of the immersed bulk’s centre of mass increases, but with a

decreasing rate, until it reaches steady state. The representation of such motion, shown in

Fig. 7b, is very similar to the solution of a simply damped motion.

Equation (2b) is more complicated to analyse, since it includes the submerged mass

fraction r t�ð Þ, which implicitly depends on the mean position of the submerged mass. To

handle such complication, we rearrange Eq. (2b) to get r t�ð Þ:

r t�ð Þ ¼ qs

qf

1 � b1€y
�
C t�ð Þ � w t�ð Þ

� �

ð4Þ

where w t�ð Þ ¼ u�
y t�ð Þ _y�C t�ð Þ is the dimensionless dissipation occurring during the motion.

Taking advantage of a graphical representation of the motion in the r t�ð Þ;w t�ð Þð Þ-plane,

illustrated in Fig. 8a, we deduce the behaviour of the vertical flow component. Since this

analysis requires a careful use of the plane, an explanation of how the plane should be read

is detailed in Appendix 2. Analysing the motion in the r t�ð Þ;w t�ð Þð Þ-plane allows us to

define the function that describes the mean vertical position of the avalanche, reported in

Fig. 8b. Note the similarities with the solution of a simply damped harmonic oscillator.

The motion shown in Figs. 7b and 8b is similar to our experimental data (Fig. 3a, b).

Furthermore, it is also similar to the solutions of simple ordinary differential equations. In

particular, the horizontal motion is similar to the solution of a simple damping, while the

vertical motion is similar to the solution of a simply damped harmonic oscillator. This

suggests reducing Eq. (2) to simpler differential equations and using their solutions to

describe the mean motion of the impacting solid phase. Simplifying Eq. (2), described in

the following, involves several assumptions.

Equation (2) can be reduced to simpler ordinary differential equations if all the coef-

ficients not involving the motion itself (i.e. u�
x t�ð Þ and u�

y t�ð Þ) are assumed to be constant.

This means that the rate of change in the energy dissipation term (see Eq. 29) is of minor

importance to the motion. In addition, the vertical component can become that of a simply

(a)

(b)

Fig. 7 Representation of the
horizontal velocity (a) and
horizontal position (b) of the
solid phase centre of mass xC tð Þ
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damped harmonic oscillator if the term depending on the fraction of the submerged mass is

taken to be linearly dependent on the average position of the centre of mass:

1 � qf

qs

r t�ð Þ
	 


/ ky�C t�ð Þ ð5Þ

Equation (5) provides a relation between the percentage of the submerged body and the

depth of its centre of mass.

Using the assumptions above, we obtain the following solvable ordinary differential

equations:

€x�C t�ð Þ þ �u�
x _x

�
C t�ð Þ ¼ 0

€y�C t�ð Þ þ �u�
y _y

�
C t�ð Þ þ Ky�C t�ð Þ ¼ 0

(

ð6Þ

where �u�
x =

u�
x t�ð Þ
b1

, �u�
y =

u�
y t�ð Þ
b1

and K ¼ k
b1

are constant coefficients. General solutions of

system (6) are:

(a)

(b)

Fig. 8 a r t�ð Þ;w t�ð Þð Þ-plane
used to represent the evolution of
the motion. The condition of zero
velocity corresponds to the
ordinate _y�C t�ð Þ ¼ 0. The inclined

straight line gives the zero
acceleration condition
€y�C t�ð Þ ¼ 0. The red curve

represents the motion path in the
case of a low-density material,
such as a snow avalanche.
b Representation of the centre of
mass vertical motion y�C t�ð Þ of

the solid phase for the case of
snow avalanches impacting
water, characterized by one
evident oscillation
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x�C t�ð Þ ¼ x�C 0ð Þ þ _x�C 0ð Þ
� �u�

x

e� �u�
x t

� � 1
� �

y�C t�ð Þ ¼ y�C 0ð Þ þ _y�C 0ð Þ
k1 � k2

ek
�
1t

� � ek
�
2t

�
� �

8

>

>

<

>

>

:

ð7Þ

where k�1;2 ¼ 0:5 � �u�
y �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�u�2
y � 4K

q
� �

. Solutions (7) provide a simple description for the

mean motion of the solid phase and, being very suitable in regressions of the experimental

data, allow for the construction of suitable predictive relations for the mean motion of the

solid phase.

