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Abstract Understanding the physical processes involved in snow avalanche-obstacle interaction is
essential to be able to estimate the pressure exerted on structures. Although avalanche impact pressure has
been measured in field experiments for decades, the underlying physical principles are still elusive.
Previous studies suggest that pressure is increased due to the formation of an influenced flow region
around the structure, the mobilized domain, which varies in size depending on snow properties such as
snow cohesion. Here, we aim to better understand how cohesion, friction, velocity, and their interplay
affect avalanche pressure buildup on structures. This is achieved by simulating the avalanche-obstacle
interaction with a newly developed numerical model based on the discrete element method, using a
cohesive bond contact law. The relevance of the model is tested by comparing simulated impact pressures
with field measurements from the Vallée de la Sionne experimental site. Our results show that at the
macroscale, impact pressure consists of the inertial, frictional, and cohesive contributions. The inertial and
frictional contributions arise due to the existence, shape, and dimension of the mobilized domain. The
cohesive contribution increases the particle contact forces inside the domain, leading up to a doubling of
the pressure. Based on these physical processes, we propose a novel scaling law to reduce the problem of
calculating the pressure induced by cohesive flows, to the calculation of cohesionless flows. These findings
enhance our understanding of the interaction of cohesive granular flows, such as snow avalanches, and
structures at the microscale and macroscale.

1. Introduction
How a flow behaves past an obstacle is a problem of fundamental importance in fluid mechanics. A related
problem that has attracted considerable attention is the force exerted by the flow on an obstacle. For New-
tonian fluids, two processes generate a force on an obstacle: the fluid pressure and the viscous forces. There
is no general expression that holds for all flow configurations, but for some flows, analytical expressions
have been derived. These concepts, however, can not always be extrapolated successfully for non-Newtonian
fluids like snow avalanches (Ancey & Bain, 2015).

Indeed, snow avalanche pressure on obstacles is generally assessed by referring to two limiting cases. When
the velocity is high, the impact pressure is calculated in a manner analogous to an inviscid fluid, where
pressure is proportional to fluid density times the velocity squared (p ∝ 𝜌·v2) (Baroudi & Thibert, 2009; Salm,
1966; Burkard et al., 1990; Sovilla et al., 2008a). If the velocity is low, snow avalanches are often approximated
as cohesive granular flows (Bartelt & McArdell, 2009; Steinkogler et al., 2015) and are considered to be
analogous to quasi-static granular flows, where impact pressure is proportional to gravity, density, and the
immersion height of the obstacle in the medium (p ∝ 𝜌 · g · h) (Albert et al., 1999; Sovilla et al., 2010;
Wieghardt, 1975).

Often the Froude number (equation (1)) is used to classify these two flow regimes. The case of fast avalanches
is referred to as the inertial regime (supercritical, Fr > 1), and to the case of slow avalanches as the
gravitational regime (subcritical, Fr < 1) (Mellor, 1968).

Fr = v∕
√

g · h (1)
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Table 1
Parameters for the DEM Simulations in the Gravitational and Inertial Regime

Parameter Symbol Unit Gravitational plug flow Inertial shear flow
Particle density 𝜌p kg/m3 500 500

Bulk densitya 𝜌b kg/m3 370–430 300–366
Young's modulus E Pa 105 105

Cohesive strength 𝜎coh Pa 0.0–2.0 ·104 0.0–2.0 ·104

Friction coefficient 𝜇 — 0.5 0.5
Particle radius rp mm 40 ± 8 40 ± 8

Depth-averaged velocity v m/s 2–8 15–40
Flow height h m 4.0 2.5
aThe bulk density is not an input parameter but is mentioned here for illustrative reasons.

This is, however, a very coarse distinction as Köhler et al. (2018a) have recently shown that even for the same
topography, the flow regimes can be manifold. It is assumed that snow properties, which are mechanically
and thermodynamically very sensitive, are a main contributor to this diversity of flow behaviors as well as an
important influence on avalanche-obstacle interaction behavior, which is not yet fully understood (Köhler
et al., 2018b; Steinkogler et al., 2015). The problem of snow avalanche impact pressure has been investigated
for some decades in field experiments (Gauer & Kristensen, 2016; Sovilla et al., 2008b; Thibert et al., 2015)
and small-scale chute experiments (Hauksson et al., 2007; Moriguchi et al., 2009; Salm, 1964). Field mea-
surements from snow avalanches (Sovilla et al., 2010, 2016) and studies on granular materials (Faug, 2015;
Favier et al., 2013) indicate concurrently that the formation of force chains and cohesion, as well as the for-
mation of a mobilized domain, where the flow is influenced by the presence of an obstacle, may increase
the impact pressure of slow avalanches or granular flows in general. However, as Faug (2015) points out,
further investigation on the size and shape of the mobilized domain, as well as the corresponding pressure
on the obstacle, is needed to bridge the gap between processes at the microscale and the macroscopic force
experienced by the obstacle.

The evidence that snow avalanches have a granular nature (Mellor, 1968; Salm, 1966) has prompted the idea
to explore the interaction between avalanches and structures using the discrete element method (DEM).
While multiple studies investigate the force exerted by a cohesionless granular material on an obstacle using
DEM (Calvetti et al., 2017; Chanut et al., 2009; Teufelsbauer et al., 2011), only few have considered that of a
cohesive material (e.g., Favier et al., 2013).

Hence, here we aim to identify which processes are involved in avalanche-obstacle interaction and assess
how they contribute to pressure buildup on structures for a large range of Froude numbers and cohesion
values. More specifically, we aim to clarify how cohesion influences the flow, the mobilized domain, and
the impact pressure.

In this paper we tackle this issue by developing a new numerical model to reconstruct the processes occur-
ring when an avalanche interacts with an obstacle using DEM with a cohesive bond contact model. We take
advantage of the data acquired at the “Vallée de la Sionne” (VdlS) field site, in Valais, Switzerland (Ammann,
1999) to constrain the model parameters and test the model relevance. To compare simulated and measured
impact pressures, we implement the geometry of a 20m high measurement pylon, where most of the mea-
surements are taken and use two commonly observed avalanche scenarios. In VdlS, gravitational avalanches
are often characterized by slowly moving snow (Table 1) forming a smooth basal layer which results in a
flow with constant velocity over the whole flow height. The inertial regime is mostly typical of fast moving
snow (Table 1), which often exhibits a vertical shear velocity profile due to the terrain roughness (Kern et
al., 2009; Sovilla et al., 2008a).

By varying the cohesion and the velocity of the granular flow and analyzing the simulated impact pressure in
each configuration, we identify different impact pressure contributions, especially the contribution of cohe-
sion. In addition, we investigate the structure of the simulated flow around the obstacle at the particle level
to identify the processes involved in the avalanche-obstacle interaction and to better interpret the measured
and simulated pressures which arise at the obstacle. Finally, we back calculate the range of cohesion from
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four gravitational snow avalanches measured at VdlS, to revisit the relevance of the cohesion values used in
the simulations for real avalanches.

2. Materials and Methods
In this section we describe the newly developed DEM model we use to investigate the processes involved
in avalanche-obstacle interaction. This model allows us to reproduce the flow of a granular medium, such
as a snow avalanche, in the vicinity of the obstacle and to analyze the resulting impact pressure and flow
behavior around the obstacle.

In the first part, we define the test case and present experimental data, which we use for the comparison with
the simulations. The second part outlines how we model snow with DEM. In the third section, we present the
model setup. The fourth section summarizes the most important parameters used in the simulations. Finally,
we describe how we compare simulated impact pressures to field measurements. This paper's supporting
information presents the details of the implementation of the numerical DEM, the contact model, as well
as the model setup and procedure.

2.1. Experimental Data and Test Case
Over the past 20 years, a large set of field measurements has been collected at VdlS. Therefore, we choose the
measurement data from this site as the test case to model avalanche flow and pressure in the present study.
Among many other quantities, avalanche pressure and velocity are measured on a 20 m high pylon-like steel
structure (Sovilla et al., 2010). The pylon is located on a flat slope beneath two couloirs, where avalanches
releasing from a 1.5 km wide area converge (Ammann, 1999). Here, we use the term pressure to refer to
the measured or simulated impact pressure on the obstacle, if not mentioned otherwise. At the pylon, the
pressure is measured at the front of six cylinders distributed with 1 m vertical spacing (Sovilla et al., 2014).
The velocity of the incoming flow is measured at the face of a wedge attached to the front of the pylon (Kern
et al., 2010). These point measurements at the pylon are complemented by radar measurements, which
provide information on the flow regime along the ∼2.5 km long flow path (Köhler et al., 2018a).