Since expressions (7) are general solutions to Eq. (6), specific solutions are found once

suitable initial conditions to Eq. (6) are provided. We, thus, assume that the initial hori-

zontal position of the centre of mass is equal to the horizontal projection of the centre of

the front of an equivalent avalanche with constant thickness �s (the average avalanche

thickness) at the time it reaches the water. Since the inclination of the chute is h ¼ 30�, the

initial conditions for the horizontal motion are:

x�C 0ð Þ ¼ �s

h
_x�C 0ð Þ ¼ vx0

(

ð8Þ

The initial conditions for the vertical motion are:

y�C 0ð Þ ¼ 0

_y�C 0ð Þ ¼ vy0

�

ð9Þ

Substituting conditions (8) and (9) into Eq. (7), we obtain:

x�C tð Þ ¼ vx0

� �u�
x

e� �u�
x t

� � 1
� �

þ �s�

y�C tð Þ ¼ vy0

k�1 � k�2
ek

�
1t � ek

�
2t

� �

8

>

<

>

:

ð10Þ

where �s� ¼ �s
h
. Then, solutions (10) are worked out using a nonlinear least squares (NLS)

regression scheme, which solves nonlinear data-fitting problems in the least-squares sense

and finds the coefficients vx0, vy0, �u�
x , k�1 and k�2 that provide the best fit for solutions (10) to

the experimental data. An example of the fit obtained with these solutions is illustrated by

the green lines in Fig. 9. Table 2 summarizes the best-fit coefficients and the average

errors, evaluated as:

em i�C
� �

¼
i�C � i�C;fit

�

�

�

�

�

�

i�C
with i ¼ x; y ð11Þ

where i�C;fit is the fit function whose coefficients are evaluated with the regression. The

average errors of the horizontal component are between 4 and 13%, while the average

errors of the vertical component are between 2 and 25%. Though some significant fluc-

tuations are displayed in Fig. 3, solutions (10) with best-fit coefficient can represent 75% of

the experimental data with an error lower than 10%. Therefore, the reliability of the

approximating functions (10) is confirmed.

Since solutions (10) give a good representation of the experimental data, they are used

to derive predictive relations. Using, again, NLS regression, the coefficients of functions

(10) are related to the avalanche characteristics that have been found to be of paramount
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importance by Zitti et al. (2016). These are: the avalanche dimensionless mass M� ¼ M
qfbh

2,

the avalanche dimensionless thickness �s� and the avalanche Froude number Fr ¼ u0
ffiffiffiffi

gh
p . The

regression gives the following relations for the above-mentioned coefficients:

�u�
x ¼ 0:1p0:7

h

vx0 ¼ 0:12M�0:1Fr0:3p0:7
h

k�1 ¼ �0:02p0:5
h

k�2 ¼ �p0:8
h M�0:4

vy0 ¼ 0:14Fr1:5

ð12Þ

with ph ¼ Fr�s�0:5

M� . Substituting relations (12) into solutions (10) gives the predictive relations

for the time evolution of the centre of mass of the solid phase:

x�C tð Þ ¼ 1:2M�0:1Fr0:3 1 � e�0:1p0:7
h
t�

� �

þ �s�

y�C tð Þ ¼ 0:14Fr1:5

p0:8
h M�0:4 � 0:02p0:5

h

e�0:02p0:5
h
t � e�p0:8

h
M�0:4t

� �

8

>

<

>

:

ð13Þ

An example of the good description provided by these solutions is illustrated by the red

lines in Fig. 9. The average error, evaluated using Eq. (11), slightly increases, ranging

between 9 and 35% for the horizontal motion, and between 5 and 48% for the vertical

motion (see Table 3). However, Eq. (13) properly describes the horizontal motion, with an

Fig. 9 Comparison of the motion of the solid phase (blue line) for a specific, representative, experiment
(M = 599 g, h = 0.18 m and u0 = 1.81 m s-1) with the fit obtained using Eq. (10) (green line) and with
the predictive relations (13) (red line) obtained from the avalanche fundamental parameters. The top panel
reports the horizontal motion (fit average error 9% and prediction average error 10%), while the bottom
panel reports the vertical motion (fit average error 5% and prediction average error 19%)
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Table 2 Coefficients of fit functions for the horizontal and vertical motion, obtained with the NLS
regression

Exp x�C tð Þ y�C tð Þ

vx0 �u�
x em x�C

� �

(%) A ¼ vy0

k�1�k�2
k�1 k�2 em y�C

� �

(%)