Based on radar measurement data from VdlS, avalanche flows have been reclassified recently into seven
categories (Köhler et al., 2018a). This highlights the complexity of avalanche flows, which also strongly
depend on the specific terrain and the snow properties. In this study, however, we limit ourselves to two flow
types, which are often observed at the VdlS test site, namely, the inertial shear flow and the gravitational
plug flow regimes.

Field experiments have demonstrated, that in the inertial flow regime, which is mostly typical of fast and
cold avalanches, the pressure is proportional to velocity squared. Throughout this paper, we refer to cold
or warm avalanches as avalanches with prevailing snow temperatures below or above −1 ◦C, respectively.
Previous research suggests that snow undergoes dramatic changes at this temperature, which consequently
influences avalanche flow dynamics (Fischer et al., 2018; Köhler et al., 2018a; Steinkogler et al., 2015). The
dense flows of inertial avalanches at VdlS rarely exceed a flow height of h = 2.5 m and often exhibit a sheared
velocity profile (Kern et al., 2009). Typical velocities of the inertial dense flow at VdlS range from 10 m/s to
30 m/s (Sovilla et al., 2008a).

The gravitational regime is often observed for warm snow avalanches and features a linear pressure variation
with flow depth. A typical gravitational plug flow avalanche flows at very low velocities up to a maximum
of ∼10 m/s, at the pylon location. At the VdlS test site these avalanches can build up maximum flow heights
of 5–7 m and exert pressures in the range of 100–500 kPa (Sovilla et al., 2016). However, at VdlS, the peak
flow heights are rarely maintained over longer time spans, but decrease with time. Heights of h ≲ 4 m are
more common for this kind of flow.

2.2. Modeling Snow using the Discrete Element Method
Our model is implemented within the framework of Itasca's commercial PFC software. This software imple-
ments the DEM method based on the soft-contact algorithm (Cundall & Strack, 1979) for interacting discrete
particles.

Because of limited computational power, the number of snow crystals involved in large avalanches is pro-
hibitive to be resolved as individual discrete elements in the model. Therefore, we consider the discrete
particles to correspond to small snow agglomerates rather than individual ice crystals. Hence, the radius of
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the particles in the simulations are normally distributed within the interval 32 mm ≤ rp ≤ 48 mm corre-
sponding to a mean value of rp = 40 mm. According to field surveys, this corresponds to an intermediate
granule size (Bartelt & McArdell, 2009; Sovilla et al., 2008a; Steinkogler et al., 2015). Because snow particles
are not resolved individually, the material properties of the discrete elements in the model must correspond
to the macroscopic properties of the snow granules rather than the ice properties at the crystal level.

In DEM, the material's characteristics are not only influenced by the particles' properties. The dynamical
behavior is primarily governed by the contact model, which comes into play whenever two particles interact
with each other. A suitable contact law is therefore of prime importance to mimic the flowing snow in an
avalanche. In the present work, a parallel bond contact model (Potyondy & Cundall, 2004) is used to model
the mechanical behavior of snow. The model consists of two components: (1) a classical linear viscoelastic
component consisting of a spring and a dashpot in the normal direction and a spring and a Coulomb friction
limit in the tangential direction, as well as (2) an elastic-brittle cohesive bond in parallel to the linear com-
ponent. The bond models the sintering and therefore cohesion of the real snow. Mechanically, it acts like
a beam connecting the particles and can sustain normal and shear forces as well as bending and torsional
loads. Similar to the sintering in snow, also in our simulations we allow for new bonds to form if a new con-
tact occurs between two unbonded particles. Because the bond is in parallel to the linear component, the
cohesionless behavior is conserved in any case, such as after bond breakage before a new bond forms.

2.3. Modeling the Interaction of the Avalanche Flow and Structures
In order to perform a systematic study of the influence of velocity and cohesion on impact pressure, we aim
to impose the flow of the granular material independently from the particle and contact properties in the
DEM model. Therefore, we propose a setup which enforces the flowing granular material (e.g., snow) to
match a specific vertical velocity profile.

To achieve this, we isolate a finite volume of particles around the obstacle. The computational domain is
28 m high (z direction) and is confined with a wall at the bottom. This bottom wall mimics the gliding
surface on which the avalanche flows. Transverse to the flow (𝑦 direction), the domain is 7 m wide and is
limited by a periodic boundary condition. In the streamwise direction (x direction), the domain is 10 m long
and is limited by boundary walls, segmented in height (Figures 1a and 1b). By moving the wall segments
at different speeds at different heights, we can impose the velocity magnitude and profile to the particle
volume. In this way the velocity past the obstacle can be controlled while also accounting for effects such as
basal friction and shear dilatancy.

For the simulations, we use idealized plug and shear velocity profiles. In the gravitational plug flow, we
impose a constant velocity over the whole flow height (Figure 1a). In the inertial shear flow, the velocity
increases linearly from the bottom to the free surface of the granular flow (Figure 1b). Ranges for cohesion
and velocity, velocity profiles, and flow heights are given in Table 1.

Gravity points in the negative z direction. While the average slope in the region of the VdlS pylon is approxi-
mately 20◦, this approximation can be justified in the context of our test case because the terrain up to 10 m
upstream of the pylon is nearly flat.

Figure 1c shows a vertical cross section through the obstacle implemented in the simulation, which is similar
to the measurement pylon in VdlS. In the simulation the pressure and the velocity are sampled at the same
temporal frequency as in VdlS. The simulated impact pressure and velocity at the obstacle are also sampled
at the same locations as in VdlS. The locations are highlighted in Figure 1c in red and blue for the velocity
and the pressure, respectively. The simulated impact pressure is determined by summing up the face-normal
component of all contact forces acting on the measurement surface and dividing it by the sensor surface area.

With the exception of the comparison of simulations and measurements (sections 2.5 and 3.1), we always
use the imposed velocity at the wall. To compare different simulations, we always use a representative value
of contact force, velocity at the pylon, imposed velocity, confining pressure, and impact pressure, which
corresponds to the value at midflow depth.

2.4. Model Parameters
While it is notoriously difficult to measure the mechanical properties of snow due to its heterogeneity
(Gaume et al., 2015a; Gerling et al., 2017), even less is known about the mechanical properties of flowing
snow in avalanches. As mentioned earlier, this applies particularly for cohesion, which is of central interest
in the present study. Thus, most of the parameters and material properties applied in the simulations of this
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Figure 1. Panels (a) and (b) show the workflow for the DEM simulations of a plug flow and a shear flow velocity profile, respectively. The inputs of the
simulations are on the left. The pictures in the middle show DEM simulations, where the boundary walls and the discrete elements are colored according to the
velocity in the streamwise direction. The boundary walls and the static obstacle are shaded in gray. The outputs of the model are shown on the right. Panel (c)
shows the cross section of the pylon with the location of the pressure and velocity sensors.

study are estimated rather than rigorously measured or calibrated with values within typical ranges as used
and suggested by other authors for snow.

As mentioned in section 2.1, gravitational and inertial avalanches have different snow and flow properties. In
the present article we want to focus on the influence of velocity and cohesion on the impact pressure. Hence,
in our parametric study we only vary the cohesion as well as the flow height and the velocity according to
the two flow regimes given in Table 1. Parameters such as the friction coefficient 𝜇 = 0.5 (Gaume et al.,
2015b, 2018; Steinkogler et al., 2015), Young's modulus E, particle radius rp (section 2.2), and particle density
𝜌p = 500 kg/m3 of a single discrete element are constant in all simulations. In contrast to 𝜌p, the bulk density
𝜌b is the volumetric average density including voids between particles in a spherical control volume with a
radius of 5.0 · rp. Hence, 𝜌b varies as a result of cohesion and shear rates, ranging from 370 to 430 kg/m3 in
the gravitational plug flows and from 300 to 365 kg/m3 in the inertial shear flows. The ranges of these bulk
densities agree well with the values from field and experimental studies (Bartelt & McArdell, 2009; Platzer
et al., 2007; Steinkogler et al., 2015).
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For the particles' Young's modulus, we use a value of E = 105 Pa in all simulations, which is in the lower
range of the values used by Gaume et al. (2015b) for modeling snow slabs and in the range of reported
values from the literature (Gerling et al., 2017; Scapozza, 2004; Shapiro et al., 1997). For Young's modulus
of the cohesive bond, we use the same value as for the particles. The cohesive strength of the bond is set to
𝜎coh. less = 0 Pa for cohesionless simulations and varied between 0 kPa < 𝜎coh ≤ 20 kPa otherwise. The upper
limit corresponds roughly to the values reported by Shapiro et al. (1997) for snow with densities from 320 to
420 kg/m3 and is the same range as that used by Gaume et al. (2015b). In the present study we use the local
Bond number (equation (2)) instead of 𝜎coh to analyze the influence of the cohesive strength.