50 0.349 0.470 8 0.214 -0.052 -2.210 16

51 0.226 0.265 10 0.236 -0.046 -1.108 11

52 0.183 0.171 11 0.258 -0.044 -0.883 7

53 0.165 0.152 10 0.231 -0.029 -1.516 3

54 0.174 0.157 11 0.256 -0.030 -0.832 3

55 0.177 0.156 9 0.255 -0.023 -0.848 4

56 0.173 0.138 9 0.260 -0.021 -0.714 5

57 0.511 0.564 10 0.333 -0.089 -2.362 25

58 0.285 0.288 11 0.307 -0.064 -1.497 16

59 0.196 0.169 13 0.296 -0.053 -1.448 11

60 0.224 0.187 10 0.297 -0.042 -1.038 6

61 0.198 0.159 10 0.278 -0.034 -1.336 5

62 0.201 0.159 9 0.274 -0.026 -1.476 5

63 0.212 0.165 10 0.316 -0.028 -0.780 3

64 0.306 0.478 9 0.172 -0.066 -2.031 20

65 0.178 0.217 13 0.189 -0.056 -1.143 12

66 0.163 0.174 11 0.218 -0.052 -0.833 7

67 0.151 0.152 10 0.223 -0.042 -0.637 5

68 0.178 0.179 10 0.219 -0.039 -0.807 3

69 0.199 0.215 9 0.233 -0.033 -0.799 3

70 0.173 0.173 10 0.212 -0.027 -0.696 3

71 0.171 0.158 12 0.247 -0.089 -3.345 18

72 0.284 0.334 10 0.268 -0.068 -1.258 13

73 0.189 0.194 13 0.228 -0.057 -1.512 11

74 0.202 0.201 11 0.266 -0.053 -0.977 7

75 0.183 0.167 11 0.255 -0.047 -0.992 5

76 0.199 0.184 9 0.279 -0.041 -0.665 5

77 0.199 0.175 9 0.250 -0.036 -0.957 4

108 0.903 0.981 7 0.530 -0.126 -0.859 13

109 0.641 0.584 8 0.405 -0.081 -1.003 9

110 0.416 0.335 8 0.368 -0.056 -1.614 7

111 0.348 0.289 8 0.344 -0.036 -1.740 5

112 0.359 0.280 7 0.343 -0.032 -1.409 4

113 0.284 0.163 11 0.326 -0.027 -1.320 4

114 0.262 0.168 10 0.331 -0.025 -1.413 2

115 0.534 0.607 6 0.533 -0.128 -0.625 8

116 0.378 0.390 4 0.361 -0.073 -0.628 8

117 0.307 0.249 9 0.264 -0.032 -1.900 5

118 0.311 0.257 9 0.282 -0.028 -1.885 3

119 0.308 0.255 6 0.293 -0.027 -1.057 4

120 0.240 0.186 5 0.319 -0.026 -0.685 5
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average error of 16%, and the vertical motion, with an average error of 21%. Further, the

governing parameters for the impulse wave evolution proposed in Zitti et al. (2016) are

suitable to describe also the motion of the impacting mass.

3.2 The overall motion of the impacting mass

In this section the motion of the frontal point F and of the lower edge point L of the

impacting solid phase is analysed, in order to gain some insight in the overall motion of the

avalanche. Inspection of experiment 68 (see Sect. 2) has revealed that, after an initial

transient phase, the frontal point F advances more than the centre of mass C, while the

lower edge point L moves backwards and upwards, mainly following the sloping bottom.

This behaviour has been observed in most of the experiments (compare Figs. 4, 5 with

Fig. 3), but in many cases isolated particles lead to steps in the signal, making it impossible

to perform a systematic and efficient analysis of each experiment, as done for the centre of

mass motion. However, the observation of the difference of the motion of the frontal point

(F) and lower edge point (L) motion of each experiment from that of the centre of mass,

illustrated in Fig. 10, respectively, in blue and red give useful insight in the inner motion of

the solid phase. In fact, all the experiments show the same behaviour; hence, we believe

that studying the mean difference from the motion of C can give useful insights.

The difference between the ensemble average (over all experiments) of the position of F

from the ensemble average of the position of the centre of mass is characterised by a

horizontal component monotonically increasing in time (average of the blue cloud in

Fig. 10a). On the other hand, the vertical component initially increases, then decreases to,

finally, increase again to reach a constant value (average of the blue cloud in Fig. 10b).

This means that four main stages can be recognized, such that the front:

(1) advances and sinks faster than the centre of mass of the solid phase;

(2) keeps advancing, but climbs up with reference to the centre of mass;

(3) keeps advancing and sinks again;

(4) keeps advancing but reaching a constant depth.

We can deduce that the frontal area of the avalanche expands in the horizontal direction.

It is also of particular interest that the damped oscillation observed for the vertical motion

of the centre of mass of the solid phase corresponds to a damped oscillation for the motion

of the frontal area.

The difference of the ensemble average of the position of L from the ensemble average

of the centre of mass is such that both horizontal and vertical components initially increase

and later slowly decrease. Two main stages are thus found for which the lower edge point:

(1) sinks and advances more than the centre of mass of the solid phase;

(2) climbs up backwards in comparison with the centre of mass of the solid phase.

Table 2 continued

Exp x�C tð Þ y�C tð Þ

vx0 �u�
x em x�C

� �

(%) A ¼ vy0

k�1�k�2
k�1 k�2 em y�C

� �

(%)

121 0.190 0.139 6 0.302 -0.021 -1.060 4
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Table 3 Average errors
obtained using the predictive
functions (13)

Exp em x�C
� �

(%) em y�C
� �

(%)

50 26 48

51 21 35

52 11 27

53 11 26

54 10 27

55 9 23

56 10 24

57 19 35

58 17 22

59 15 12

60 10 6

61 9 9

62 9 12

63 12 10

64 35 20

65 19 19

66 12 11

67 11 14

68 11 12

69 12 14

70 20 7

71 18 25

72 20 15

73 16 36

74 12 20

75 12 36

76 10 19

77 11 29

108 16 25

109 13 21

110 16 16

111 19 9

112 20 16

113 33 28

114 29 5

115 13 32

116 10 20

117 18 14

118 24 9

119 26 18

120 17 22

121 16 36
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The second stage of the motion of the lower edge, being upwards and backwards, often

occurs along the chute. Furthermore, since the separation between the two stages might not

be the same for the horizontal and vertical components, an intermediate phase may occur.

Combining the four phases for the frontal motion and of the two phases for the lower edge

motion gives a number of possible configurations. Of particular interest is the initial phase,

where both the frontal area and the lower edge area sink forward in comparison with the

centre of mass. This occurs when the solid bulk expands downward, mainly in the direction

of the chute inclination. Another configuration of interest, that often follows the previous

one, is characterized by the front climbing up forwards and the lower edge climbing up

backwards with reference to the centre of mass. This configuration is characteristic of a

buoyant solid phase and highlights how floatation relates with a significant horizontal

expansion of the solid bulk. Most of the expansion occurs at the front of the avalanche. In fact

the backward motion of L is smaller than the forward motion of F. This is easily explained by

the densification in the back of the avalanche due to incoming particles.

4 Conclusions

The dynamics of snow avalanches entering a water basin has been studied by conducting

laboratory experiments satisfying the Froude similarity. The study includes both an

experimental investigation, with the analysis of the motion of three significant reference

points of the solid phase—i.e. the front (F), the centre of mass (C) and the lowest edge

(L)—and a theoretical analysis, based on the application of the conservation principle to a

fixed volume located at the flume inlet.

Fig. 10 Horizontal (top panel) and vertical (bottom panel) components of the deviation of the frontal point
motion (blue dots) and of the lower edge point motion (red dots) from the average motion for all the
experiments reported in the paper. The black lines in the middle of the cloud of points are the mean values
over all realizations
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Representative functions of the mean motion of the solid phase have been deduced from

both the experimental observations and a theoretical analysis. The latter focused on the

overall dynamics of the problem. In particular, by simplifying the governing equations to

ordinary differential equations (by assuming constant energy dissipation), we implicitly

assumed that the actual evolution of energy dissipation is of minor importance. The dis-

sipation function includes three terms (see Eqs. 29, 27): the inter-particle stress ts tð Þ, the

particle–fluid drag b2r tð ÞVs tð Þd tð Þ �uf tð Þ � �us tð Þð Þ and a term related to the rate of change of

the impacting volume (b1qs
dVs tð Þ

dt
). The former two are well-known dissipative terms, while

the latter represents the momentum contribution of the solid phase entering the control

volume. The assumption of constant energy dissipation means that the three terms com-

posing the dissipation balance each other, their sum being approximately constant. This

suggests a simple relation between the incoming momentum of the avalanche and the

particle fluid drag, which is the mechanism for the momentum transfer to the fluid phase at

the particle scale (see Zitti et al. 2016). Since in our model the inter-particle dissipation is

not separated from particle–fluid interaction, we cannot warrant a linear relation between

the incoming momentum of the avalanche and the momentum imparted to the fluid.

However, the simple relation between the incoming momentum and the two contributions

justifies the simplicity of some empirical predictive relations for the generated waves

available in the literature (Heller and Hager 2010; Heller and Spinneken 2015; Zitti et al.

2016), some of which are successfully applied to the real case of a tsunami caused by

glacier calving (Lüthi and Vieli 2016).