Bo = 𝜎coh∕pconf (2)

This dimensionless number is the rescaled cohesion, defined as the cohesive strength divided by the con-
fining pressure pconf (Roy et al., 2017), where the confining pressure is the vertical component of the local
stress tensor pconf ≡ 𝜎zz.

The parameters discussed here are summarized in Table 1.

2.5. Comparing Simulated Impact Pressure Profiles to Field Measurements
In this section we describe how we compare the simulated impact pressure and field measurements to test
the DEM model's capacity to reproduce impact pressure measurements in a selected flow scenario. To repro-
duce a flow scenario, we impose a velocity profile at the boundary walls in the simulation, as depicted in
Figures 1a and 1b. The resulting velocity profile at the pylon is directly dependent on the imposed one, but
is slightly altered due to the presence of the obstacle influencing the flow.

On the condition that the simulated and the measured velocity profile at the pylon are similar, we can com-
pare the resulting impact pressure profiles for this scenario. Hence, we use the velocity profile at the pylon
as a boundary condition by matching the simulated and measured velocity profile. We therefore impose
an idealized plug or shear velocity profile (section 2.3) such that the resulting velocity at the pylon closely
matches the measured velocity. The only free parameter is the cohesion, which to date cannot be measured
in experiments and can only be estimated for the simulations (section 2.4). The other parameters in the
simulations are kept constant as described in Table 1.

3. Results
The following section presents the results of our study on the influence of velocity and cohesion on the
avalanche pressure on the VdlS pylon. The results are divided into four parts. In the first step, we compare the
simulated impact pressure to field measurements of snow avalanches from VdlS to test whether the model
proposed in section 2 is able to reproduce field measurements. Second, we show the results of the parametric
study, where we vary velocity and cohesion in our simulation. There we analyze how impact pressure is
influenced by changes in these two variables. In the third step, we analyze the flow around the obstacle
at the microscale to better interpret and understand the influence of velocity and cohesion on the impact
pressure. In the fourth step, we analyze the range of cohesion, the pressures, and pressure fluctuations in
gravitational avalanches with regard to the results from the previous sections.

3.1. Comparison of DEM Simulations With Field Measurements
For the comparison of simulations with measurements, we select examples of field measurements of a
gravitational plug flow and an inertial shear flow from the VdlS archive, respectively.

In the case of the gravitational flow, we select measurements performed in a warm avalanche (archive
number 20103003 in the VdlS database), which was released naturally on 30 December 2009. From these
measurements we extract a short time sequence in the order of 0.5 s to obtain the pressure and velocity pro-
file. In Figure 2a these measurements are compared to a simulation with an imposed plug velocity profile
of 10 m/s, a flow height of 4 m, resulting in the red velocity profile of ∼8 m/s at the pylon (Figure 2a, left
panel). For the cohesive strength we choose a value of 𝜎coh = 15.6 kPa which is high considering the range
of 𝜎coh given in Table 1, as expected from a typical warm plug flow avalanche.

The qualitative trend of the simulated pressure profile agrees with the measured pressure profile, which
increases linearly with the flow depth (Figure 2a, right panel). However, the simulated pressure increases

KYBURZ ET AL. 6 of 18



Journal of Geophysical Research: Earth Surface 10.1029/2019JF005192

Figure 2. Panels (a) and (b) show the comparison of simulated (red squares) and measured (blue diamonds) velocity and pressure profiles for an example of a
plug flow and a shear flow, respectively. The error bars indicate the standard deviation from the mean value of the pressure or velocity. The interpolating lines
between the data points are only a visual aid.

at a slightly higher rate near the free surface of the flow and at a slightly lower rate below ∼3.5 m than in
the real-scale experiment.

In the case of the inertial shear flow we choose the measurement of avalanche # 20173032, which was
released artificially on 8 March 2017. In Figure 2b this measurement is compared to a simulation with a
flow height of 2.5 m and an imposed shear velocity profile of 0–20 m/s, resulting in the red velocity profile
at the pylon shown in Figure 2b, left panel. Due to the idealization of the shear velocity profile as a linear
profile, the simulated velocity profile shows small deviations with the measurements in the lower layers of
the flow, at a flow height of ∼1.0 m. For this scenario we choose a cohesive strength of 𝜎coh = 1.25 kPa. As
it would be expected for an inertial shear flow, the selected cohesion is considerably lower than that of the
gravitational plug flow. The small mismatch between the measured and simulated velocity profiles does not
seem to affect the pressure profiles in Figure 2b, right panel. The two impact pressure profiles show a very
good agreement.

In order to test the relevance of our model in simulating the correct pressure for a larger range of velocities
and cohesions, we vary the cohesive strength and velocity in our simulations according to the ranges given
in Table 1.

Figure 3. Comparison of simulated (red triangles) and measured (black symbols) impact pressure versus velocity.
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Figure 4. Panel (a) shows the simulated pressure as a function of velocity with an illustration of the inertial (blue),
frictional (yellow), and cohesive (red) pressure contributions in the inset. Panel (b) shows the simulated pressure for
different Fr (colors) as a function of the Bond number. Panel (c) shows the pressure normalized by the corresponding
cohesionless pressure plotted against the Bond to Froude number ratio qBo,Fr. In panels (b) and (c) the dashed
interpolating lines between the data points are only a visual aid.

In Figure 3, we compare the simulated impact pressures to field measurements of two avalanches (# 7226
and # 6236, published by Sovilla et al., 2008a). We can see that the simulated and measured impact pressure
values in Figure 3 show good agreement over a wide range of avalanche velocities. For low velocities up to
10 m/s, the scatter of the simulated data is in the same range as the scatter of the measured data. The large
scatter of the measurements for velocities higher than 10 m/s is very likely to be caused by the variability of
the snow properties in the avalanches (Köhler et al., 2018b). The scatter in the simulations is smaller because
many snow properties are kept constant (Table 1). Specifically, the scatter of the simulated impact pressure
is caused only by the variation of cohesion, flow height, or imposed velocity.

3.2. Influence of Velocity and Cohesion on Impact Pressure
In this section we analyze the influence of velocity and cohesion on impact pressure. For this purpose, we
vary both quantities systematically in the ranges given in Table 1.

Figure 4a shows the simulated impact pressures p on the obstacle plotted over a range of velocities. Here
we plot the impact pressure of cohesionless simulations connected by the dashed black line, and the sim-
ulations with the strongest cohesion 𝜎coh = 20 kPa connected by the dash-dotted black line. We observe
that the dashed and the dash-dotted line only vary little at slow velocities under 4 m/s, as found earlier for
cohesionless granular materials (Albert et al., 1999; Wieghardt, 1975). For velocities higher than 8 m/s, the
pressure increases gradually, for the cohesive and the cohesionless case.

In this plot we identify three pressure contributions at the macroscale. The contributions are separated by
the black lines in Figure 4a, and visualized by the colored areas in the inset.

We define the first impact pressure contribution as the inertial contribution, which is proportional to veloc-
ity squared p ∝ v2 · 𝜌∕2 (Salm, 1966), similarly to the hydrodynamic impact pressure of inviscid fluids. This
contribution is visualized in Figure 4a by the blue area in the inset and the black solid line, which is cal-
culated using a constant density 𝜌 = 300 kg/m3 as suggested by Burkard et al. (1990). In the log-log plot
in Figure 4a the slope of the cohesionless pressure curve (dashed line) reaches a maximum of 1.9 between
30 and 40 m/s, very close to the theoretical value 2.0 given by the v2 proportionality (solid line). Hence,
Figure 4a shows that p ∝ v2 · 𝜌∕2 is only a good approximation for the pressure of fast flows in the inertial
regime (v ≳ 20 m/s).
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For flows where v ≤ 15 m/s, we observe that the lowest simulated pressures, which are connected by the
dashed black line and correspond to cohesionless simulations, are well above the solid black line. Hence, we
define the second contribution as the pressure difference between the dashed and the solid black line at a
constant velocity and refer to it as the frictional pressure contribution. It is highlighted with the yellow area
in the inset. The frictional contribution arises due to the granular nature of the flow which we inherently
simulate with DEM, in contrast to the flow of an inviscid fluid. The pressure increase due to this contribution
is ∼30% (50 kPa) of the maximum pressure for v < 8 m/s and decreases monotonically for v > 8 m/s. Hence,
the frictional contribution is mostly relevant for gravitational flows (2 ≤ v ≤ 8 m/s).

The third pressure contribution is the cohesive contribution, visualized with the red area in the inset. We
define it as the pressure difference between the dash-dotted and the dashed black line at a constant velocity.
Thus, the cohesive contribution is the difference between impact pressure of a cohesive and a cohesion-
less simulation. While frictional processes between particles might still occur in the red area, they are less
relevant with increasing cohesion because the cohesive bonds inhibit the relative movement between the
particles. Hence, the increase in impact pressure is caused by the presence of cohesion in the granular mate-
rial. From Figure 4a we find that, for the maximum cohesion 𝜎coh = 20 kPa, the maximum pressure increase
due to cohesion is 70% (127 kPa) at 3 m/s and 14% (70 kPa) at 40 m/s, respectively. Hence, similarly to
the frictional contribution also the cohesive contribution is more relevant for gravitational flows than for
inertial flows.

Figure 4b shows the pressure plotted against the Bond number Bo to investigate the influence of cohesive
strength on impact pressure. For all Fr values, we observe that at small Bo (equation (2)), pressure is a very
weak function of Bo. In contrast, we find that for large Bo values the pressure is affected significantly by
cohesion (Bo). For increasing velocity, and thus Froude number, the pressure curves are gradually shifted
toward higher Bond numbers.

In order to obtain a more universal description of the pressure curves, we compensate for this shift by intro-
ducing a new dimensionless number, which is the ratio of the Bond and the Froude number qBo,Fr = Bo∕Fr.
In Figure 4c, we normalize the absolute pressure p by the impact pressure of the cohesionless flow pcoh. less
at the same speed and plot it against qBo,Fr. By normalizing the pressure in this way, we consider only the
pressure increase, which is caused by the presence of cohesion. As Figure 4c demonstrates, the pressure
data collapse almost onto a single curve for the suggested choice of normalization. The curves show that
the pressure is amplified by cohesion predominantly for the flows with low velocities. The largest amplifica-
tions are observed at 3 and 4 m/s, where the pressure of the cohesive flow is up to 3.5 and 3.2 times higher,
respectively, than the pressure of the cohesionless flow.

3.3. Analysis of the Mobilized Domain and Origin of the Pressure Amplification at the Microscale
In order to understand the origin of the pressure amplifications, we analyze the flow around the pylon at
the particle level (microscale) and compare selected simulations. First, we give a general overview of three
scenarios with different velocities and cohesions. In the following sections 3.3.1 and 3.3.2, we analyze the
influence of velocity (Fr) and cohesion (Bo) separately.

We define the mobilized domain as the volume in the flow, where the contact forces between particles adja-
cent to the obstacle coherently exceed a threshold. With respect to contact forces, we consider only the force
component normal to the contact plane. We define this threshold as the median of the contact forces in a
control volume around the pylon. In the present analysis, the median of the contact forces is more represen-
tative of the undisturbed force level than the mean value because the mean is increased by very high force
values in the mobilized domain.

Figure 5 shows the comparison of the mobilized domain for three sample simulations. The first and second
rows show simulations of gravitational flows (Fr = 0.9) with no and strong cohesion, respectively. The third
row shows the simulation of an inertial flow (Fr = 11.4) with strong cohesion.

In Figures 5a, 5d, and 5g we find that force chains stronger than average are only observed in the same region
where the velocity of particles is reduced due to the presence of the obstacle. Indeed, the mobilized domains
in the velocity field and the contact forces agree well in terms of size and shape. For the two gravitational
examples (first and second rows), the mobilized domain has an almost circular shape and is located upstream
of the obstacle. Qualitatively, the contact forces in the mobilized domain away from the pylon increase from
top to bottom in both Figures 5b and 5e. This increase is even more pronounced in the mobilized domain in
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Figure 5. Analysis of the flow and contact forces around the pylon at the microscale. Panels (a)–(c) show a gravitational flow (Fr = 0.9) with no cohesion
(𝜎coh = 0.0 kPa). Panels (d)–(f) show a gravitational flow (Fr = 0.9) with high cohesion (𝜎coh = 10.0 kPa). Panels (g)–(i) show an example of an inertial flow
(Fr = 11.4) with high cohesion (𝜎coh = 10.0 kPa). Panels (a), (d), and (g) show a horizontal section view through the flow in the middle of the flow height as
indicated by the gray area in the other panels. The upper half in panels (a), (d), and (g) shows the velocity distribution. The lower half shows interparticle
contact forces whose strength is visualized through the line thickness and color. Panels (b), (e), and (h) show the vertical section view in the x-z plane located in
the middle of the pylon (red dash-dotted line in panels (a), (d), and (g)). The extent of the pylon is visualized by the black area. Panels (c), (f), and (i) show the
impact pressure profiles with the standard deviation of the temporal pressure fluctuations from its mean value indicated by the error bars.

the vicinity of the obstacle. Not only do the contact forces increase with increasing depth below the surface
of the dense flow, but the mobilized domain also grows larger in size. In the simulation with strong cohesion
(panel d, 𝜎coh = 10.0 kPa), the mobilized domain is considerably larger and contact forces are stronger than
in the cohesionless case (panel a, 𝜎coh = 0.0 kPa).

In the inertial flow (panel g, 𝜎coh = 10.0 kPa), we observe very strong contact forces only in the vicinity of
the obstacle. The shape of the mobilized domain is similar to a bow-wave at the leading edge of the pylon.

When comparing the pressure profiles in Figures 5c and 5f to the Figures 5b and 5e, we observe higher
pressure at the bottom or for high cohesion, where the mobilized domain and contact forces are larger. Aside
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Figure 6. Influence of the Froude number on the mobilized domain and the standoff distance. Panel (a) shows the mean contact force upstream of the obstacle
in streamwise direction for different Froude numbers and Bo = 0.0. The dotted lines correspond to the median contact force in simulations with the same color.
Panels (b) and (c) show horizontal section views at midheight from the simulation with the lowest and the highest Froude number from panel (a), respectively.
The lines indicate the force chains whose strength is visualized through the line thickness and color. Panel (d) shows the standoff distances of the mobilized
domain as a function of Fr for cohesionless flows.

from the increase in the pressure itself, pressure fluctuations also increase in the flow with high cohesion.
In contrast, for the inertial flow regime (Figures 5h and 5i), the strongest contact forces and pressures are
located at the top where the flow velocity is the highest.
3.3.1. Influence of the Froude Number on the Mobilized Domain and Impact Pressure
In Figure 5, we show that the geometry of the mobilized domain varies in different scenarios. Here we want
to examine how the shape changes when varying Froude numbers. To exclude the influence of cohesion we
only consider cohesionless simulations.

Figure 6 a shows the mean contact forces as a function of distance from the obstacle (position 0) and for
different Fr (colored symbols). Each point in the plot represents the local contact force averaged in vol-
umes across the whole domain width at varying streamwise positions (x direction). The dotted lines in
Figure 6a indicate the median of the contact forces in the whole domain, which is used as the threshold for
the mobilized domain as defined earlier.

Figure 6a shows that the shape and location of the mobilized domain change as a function of the Froude
number. This is visualized in Figures 6b and 6c, which display the contact forces for the simulations cor-
responding to the Froude numbers Fr = 0.5 and Fr = 11.4, respectively. Similarly to Figure 5, we find a
circle-shaped mobilized domain for the lowest Froude number Fr = 0.5 (Figure 6b). Figure 6c reveals that
the mobilized domain is pushed downstream if the Froude number is increased. In this case strong contact
forces concentrate just upstream of the obstacle. This leads to the sharp increase in the mean contact force
in Figure 6a for high Fr compared to low Fr.
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Figure 7. Influence of cohesion on contact forces and the mobilized domain. Panel (a) shows the mean contact force upstream of the obstacle in streamwise
direction for different Bond numbers (different colors and symbols) at Fr = 0.7. The dotted lines correspond to the median contact force in simulations with the
same color. Panels (b) and (c) show horizontal section views at midheight from the cohesionless case and the most cohesive simulation from panel (a),
respectively. The lines indicate the force chains whose strength is visualized through the line thickness and color. Panel (d) shows the median contact force as a
function of Bo, and for different Fr (colors and symbols).