The comparison of theoretical and experimental results has led to an accurate charac-

terization of the mean motion of the impacting mass and some important insights into the

overall dynamics of the solid phase. In particular, we found relations that can predict, given

the sliding phase characteristics, the average motion of the avalanche with a mean error of

16% for the horizontal component and 21% for the vertical component. Such errors are

consistent with the scale effects estimated by Heller and Hager (2010) for the wave

amplitude when water depth is as low as h = 0.15 m.

Moreover, the study of the avalanche front and lower edge’s motion shows that the

motion of a buoyant material striking water is characterized not only by the vertical

rebound due to the lower particle density, but also by a number of different processes,

among which a significant horizontal expansion of the bulk volume of the solid phase. We

can speculate that these processes produce local distortions inside the bulk, and conse-

quently interactions between particles, which are larger than in landslides. These processes

are significantly dissipative, hence can partly explain the low conversion factor between

the avalanche energy and the wave energy found in Zitti et al. (2016).

Finally, this work is one of the first experimental studies of the dynamics of a buoyant

phase entering a water body and provides data that can be used for model-validation

purposes. In particular, the insights provided by this paper allow us to assess whether the

numerical models, developed for landslide-generated impulse waves, can also be used for

snow-avalanche-generated waves. In particular, numerical models based on the motion of

rigid bodies (Grilli and Watts 2005; Lynett and Liu 2005) are not adequate since they

cannot reproduce the stretching and spreading of snow into water, while two-phase

numerical models (e.g. Cremonesi et al. 2010; Pudasaini and Miller 2012) are better

candidates for simulating snow avalanches striking water basins. Further, the avalanche

motion after striking a water basin, such as alpine lakes or fjords, provides important

information for engineering purposes.
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Appendix 1: Theoretical description of the mean motion of the impacting
mass

We search for a simple equation for the mean motion of the solid phase by relaxing the

hypothesis of diluted and submerged solid phase used in the theoretical model proposed by

Zitti et al. (2016). After defining the local problem using the set of equations of a multi-

phase mixture theory, they are integrated over a two-dimensional control volume repre-

sentative of the problem. The integration leads to a differential equation in terms of mean

value of the velocity of the impacting particles, which is hereafter referred to as the mean

motion of the impacting mass.

First, conservation principles are formulated using the theory of multi-phase mixtures

(Truesdell 1984; Meruane et al. 2010), i.e. assuming that each point is occupied by a

volume fraction ai x; tð Þ of each ith phase. Three phases are present in the problem at hand:

the air, the fluid water (subscript f) and the solid phase (subscript s) composed of particles

with solid density slightly lower than the fluid density. Since the air density is negligible if

compared to those of water and snow, the role of the air phase can be neglected in the

conservation equations (see also Zitti et al. 2016). Assuming that both the fluid and the

granular material are incompressible, the balance equations for the mass and momentum of

each phase are (i = f,s):

oai x; tð Þ
ot

þr � ai x; tð Þui x; tð Þð Þ ¼ 0 ð14Þ

qi
o ai x; tð Þui x; tð Þð Þ

ot
þr � ai x; tð Þui x; tð ÞuTi x; tð Þ

� �

	 


¼ ri x; tð Þ ð15Þ

where qi is the density of the ith phase, while ui x; tð Þ and ri x; tð Þ are, respectively, the

velocity and the resultant of the external forces referring to the ith phase, at position x and

time t. Focusing on the solid phase, the resultant force is given by the divergence of the

stress tensor, the gravitational body force and the interaction force with the fluid phase

f x; tð Þ:

rs x; tð Þ ¼ r � Ts x; tð Þ þ qsas x; tð Þgþ f x; tð Þ ð16Þ

Differently from Zitti et al. (2016), here we will not neglect the stress tensor, since the

solid phase is not always loosely packed. Furthermore, the interaction force is composed of

two contributions: the pressure force and the drag force on the solid phase, i.e.

f x; tð Þ ¼ �qfr x; tð Þas x; tð Þgþ r x; tð Þd x; tð Þas x; tð Þ uf x; tð Þ � us x; tð Þð Þ ð17Þ

where r x; tð Þ is the fraction of the solid phase interacting with the fluid phase (i.e. sub-

merged) and d x; tð Þ is a positive function, representing the drag distribution, defined as:

d x; tð Þ ¼ 3

4
cD x; tð Þ qs

ds

uf x; tð Þ � us x; tð Þj jfv x; tð Þ ð18Þ
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where cD x; tð Þ is the drag coefficient, ds is the grain diameter and fv x; tð Þ is the voidage

function (Di Felice 1994). Function (18) provides the amount of drag force associated with

the fraction r x; tð Þ of the solid volume as x; tð Þ interacting with the fluid, related to the

velocity gradient uf x; tð Þ � us x; tð Þj j. Equations (14) to (18) provide the theoretical foun-

dations for developing the equation that describes the mean motion of the impacting mass.