To quantify the size of the mobilized domain in a single number, we use the standoff distance. Similarly to
Faug (2015), we define it as the furthest point in the mobilized domain upstream of the obstacle's leading
edge. Hence, the standoff distance defined here depends on the choice of the threshold which is used to
distinguish between the free flow and the mobilized domain. However, even for a different threshold, the
definition of the mobilized domain with the median force proves to be very robust, and the standoff distance
alters only marginally. Here, we use the standoff distance to compare the size of the mobilized domains
across all cohesionless simulations. Figure 6d shows that the standoff distance decreases dramatically from
1.84 to ∼1.0 m with increasing Froude numbers in the range of 0 ≤ Fr ≤ 5. For Fr > 5, the values of the
standoff distance level out at around 0.8 m.
3.3.2. Influence of the Bond Number on the Mobilized Domain and Impact Pressure
In this section we investigate the influence of cohesion on the mobilized domain and the pressure on the
obstacle. Similarly to the analysis in the previous section 3.3.1, we consider contact forces to be an indicator
of the disturbance of the structure on the flow. However, here we only take contacts directly upstream of the
structure into account, because these are considered the most relevant for pressure buildup. If a larger region
in the 𝑦 direction is considered, higher forces in the mobilized domain are averaged out and are therefore
less evident. Figure 7a shows the mean contact forces as a function of streamwise location for Bond numbers
varying between Bo = 0.0 and Bo = 3.0. In Figure 7a, the flow has a Froude number of Fr = 0.7. Again we
consider the median of the contact forces as an indicator of the overall force level (dotted lines in Figure 7a).

In contrast to Figure 6a all curves in Figure 7a have a similar shape. In addition, the standoff distance is
almost constant around 1.5 m for all cases, and the dotted lines show that contact forces are enhanced by
increasing cohesion. This is even more pronounced for local forces in the mobilized domain just upstream
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Figure 8. Panel (a) shows the simulated (colored symbols) and measured (gray squares, from Sovilla et al., 2010)
pressure of gravitational avalanches on the VdlS pylon. Panel (b) shows the pressure fluctuations alone for the same
avalanche and simulation data as in panel (a).

from the obstacle. There, the peak contact forces differ considerably more between low and strong cohesion
than the median contact force. For the example of Fr = 0.7 given in Figure 7a, the peak force (highest red tri-
angle) is ∼3 times higher than the median of the contact forces (red dotted line) for the highly cohesive case.
In the cohesionless simulation, the peak value (highest dark blue circle) is only 2.5 times higher than the
median contact force (dark blue dotted line). A sectional view of the flow around the pylon in the middle of
the flow height illustrates this for the case with no cohesion (panel b, Bo = 0.0) and strong cohesion (panel c,
Bo = 3.0). In these two pictures it is obvious that very strong cohesion heavily intensifies contact forces in
the vicinity of the obstacle, while the shape and size of the mobilized domain remain largely unchanged. In
panel (c), the cohesion is so high that the granular material fails along clearly visible fracture lines.

In Figure 7d, we compare the median contact force of all simulations with varying velocity and cohesion,
and plot this as a function of the respective Bond number. Here we find that similarly to the pressure in
Figure 4b, the median contact forces also increase with increasing Fr. Moreover, the median contact forces
also exhibit a weak dependency on Bo for low Bo values and a strong dependency for large Bo values.

3.4. Pressure and Range of Cohesion in Gravitational Avalanches
As mentioned in section 2.4, we vary cohesion in simulations in the range of 0.0–20.0 kPa. From Figures 4c
and 7d we learn that pressure is only amplified by cohesion if a critical threshold of the Bond-to-Froude ratio
is exceeded. By comparing simulated to measured pressures of gravitational avalanches, we aim to evaluate
which range of cohesive strengths in our simulations can be used to reproduce the pressure values observed
in reality. In Figure 8, we show the measurement data of three gravitational avalanches published by Sovilla
et al. (2010) represented by the gray squares. In these measured warm dense avalanches, velocity ranges from
1 to 8 m/s. The simulated pressure is colored according to the cohesive strength and has different markers
for varying velocity. The temporal pressure fluctuations are illustrated by the error bars in panel (a) and are
separately plotted as a function of the flow height in Figure 8b for all simulations of panel (a).

We find in Figure 8a that cohesive strengths in the range of 0.5–7.5 kPa fit the measurement data well for the
velocity range 2–8 m/s. The different symbols indicating velocity in Figure 8a show that avalanche speed has
very little influence on the pressure. In contrast, it is apparent from the colors that flows with less cohesion
exert lower pressures than flows with elevated cohesion.

Already in Figure 5, we observed that pressure fluctuations are larger in flows with higher cohesion. This
trend is clearly confirmed by Figure 8b. Similar to the measured fluctuations, fluctuations in the simulations
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also increase with increasing flow depth as well. Although Figure 8b shows good overall agreement between
measurements and simulations, the simulated fluctuations are greater than those from measurements at the
flow free surface and increase less deeper within the avalanche. Similarly to the pressure itself, fluctuations
are smaller and larger in simulations with little and high cohesion, respectively.

4. Discussion
4.1. Modeling Avalanche-Obstacle Interaction With DEM
In section 2, we describe our newly developed DEM model to study the interaction between avalanches
and structures. By comparing simulated pressure profiles and pressure profile from field measurements,
we show that by treating avalanches as granular flows and applying the DEM, the numerical model is able
to reproduce flow-depth and velocity squared proportional pressure profiles as well as temporal pressure
fluctuations. Furthermore, the simulated pressure values are in the same order as measured values over a
wide range of avalanche velocity (Figure 3). Particularly at velocities lower than 5 m/s the simulated impact
pressure values agree well with measurements from avalanches # 6236 and # 7226. Only at higher velocities
we observe a significant difference between the scattering of the simulated and measured impact pressure.
This is probably because we only vary few parameters (Table 1) in our parametric study.

Further limitations of the presented model become apparent due to the differences in pressures and pressure
fluctuations between simulations and measurements (Figures 2a, 2b, and 8). First, the current parallel-bond
contact model does not allow for plastic compaction of the granular material. We assume that compaction
influences not only pressure at the bottom of the avalanche flow, due to the weight of the snow above, but also
across the whole flow height where the snow impacts the obstacle (Gauer & Jóhannesson, 2009). Second,
variation in the radii of particles is small, whereas in natural avalanches, particles are typically larger at the
surface of the flow due to particle segregation, which may affect the pressure distribution (Kern, 2000). To
obtain a broad understanding of the influence of cohesion in various avalanche scenarios we choose a large
range of cohesion (0.0 kPa ≤ 𝜎coh ≤ 20.0 kPa) values and apply it to the whole range of velocities (Table 1).
We put these cohesive values into perspective by back calculating the cohesion range from four avalanche
measurements. From the calculations and comparisons in section 3.1 and 3.4, the measurements of these
slow avalanches are found to correspond to cohesion values of 0.5 kPa≤ 𝜎coh ≤ 15.6 kPa in the simulations.
Although the back-calculated cohesion values agree well with values of tensile strength of snow reported by
other authors (Jamieson & Johnston, 1990; Mellor, 1974; Shapiro et al., 1997; Yamanoi & Endo, 2002), they
are probably only valid for the same choice of the other parameters stated in Table 1.

In this study, we used mechanical snow properties from the literature, which are mostly derived from studies
on the mechanics of undisturbed snow. In contrast, avalanche snow may undergo large deformations and
transitions (Steinkogler et al., 2015; Valero et al., 2015). Therefore, the stated values must be considered with
care in the context of this study. Hence, in the future it would be important to collect data on the mechanical
properties of snow granules from avalanches.

The qualitative trend of all results shown in this study have, however, proven to be very robust to changes
in any of these parameters. For example, if 𝜌p is increased, the absolute pressure value increases as well,
but pressure proportionality with flow depth and velocity squared and the trends shown in section 3.3.1,
3.3.2, 3.2–3.4 remain qualitatively the same. Given this qualitative robustness of the results to changes in the
particle properties and because we use a standard cohesive contact model as well as a generic model setup,
we believe that the physical understanding gained in this study may also be relevant for similar processes,
where cohesive granular flows interact with rigid structures.

4.2. Impact Pressure Contributions at the Macroscale
In the inset of Figure 4a, we visualize and highlight the inertial, frictional, and cohesive impact pressure
contributions. The complex interplay between these contributions in avalanche dynamics are investigated
for the first time in this study. It is important to note that all three contributions are present for the whole
range of Fr, but with changing importance as a share of the entire impact pressure.

The inertial contribution is known from other fields (e.g., fluid dynamics, granular flows) and is propor-
tional to density and velocity squared. This v2 proportionality is confirmed by the slope of the dashed black
line in Figure 4a, which is ∼2 for high velocities (v ≳ 20 m/s). Hence, we confirm that avalanche pres-
sure is governed primarily by inertial impact for Froude numbers close to or greater than 10 (Faug, 2015;
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Thibert et al., 2008; Voellmy, 1955). The frictional contribution is most pronounced at low Fr and arises
due to the granular nature of the flow. It is, therefore, also present in cohesionless granular flows (Albert et
al., 2001; Chehata et al., 2003). Thus, even a hypothetical cohesionless avalanche would exert considerably
higher pressures on an obstacle at low Fr, compared to the inertial contribution alone.