We define a control volume representative of the experimental model, i.e. a two-

dimensional volume V, illustrated in Fig. 6, that includes the fluid and gas phases, while

the solid phase, composed of grains with mean diameter ds, enters across a section s tð Þ of

the edge AB, with average velocity u0 ¼ u0
cos h
sin h

� �

. The entering mass is characterized by

the bulk density q0 ¼ /0qs, where /0 is the solid fraction of the granular bulk entering the

control volume. Volume Eqs. (14) and (15) are integrated over the control volume V.

Integration of the mass conservation Eq. (14) for the solid phase gives:

dVs tð Þ
dt

¼ /0u0 cos hs tð Þb ð19Þ

where Vs tð Þ is the volume of the solid phase and b is the width of the control volume.

Integration of the momentum Eq. (15) leads to:

b1qs
d Vs tð Þ�us tð Þð Þ

dt
� qs/0u0 cos hu0s tð Þb ¼ Rs tð Þ ð20Þ

where �us tð Þ ¼ 1
Vs tð Þ

R

Vs tð Þ
us x; tð ÞdV is the mean velocity of the solid phase (hereafter the

overbar stands for the volume average); the coefficient b1, taken as constant for simplicity

sake, is such that as x; tð Þus x; tð Þ ¼ b1�as x; tð Þ�us x; tð Þ. Rs tð Þ is the resultant of the external

forces on the whole solid phase, obtained integrating Eq. (16).

The resultant of the external forces Rs tð Þ must be carefully analysed because it is made

of three different contributions:

(1) The divergence of the solid stress tensor

ts tð Þ ¼
Z

V

r � Ts x; tð Þð ÞdV ð21Þ

which represents the particle–particle interaction force;

(2) The weight of the solid phase
Z

V

qsas x; tð ÞgdV ¼ qsVs tð Þg; ð22Þ

(3) The particle–water interaction force, composed of the pressure and drag terms (see

Eq. 17). The pressure term corresponds to the buoyancy force integrated over the

volume

�
Z

V

qfr x; tð Þas x; tð ÞgdV ¼ �qfr tð ÞVs tð Þg ð23Þ

where r tð Þ identifies the submerged fraction of the entire solid volume. The drag

term becomes
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Z

V

r x; tð Þd x; tð Þas x; tð Þ uf x; tð Þ � us x; tð Þð ÞdV ¼ b2r tð ÞVs tð Þd tð Þ �uf tð Þ � �us tð Þð Þ

ð24Þ

where �uf tð Þ is the average velocity of the fluid phase; d tð Þ is a volume-averaged drag

function, and the coefficient b2, taken as constant for simplicity sake, is such that

r x; tð Þd x; tð Þas x; tð Þ uf x; tð Þ � us x; tð Þð Þ ¼ b2r tð Þ�as x; tð Þd tð Þ �uf tð Þ � �us tð Þð Þ. Note

that the functions r tð Þ and d tð Þ have a physical meaning different from, respectively,

r x; tð Þ and d x; tð Þ. The latter ones represent the local forces of particle–fluid

interaction expressed in terms of pressure and drag, while r tð Þ and d tð Þ are global

functions representing, respectively, the fraction of submerged mass and an aver-

aged drag coefficient.

Using Eqs. (21) to (24), we obtain:

Rs tð Þ ¼ ts tð Þ þ qs � qfr tð Þð ÞVs tð Þgþ b2r tð ÞVs tð Þd tð Þ �uf tð Þ � �us tð Þð Þ ð25Þ

In this manner the resultant that appears in Eq. (20) is formulated, as much as possible,

as function of the variables that already appear in Eq. (20).