The cohesive contribution is also highest at low Fr and constitutes up to 70% of the entire impact pressure for
the range of cohesion from Table 1. If we consider the range of back-calculated cohesion (0.5 kPa ≤ 𝜎coh ≤

15.6 kPa) the largest pressure amplification factor due to cohesion is 2.1 with respect to the cohesionless
case. Furthermore, we show that cohesion is only relevant for a pressure increase above a certain threshold,
where the slopes of the curves in Figure 4b increase dramatically. The idea of a critical cohesion threshold is
also supported by other studies (Favier et al., 2013; Steinkogler et al., 2015). Most likely, below this threshold
the flow behaves similarly to a cohesionless flow as long as collisional forces are strong enough to break the
cohesive bonds between particles. If the cohesive strength is above this threshold value, the bonds cannot
be broken anymore by the collisional forces. Thus, the flow exhibits a cohesive behavior (section 3.3.2) and
impact pressure is amplified.

Because the cohesion threshold is included in the range of the back-calculated cohesion values we assume
that real avalanches are most likely subject to this transition between cohesive and nearly cohesionless
flow behavior. Similarly to the sharp transition of granulation behavior at the threshold temperature −1 ◦C
reported by Steinkogler et al. (2015), we demonstrate that also here small changes in cohesion around the
cohesion threshold, above which pressure is amplified, may lead to substantial changes in pressure.

We also observe that the cohesion threshold varies with Fr and assume that this is due to the competing
effect of cohesive and inertial forces in the snow. We take this into account by defining the Bond to Froude
ratio qBo,Fr. Moreover, we decouple the cohesive pressure contribution from the frictional and inertial contri-
bution by normalizing the impact pressure of a cohesive flow with the cohesionless pressure. The collapse of
the data from Figure 4b onto a single curve in Figure 4c shows that we find a scaling for the impact pressure
of a cohesive granular as a function of the cohesionless pressure as well as Bo and Fr. This scaling allows
us to estimate the impact pressure of a cohesive granular flow by calculating the pressure of cohesionless
flow and multiplying by the factor given in the curve in Figure 4c. This is expedient because the problem of
cohesionless granular flow impacting an obstacle has been studied in the past (e.g., Albert et al., 2001).

4.3. Microscale Processes of Impact Pressure Buildup
In this study, we confirm the existence of the mobilized domain postulated by Faug (2015), even in cohe-
sionless granular flows. Hence, the mobilized domain owes its presence to the granular nature and the force
chains in the granular flow, rather than the presence of cohesion. Consequently, the mobilized domain in
cohesionless flows is most likely the origin of the frictional pressure contribution (yellow area in inset of
Figure 4a).

Our results show that the shape of the mobilized domain can be described using the Froude number only.
For low Fr, the domain has an approximately circular shape and is located mainly upstream of the obstacle
(Figure 6b). If the Froude number is increased, the mobilized domain is “pushed” gradually downstream by
the flow. For the highest Froude numbers, the mobilized domain has the shape of a bow wave (Figure 6c).

Here, we use the standoff distance (section 3.3.1) to characterize the extent of the mobilized domain.
Figure 6d shows that for increasing Fr, the standoff distance decreases dramatically from a maximum of
∼2.0 m in the range of Fr < 5, and then levels out at around 1 m for Fr > 5. This result agrees qualita-
tively with the findings of Cui and Gray (2013) and Faug et al. (2002) on the standoff distance of granular
bow shocks and size of mobilized domains, respectively. Interestingly, a similar dependency is found exper-
imentally between the drag coefficient of a wall and Fr in a mud flow by Tiberghien et al. (2007), as well as
for the hydrodynamic impact pressure of debris flows and Fr by Proske et al. (2011). Quantitatively, how-
ever, the maximum standoff distance in all simulations is considerably smaller than the 3.5–7.0 m estimated
by Sovilla et al. (2016) using the theory of Faug (2015) for the same structure. Furthermore, it is important
to bear in mind that the size of the mobilized domain and therefore the standoff distance probably differs
substantially for other geometries.

We also show that cohesion neither influences the size nor shape of the mobilized domain, but changes the
level of the contact forces inside the domain. As a general rule, we observe that the median contact forces
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increase with increasing cohesion. Our results confirm the observations of Favier et al. (2013), who found
that cohesion increase leads to a densification of the contact network and to an increase in the temporal
contact persistency. Figure 7 d shows that the dependency of the median contact force and cohesion is not
linear. Indeed, the median of the contact forces are almost constant for low Bond numbers but increase
sharply if a particular Bo is exceeded. The resemblance of Figure 4b to Figure 7d clearly indicates that the
pressure increase due to cohesion at the macroscale is directly linked to the intensified contact forces at the
microscale. While further proof is needed, we assume that the frictional and cohesive contributions observed
at the macroscale can be linked to processes at the particle scale. The frictional contribution arises due to
frictional and collisional processes between particles, which causes the mobilized domain to form around
a structure due to jamming or building of force chains. Thereby, the force of the incoming flow probably
acts on the larger apparent surface of the obstacle, which is the outline of the mobilized domain, and it is
transmitted and concentrated at the obstacle surface through the force chains. By increasing the cohesion
between particles, the force transmission from the apparent surface to the obstacle is enhanced and results
in higher pressure on the obstacle surface.

5. Conclusions
In this study we present a newly developed DEM model to investigate the interaction between dense snow
avalanches and obstacles. We show that the model is able to reproduce the pressure profiles and the range of
temporal pressure fluctuations exerted by avalanches on the VdlS pylon for a wide range of Froude numbers
and cohesion values. This indicates that approximating avalanches as granular flows and applying DEM
allows us to capture the most important physical processes involved in avalanche-obstacle interaction.

We also identify, however, some limitations of the model. First, the contact model does not allow for com-
paction of snow, and particle segregation cannot occur because the particles are not flowing freely. Second,
particle properties are estimated from values found in the literature, which are based on the mechanical
behavior of undisturbed snow samples. Hence, to obtain relevant results in future investigations on the
mechanical properties and contact behavior of snow avalanche granules will be needed.

In our study we identify three pressure contributions, which are of varying importance depending on
avalanche speed. The inertial contribution, which is proportional to velocity squared and density, is most
important at high avalanche velocities. The frictional contribution arises due to the granular nature of the
flow and is therefore inherently present in cohesionless flows. Hence, depending on the granulometry, the
impact pressure of slow avalanches is increased by this frictional contribution even without the presence
of cohesion, such as in cold avalanches. In agreement with previous studies, we find growing evidence that
the formation of force chains and the existence of a mobilized domain around the structure in cohesionless
flows are factors leading to elevated pressures at low Fr compared to the impact pressure in Newtonian fluids
(Faug, 2015; Favier et al., 2013; Sovilla et al., 2010). The shape of this mobilized domain smoothly changes
from a nearly circular shape upstream of the obstacle for low Fr, into a bow-wave-like shape for high Fr.

The cohesive contribution increases the impact pressure of a cohesionless flow by a maximum factor of 2.1
if a critical cohesion value is exceeded, such as in warm avalanches. We find that this increase of impact
pressure is caused by the amplification of contact forces within the entire cohesive flow, but especially within
the boundaries of the mobilized domain. Surprisingly, the shape and size of the domain are barely influenced
by cohesion as assumed in other studies (Faug, 2015; Rognon et al., 2008).

Furthermore, we find a scaling relating the pressure of cohesive and cohesionless flows. This allows us to
reduce the problem of calculating the pressure of a cohesive granular flow, to calculating the pressure of a
cohesionless flow, which has been investigated in the past (Albert et al., 2001; Albaba et al., 2015; Calvetti
et al., 2017; Chanut et al., 2009; Moriguchi et al., 2009).

Thanks to the identification of the three pressure contributions at the macroscale and the underlying pro-
cesses at the particle level, this study contributes to our understanding of the buildup of impact pressure of
cohesive granular flows on narrow structures. Finally, as we use a standard cohesive bond contact model
and the qualitative results are not affected by changes of the properties of the granular material, we are con-
vinced that this study may be relevant not only for snow avalanches but also for the interaction of structures
and flows of cohesive granular materials in general.

KYBURZ ET AL. 16 of 18



Journal of Geophysical Research: Earth Surface 10.1029/2019JF005192

References
Albaba, A., Lambert, S., Nicot, F., & Chareyre, B. (2015). Relation between microstructure and loading applied by a granular flow to a rigid

wall using DEM modeling. Granular Matter, 17(5), 603–616. https://doi.org/10.1007/s10035-015-0579-8
Albert, R., Pfeifer, M., Barabasi, A.-L., & Schiffer, P. (1999). Slow drag in a granular medium. Physical Review Letters, 82, 205–208. https://

doi.org/10.1103/PhysRevLett.82.205
Albert, I., Sample, J. G., Morss, A. J., Rajagopalan, S., Barabási, A.-L., & Schiffer, P. (2001). Granular drag on a discrete object: Shape effects

on jamming. Physical Review E, 64(061), 303. https://doi.org/10.1103/PhysRevE.64.061303
Ammann, W. J. (1999). A new Swiss test-site for avalanche experiments in the Vallée de la Sionne/Valais. Cold Regions Science and

Technology, 30(1), 3–11. https://doi.org/10.1016/S0165-232X(99)00010-5
Ancey, C., & Bain, V. (2015). Dynamics of glide avalanches and snow gliding. Reviews of Geophysics, 53, 745–784. https://doi.org/10.1002/

2015RG000491
Baroudi, D., & Thibert, E. (2009). An instrumented structure to measure avalanche impact pressure: Error analysis from Monte Carlo

simulations. Cold Regions Science and Technology, 59(2), 242–250. https://doi.org/10.1016/j.coldregions.2009.05.010
Bartelt, P., & McArdell, B. W. (2009). Granulometric investigations of snow avalanches. Journal of Glaciology, 55(193), 829–833. https://

doi.org/10.3189/002214309790152384
Burkard, A., Gubler, H. U., & Salm, B. W. (1990). Berechnung von Fliesslawinen: eine Anleitung für Praktiker mit Beispielen. Mitteilungen

des Eidgenössischen Instituts für Schnee- und Lawinenforschung vol. 47, Eidgenössisches Institut für Schnee- und Lawinenforschung,
Davos.

Calvetti, F., di Prisco, C. G., & Vairaktaris, E. (2017). DEM assessment of impact forces of dry granular masses on rigid barriers. Acta
Geotechnica, 12(1), 129–144. https://doi.org/10.1007/s11440-016-0434-z

Chanut, B., Faug, T., & Naaim, M. (2009). Mean force on a wall overflowed by dense granular avalanches: Discrete numerical simulations.
AIP Conference Proceedings, 1145(1), 609–612. https://doi.org/10.1063/1.3180000

Chehata, D., Zenit, R., & Wassgren, C. R. (2003). Dense granular flow around an immersed cylinder. Physical Fluids, 15(6), 1622–1631.
https://doi.org/10.1063/1.1571826

Cui, X., & Gray, J. M. N. T. (2013). Gravity-driven granular free-surface flow around a circular cylinder. Journal of Fluid Mechanics, 720,
314–337. https://doi.org/10.1017/jfm.2013.42

Cundall, P. A., & Strack, O. D. L. (1979). A discrete numerical model for granular assemblies. Géotechnique, 29(1), 47–65. https://doi.org/
10.1680/geot.1979.29.1.47

Faug, T. (2015). Macroscopic force experienced by extended objects in granular flows over a very broad Froude-number range. The European
Physical Journal E, 38(5), 34. https://doi.org/10.1140/epje/i2015-15034-3

Faug, T., Lachamp, P., & Naaim, M. (2002). Experimental investigation on steady granular flows interacting with an obstacle down an
inclined channel: Study of the dead zone upstream from the obstacle. Application to interaction between dense snow avalanches and
defence structures. Natural Hazards and Earth System Science, 2(3/4), 187–191. https://doi.org/10.5194/nhess-2-187-2002

Favier, L., Daudon, D., & Donzé, F.-V. (2013). Rigid obstacle impacted by a supercritical cohesive granular flow using a 3D discrete element
model. Cold Regions Science and Technology, 85, 232–241. https://doi.org/10.1016/j.coldregions.2012.09.010

Fischer, J.-T., Kaitna, R., Heil, K., & Reiweger, I. (2018). The heat of the flow: Thermal equilibrium in gravitational mass flows. Geophysical
Research Letters, 45, 11,219–11,226. https://doi.org/10.1029/2018GL079585

Gauer, P., & Jóhannesson, T. (2009). The design of avalanche protection dams: Recent practical and theoretical developments. chap. Loads
on walls, pp. 77–94, Climate Change and Environmental Risks, EUROPEAN COMMISSION.

Gauer, P., & Kristensen, K. (2016). Four decades of observations from NGI's full-scale avalanche test site Ryggfonn—Summary of
experimental results. Cold Regions Science and Technology, 125, 162–176. https://doi.org/10.1016/j.coldregions.2016.02.009

Gaume, J., Chambon, G., Eckert, N., Naaim, M., & Schweizer, J. (2015a). Influence of weak layer heterogeneity and slab properties on slab
tensile failure propensity and avalanche release area. Cryosphere, 9(2), 795–804. https://doi.org/10.5194/tc-9-795-2015

Gaume, J., Gast, T., Teran, J., van Herwijnen, A., & Jiang, C. (2018). Dynamic anticrack propagation in snow. Nature communications, 9(1),
3047. https://doi.org/10.1038/s41467-018-05181-w

Gaume, J., van Herwijnen, A., Chambon, G., Birkeland, K. W., & Schweizer, J. (2015b). Modeling of crack propagation in weak snowpack
layers using the discrete element method. Cryosphere, 9(5), 1915–1932. https://doi.org/10.5194/tc-9-1915-2015

Gerling, B., Löwe, H., & van Herwijnen, A. (2017). Measuring the elastic modulus of snow. Geophysical Research Letters, 44, 11,088–11,096.
https://doi.org/10.1002/2017GL075110

Hauksson, S., Pagliardi, M., Barbolini, M., & Jóhannesson, T. (2007). Laboratory measurements of impact forces of supercritical granular
flow against mast-like obstacles. Cold Regions Science and Technology, 49(1), 54–63. https://doi.org/10.1016/j.coldregions.2007.01.007

Jamieson, J., & Johnston, C. (1990). In-situ tensile tests of snow-pack layers. Journal of Glaciology, 36(122), 102–106. https://doi.org/10.
3189/S002214300000561X

Kern, M. (2000). Inverse grading in granular flow, pp. 336 Pp. Lausanne: EPFL.
Kern, M. A., Bartelt, P. A., & Sovilla, B. (2010). Velocity profile inversion in dense avalanche flow. Annals of Glaciology, 51(54), 27–31.

https://doi.org/10.3189/172756410791386643
Kern, M., Bartelt, P., Sovilla, B., & Buser, O. (2009). Measured shear rates in large dry and wet snow avalanches. Journal of Glaciology,

55(190), 327–338. https://doi.org/10.3189/002214309788608714
Köhler, A., Fischer, J.-T., Scandroglio, R., Bavay, M., McElwaine, J., & Sovilla, B. (2018b). Cold-to-warm flow regime transition in snow

avalanches. Cryosphere, 12, 3759–3774. https://doi.org/10.5194/tc-12-3759-2018
Köhler, A., McElwaine, J., & Sovilla, B. (2018a). GEODAR data and the flow regimes of snow avalanches. Journal of Geophysical Research:

Earth Surface, 123, 1272–1294. https://doi.org/10.1002/2017JF004375
Mellor, M. (1968). Avalanches (Crrel Research Reports): Army Dept/US/.
Mellor, M. (1974). A review of basic snow mechanics: US Army Cold Regions Research and Engineering Laboratory.
Moriguchi, S., Borja, R. I., Yashima, A., & Sawada, K. (2009). Estimating the impact force generated by granular flow on a rigid obstruction.

Acta Geotechnica, 4(1), 57–71. https://doi.org/10.1007/s11440-009-0084-5
Platzer, K., Bartelt, P., & Kern, M. (2007). Measurements of dense snow avalanche basal shear to normal stress ratios (S/N). Geophysical

Research Letters, 34, L07501. https://doi.org/10.1029/2006GL028670
Potyondy, D., & Cundall, P. (2004). A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41(8),

1329–1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
Proske, D., Suda, J., & Hübl, J. (2011). Debris flow impact estimation for breakers. Georisk: Assessment and Management of Risk for

Engineered Systems and Geohazards, 5(2), 143–155. https://doi.org/10.1080/17499518.2010.516227

Acknowledgments
Michael Kyburz, Betty Sovilla, and
Christophe Ancey acknowledge the
Swiss National Science Foundation for
funding this project “Pressure on
obstacles induced by granular snow
avalanches” (Grant 200021_169640).
Johan Gaume acknowledges financial
support from the Swiss National
Science Foundation (Grant
PCEFP2_181227). The supporting
information and the code to be used
with the Itasca PFC3D software to
reproduce the data presented in this
paper are available in the open access
data repository Zenodo, which is
financed by the Horizon 2020 project
OpenAIRE and hosted by CERN. The
associated entry can be accessed via
Kyburz M. L., Sovilla, B., Gaume J.,
and Ancey C. (2019). Decoupling the
role of inertia, friction, and cohesion in
dense granular avalanche pressure
buildup on obstacles [Supporting
Information]. Zenodo (https://doi.org/
10.5281/zenodo.3239031). We would
like to thank the Editor Ton Hoitink,
the Associate Editor Michele Bolla
Pittaluga, as well as Thierry Faug and
two anonymous reviewers for their
helpful comments.