The integrated conservation principles (19) and (20) together with expression (25) give

a rather complicated form of the equation for the mean motion of the solid mass �us tð Þ:

b1qs

dVs tð Þ
dt

�us tð Þ þ b1qsVs tð Þ d�us tð Þ
dt

� qs

dVs tð Þ
dt

u0

¼ ts tð Þ þ qs � qfr tð Þð ÞVs tð Þgþ b2r tð ÞVs tð Þd tð Þ �uf tð Þ � �us tð Þð Þ
ð26Þ

In order to simplify it, we exploit the fact that the first and third terms on the right-hand

side are both dissipative terms; hence, we collect them and assume that the resultant is in

opposition to the solid average velocity:

ts tð Þ þ b2r tð ÞVs tð Þd tð Þ �uf tð Þ � �us tð Þð Þ ¼ �D tð Þ�us tð Þ ð27Þ

D tð Þ being a diagonal positive tensor. Substituting Eq. (27) into Eq. (26), after some

algebra we get:

b1qsVs tð Þ d�us tð Þ
dt

þ b1qs

dVs tð Þ
dt

I þ D tð Þ
� �

�us tð Þ

¼ qs

dVs tð Þ
dt

u0 þ qs � qfr tð Þð ÞVs tð Þg
ð28Þ

This is a differential equation for the mean motion of the solid phase �us tð Þ. We rec-

ognize an inertial term, involving the average acceleration (first term on the left-hand side),

a dissipative term, involving the average velocity (second term on the left-hand side) and a

non-homogeneous contribution on the right-hand side. The dissipative term is reduced to a

unique term defining the dissipative function u tð Þ:

u tð Þ ¼ b1qs

dVs tð Þ
dt

I þ D tð Þ ð29Þ

Thus, we achieve the simple form:
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b1qsVs tð Þ d�us tð Þ
dt

þ u tð Þ�us tð Þ ¼ qs

dVs tð Þ
dt

u0 þ qs � qfr tð Þð ÞVs tð Þg ð30Þ

Its dimensionless form can be obtained by dividing it by qsVs tð Þg, after substituting the

terms involving Vs tð Þ using Eq. (19) and its solution:

b1

d�u�s t�ð Þ
dt�

þ u� t�ð Þ�u�s t�ð Þ ¼ s� t�ð Þ
r
t�

0 s� sð Þds
u�0 þ 1 � qf

qs

r t�ð Þ
	 


ny ð31Þ

where t� ¼ t
ffiffiffiffiffiffiffiffi

g=h
p

is the dimensionless time, s� t�ð Þ ¼ s tð Þ=h is the dimensionless ava-

lanche thickness, �u�s t�ð Þ ¼ �us tð Þ=
ffiffiffiffiffi

gh
p

and u�0 ¼ u0=
ffiffiffiffiffi

gh
p

are dimensionless velocities,

u� t�ð Þ ¼ u tð Þ=qsVs tð Þ
ffiffiffiffiffiffiffiffi

g=h
p

is the dimensionless dissipative function, and ny ¼
0

1

� �

is the

direction of the gravitational field. Equation (31) has now the form of the law of motion of

a single body with varying coefficients. In fact, the mean velocity �u�s t�ð Þ multiplies the

dissipative function u� tð Þ, the non-homogeneous term (right-hand side) is function of both

the relative avalanche thickness s� t�ð Þ and the dimensionless fraction of submerged mass

r t�ð Þ.
Solvability of Eq. (31) depends on the proper definition of the time-dependent func-

tions, which is verified in the following. The physical meaning of the relative avalanche

thickness s� t�ð Þ and of the dimensionless fraction of submerged mass r t�ð Þ ensure they are

positive definite functions, while the dissipative function u� tð Þ requires more attention,

since it includes several components. The explicit form of u� tð Þ is:

u� tð Þ ¼ b1

s� t�ð Þ
r
t�

0 s� sð Þds
I þ 1

qs/0u0 cos h r t0 s sð ÞdsbD tð Þ ð32Þ

u� tð Þ is well defined, being I and D tð Þ diagonal positive tensors, if the denominator of its

components is not zero. Since they include
R

t�

0

s� sð Þds, the divergence of the function to

infinity occurs when the solid phase is not in the control volume yet. Such condition is

easily avoided by assuming the initial time (t ¼ 0) to correspond with the impact of the

first particle on the water surface, as assumed in Sect. 3, thus ensuring the convergence of

Eq. (31) almost everywhere.

Appendix 2: Graphical approach for the analysis of the vertical mean
motion of the impacting mass

The analysis of the vertical mean motion of the solid phase is based on use of the

r t�ð Þ;w t�ð Þð Þ-plane (see Sect. 3), whose reading is here explained in detail. In the

r t�ð Þ;w t�ð Þð Þ-plane the motion is represented in terms of both the submerged fraction of

the solid phase and dissipation. By the definition of r t�ð Þ, the representation of the motion

of a floating mass is bounded vertically between 0 and 1 (shaded area in Fig. 8a). Further,

being u�
y t�ð Þ positive, w t�ð Þ has the same sign of the vertical velocity �u�sy t�ð Þ. Therefore, the

right-hand side of the plane corresponds to positive (downward) velocities, the left-hand

side corresponds to negative (upward) velocities, and the condition of zero velocity

coincides with the vertical line w t�ð Þ ¼ 0. The condition of zero acceleration is given by

the line r t�ð Þ ¼ qs

qf
1 � w t�ð Þð Þ, which divides the plane into two parts: the upper part of
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positive (downward) acceleration and the lower part of negative (upward) acceleration. In

the specific case of snow avalanches, the ratio is
qs

qf
� 0:9 and the sector of the plane with

upward acceleration and upward velocity is small.