KYBURZ ET AL. 17 of 18

https://doi.org/10.1007/s10035-015-0579-8
https://doi.org/10.1103/PhysRevLett.82.205
https://doi.org/10.1103/PhysRevLett.82.205
https://doi.org/10.1103/PhysRevE.64.061303
https://doi.org/10.1016/S0165-232X(99)00010-5
https://doi.org/10.1002/2015RG000491
https://doi.org/10.1002/2015RG000491
https://doi.org/10.1016/j.coldregions.2009.05.010
https://doi.org/10.3189/002214309790152384
https://doi.org/10.3189/002214309790152384
https://doi.org/10.1007/s11440-016-0434-z
https://doi.org/10.1063/1.3180000
https://doi.org/10.1063/1.1571826
https://doi.org/10.1017/jfm.2013.42
https://doi.org/10.1680/geot.1979.29.1.47
https://doi.org/10.1680/geot.1979.29.1.47
https://doi.org/10.1140/epje/i2015-15034-3
https://doi.org/10.5194/nhess-2-187-2002
https://doi.org/10.1016/j.coldregions.2012.09.010
https://doi.org/10.1029/2018GL079585
https://doi.org/10.1016/j.coldregions.2016.02.009
https://doi.org/10.5194/tc-9-795-2015
https://doi.org/10.1038/s41467-018-05181-w
https://doi.org/10.5194/tc-9-1915-2015
https://doi.org/10.1002/2017GL075110
https://doi.org/10.1016/j.coldregions.2007.01.007
https://doi.org/10.3189/S002214300000561X
https://doi.org/10.3189/S002214300000561X
https://doi.org/10.3189/172756410791386643
https://doi.org/10.3189/002214309788608714
https://doi.org/10.5194/tc-12-3759-2018
https://doi.org/10.1002/2017JF004375
https://doi.org/10.1007/s11440-009-0084-5
https://doi.org/10.1029/2006GL028670
https://doi.org/10.1016/j.ijrmms.2004.09.011
https://doi.org/10.1080/17499518.2010.516227
https://doi.org/10.5281/zenodo.3239031
https://doi.org/10.5281/zenodo.3239031


Journal of Geophysical Research: Earth Surface 10.1029/2019JF005192

Rognon, P. G., Roux, J.-N., Naaïm, M., & Chevoir, F. (2008). Dense flows of cohesive granular materials. Journal of Fluid Mechanics, 596,
21–47. https://doi.org/10.1017/S0022112007009329

Roy, S., Luding, S., & Weinhart, T. (2017). A general(ized) local rheology for wet granular materials. New Journal of Physics, 19(4), 043014.
https://doi.org/10.1088/1367-2630/aa6141

Salm, B. (1964). Anlage zur untersuchung dynamischer wirkungen von bewegtem schnee. Zeitschrift fü,r angewandte Mathematik und
Physik ZAMP, 15(4), 357–375. https://doi.org/10.1007/BF01601287

Salm, B. (1966). Contribution to avalanche dynamics. Scientific Aspects of Snow and Ice Avalanche, 69, 199–214.
Scapozza, C. (2004). Entwicklung Eines Dichte-Und Temperaturabhängigen Stoffgesetzes Zur Beschreibung Des Visko-Elastischen Verhaltens

Von 2Chnee. ETH Zürich: Phdthesis. https://doi.org/10.3929/ethz-a-004680249
Shapiro, L. H., Johnson, J., Sturm, M., & Blaisdell, G. (1997). Snow mechanics: Review of the state of knowledge and applications. CRREL

Report, 97-3, 40.
Sovilla, B., Faug, T., Köhler, A., Baroudi, D., Fischer, J.-T., & Thibert, E. (2016). Gravitational wet avalanche pressure on pylon-like

structures. Cold Regions Science and Technology, 126, 66–75. https://doi.org/10.1016/j.coldregions.2016.03.002
Sovilla, B., Kern, M., & Schaer, M. (2010). Slow drag in wet-snow avalanche flow. Journal of Glaciology, 56(198), 587–592. https://doi.org/

10.3189/002214310793146287
Sovilla, B., Margreth, S., Schaer, M., & Ancey, C. (2014). Taking into account wet avalanche load for the design of pylon-like structures.

In Proceedings of International Snow Science - Montana State University Iibrary, pp. 727–732.
Sovilla, B., Schaer, M., Kern, M., & Bartelt, P. (2008a). Impact pressures and flow regimes in dense snow avalanches observed at the Vallée

de la Sionne test site. Journal of Geophysical Research, 113, F01010. https://doi.org/10.1029/2006JF000688
Sovilla, B., Schaer, M., & Rammer, L. (2008b). Measurements and analysis of full-scale avalanche impact pressure at the Vallée de la Sionne

test site. Cold Regions Science and Technology, 51(2), 122–137. https://doi.org/10.1016/j.coldregions.2007.05.006
Steinkogler, W., Gaume, J., Löwe, H., Sovilla, B., & Lehning, M. (2015). Granulation of snow: From tumbler experiments to discrete element

simulations. Journal of Geophysical Research: Earth Surface, 120, 1107–1126. https://doi.org/10.1002/2014JF003294
Teufelsbauer, H., Wang, Y., Pudasaini, S. P., Borja, R. I., & Wu, W. (2011). DEM simulation of impact force exerted by granular flow on rigid

structures. Acta Geotechnica, 6(3), 119. https://doi.org/10.1007/s11440-011-0140-9
Thibert, E., Baroudi, D., Limam, A., & Berthet-Rambaud, P. (2008). Avalanche impact pressure on an instrumented structure. Cold Regions

Science and Technology, 54(3), 206–215. https://doi.org/10.1016/j.coldregions.2008.01.005
Thibert, E., Bellot, H., Ravanat, X., Ousset, F., Pulfer, G., Naaïm, M., et al. (2015). The full-scale avalanche test-site at Lautaret Pass (French

Alps). Cold Regions Science and Technology, 115, 30–41. https://doi.org/10.1016/j.coldregions.2015.03.005
Tiberghien, D., Laigle, D., Naaim, M., Thibert, E., & Ousset, F. (2007). Experimental investigations of interaction between mudflow and an

obstacle. Debris-flow hazards mitigation: mechanics, prediction, and assessment, pp. 281–292.
Valero, C. V., Jones, K. W., Bühler, Y., & Bartelt, P. (2015). Release temperature, snow-cover entrainment and the thermal flow regime of

snow avalanches. Journal of Glaciology, 61(225), 173–184. https://doi.org/10.3189/2015JoG14J117
Voellmy, A. (1955). Über die Zerstörungskraft von Lawinen (On the destructive forces of avalanches). Schweizerische Bauzeitung, 73,

159–162. https://doi.org/10.5169/seals-61891
Wieghardt, K. (1975). Experiments in granular flow. Annual Review of Fluid Mechanics, 7(1), 89–114. https://doi.org/10.1146/annurev.fl.

07.010175.000513
Yamanoi, K., & Endo, Y. (2002). Dependence of shear strength of snow cover on density and water content. Seppyo, 64(4), 443–451. https://

doi.org/10.5331/seppyo.64.443

References From the Supporting Information
Christoffersen, J., Mehrabadi, M., & Nemat-Nasser, S. (1981). A micromechanical description of granular material behavior. Journal of

Applied Mechanics, 48(2), 339–344. https://doi.org/10.1115/1.3157619
Crandall, S. H., Lardner, T. J., Archer, R. R., Cook, N. H., & Dahl, N. C. (1978). An introduction to the mechanics of solids (second ed.).

Singapore: McGraw-Hill.
Itasca Consulting Group, Inc (2014). Particle flow code in 3D, Version 5.0 software documentation. Minneapolis: Itasca Consulting

Group Inc.

Erratum
The originally published version of Figure 4a was replaced after publication; during changes in revision, an
error was introduced in the code used to produce Figure 4a, which has since been corrected. The correction
led to a parallel shift of one straight line in Figure 4a, which did not affect the results of the study. This may
be considered the authoritative version of record.
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