The description in the r t�ð Þ;w t�ð Þð Þ-plane of the mean vertical motion of the avalanche

is subdivided into several steps:

(1) At impact (t� ¼ 0), the fraction of the submerged mass in the control volume V is

zero (rð0Þ ¼ 0) and u�
y t�ð Þ does not converge yet (see Appendix 1); hence, the repre-

sentation of the initial stages of motion is close to the asymptotic condition. Since the

initial velocity is downward (i.e. positive), w 0ð Þ is positive, and the asymptotic condition

that represents the initial condition of the motion is w 0ð Þ ! þ1.

(2) Such initial state of motion, named O in Fig. 8, is located in a region of the plane

where the velocity is downward, this increasing the value of r t�ð Þ, and where the accel-

eration is upward, this reducing the downward velocity itself and, subsequently, w t�ð Þ.
Hence, the trajectory moves left-upward in the plane (curve OA in Fig. 8a).

(3) In the specific case of snow avalanches the condition of zero velocity is reached

before the condition of zero acceleration (point A in Fig. 8a), as proven by experiments. In

fact, this condition represents a maximum for the mean vertical position, which occurs in

all experiments reported in the bottom panel of Fig. 3. In some cases, the mass could be

totally submerged for a while and point A becomes a segment lying on the upper bound.

(4) Since point A is in a region of upward acceleration, the velocity changes its sign and

the motion becomes upwards, this gradually reducing the fraction of the submerged mass.

Then, the trajectory moves left-downward in the plane, until it reaches zero acceleration

(point B in Fig. 8a).

(5) Being B in a region of the plane where the velocity is upward, r t�ð Þ decreases and

the point on the trajectory is pushed down in a region where the acceleration is downward.

Thus, the value of the upward velocity decreases and the point representing the motion

moves towards the condition of zero velocity (point C).

(6) Point C is placed in a region of downward acceleration, then the downward velocity

increases, together with r t�ð Þ, until the trajectory reaches the condition of zero acceleration

(Point D).

(7) Point D is characterized by downward velocity, then the trajectory continues

upwards in a region where the acceleration is upwards, this decreasing the downward

velocity until it vanishes, like in point A. Then, the motion is periodical with smaller

amplitudes characterizing each loop, i.e. it is a damped motion.

(8) The oscillations approach the quiescent condition, represented in Fig. 8a through

point S, which satisfies both conditions of zero velocity and zero acceleration. For the

density ratio typical of the case at hand, the distance between B and S is small and we

assume that only one oscillation is needed to attain the quiescent condition.

The representation in the r t�ð Þ;w t�ð Þð Þ-plane supports the qualitative description of the

dimensionless mean depth in time y�C t�ð Þ: the depth function derived from the represen-

tation in Fig. 8a is reported in Fig. 8b. In fact, the position of each point representing the

motion illustrates if the depth is increasing or decreasing (downward or upward velocity

regions) and if the function is convex or concave (downward or upward acceleration

regions). In particular, the points with zero velocity (A and C) correspond to maximum and

minimum depths, respectively, and the points with zero acceleration (B and D) are

inflection points for the function. In more details: lines OA and DS of Fig. 8a are in a

region of upward velocity, that implies an increasing function in Fig. 8b, while ABC is

decreasing in Fig. 8b because in Fig. 8a the curve ABC is placed in a region of downward
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velocity. Further, curve OAB of Fig. 8a is in a region of upward acceleration, this implying

the related function of motion to be concave in Fig. 8b and A to be a maximum. Instead,

line BCD is in a region of downward acceleration, then the correspondent function is

convex in Fig. 8b and B is a local minimum. Since only one oscillation is assumed to

occur, the remaining concave curve CS leads to the quiescent condition of zero motion

(constant depth in Fig. 8b). In conclusion, the information given by the representation of

the motion in the r t�ð Þ;w t�ð Þð Þ-plane has produced a function for the mean depth of the

solid phase that has the typical behaviour of a solution of a damped harmonic oscillator.
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