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Abstract 5 

Measuring grain sizes in gravel-bed rivers is crucial when studying river 6 

dynamics and sediment transport. Automated methodologies have been 7 

developed in recent years for detecting individual grains and measuring 8 

their size on digital imagery. These object-based methodologies have 9 

mainly been applied to handheld imagery. Low-cost and high-resolution 10 

orthoimages covering long river reaches are nowadays accessible with the 11 

improvements in Uncrewed Aerial Vehicles (UAV) and Structure-from-12 

Motion (SfM) photogrammetry. Applying object-based grain sizing 13 

methodologies to such orthoimages may provide wide-scale information 14 

about the grain-size spatial distribution along streambeds. We first 15 

examined how accurate three object-based models (BASEGRAIN, 16 

PebbleCountsAuto and GALET) were, by comparing their outcomes to in-17 

field manual measurements of grain sizes and manual grain labelling. We 18 

found that BASEGRAIN and PebbleCountsAuto underestimated grain sizes 19 

on average, whereas GALET generally overestimated grain size 20 

percentiles. Grain size measurements obtained by manually labelling grain 21 

features were consistent with in-field measurements. We then show that 22 

spatial statistics applied to automatically detected grain features allowed 23 



us to draw information about the grain-size organisation in an Alpine 24 

braided river. Spatial statistics were instrumental in consistently 25 

identifying patches of different grain sizes and thereby provided evidence 26 

for marked grain-size patchiness. 27 
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1. INTRODUCTION  31 

River beds are seldom composed of sediments of uniform size. Quantifying 32 

the size distribution of sediment mixtures is fundamental for 33 

understanding and modelling river flows, morphodynamics and sediment 34 

transport processes (Bunte and Abt, 2001). For instance, a number of flow 35 

resistance equations involve grain size quantiles (e.g., Strickler, 1923; 36 

Keulegan, 1938; Hey, 1979; Smart and Jaeggi, 1983; Ferguson, 2007; 37 

Rickenmann and Recking, 2011). Another example is provided by the 38 

methods for predicting the threshold of incipient motion and transport 39 

rates (e.g., Recking, 2013; Recking, 2016; Hodge et al., 2007). When 40 

studying bedload transport in mountain rivers—whose sediment deposits 41 

are often prone to grain sorting processes, such as bed armouring and 42 

size-dependent selective transport—accurate quantification of local grain 43 

size distributions is particularly important for assessing bedload transport 44 

mechanisms (Schlunegger et al., 2020). 45 

A variety of field sampling procedures have been developed for 46 

characterising river-bed grain-sizes in quantitative terms. Mechanical 47 

sieving of volumetric samples and individual measurements of surface 48 

grains are commonly used techniques (Kellerhals and Bray, 1971). 49 

Nonetheless, these procedures can be laborious and entail limitations for 50 

the assessment of spatial variations of bed-material grain-sizes (Bunte 51 

and Abt, 2001). To mitigate these issues, automated grain sizing methods 52 

based on remote sensing technologies have emerged in recent decades. A 53 

number of research studies have been dedicated to utilizing images for 54 



measuring grain sizes (see Carrivick and Smith, 2019; Piégay et al., 55 

2020). Parallelly, recent improvements in Uncrewed Aerial Vehicles (UAV) 56 

and Structure-from-Motion (SfM) photogrammetry software packages 57 

have allowed to produce easily and at relatively low-cost valuable 58 

topographic datasets, which typically comprise orthoimages, digital 59 

surface models (DSM) and dense point clouds. Combining UAV-SfM 60 

imagery and image-based grain sizing techniques can provide access to 61 

grain size estimates over large spatial scales, in a cost- and time-efficient 62 

manner (Carrivick and Smith, 2019). 63 

The first image-based methodologies for measuring grain sizes in rivers 64 

relied on the visual interpretation of nadir photographs (e.g., Adams, 65 

1979; Ibbeken and Schleyer, 1986). Grain size distributions (GSD) were 66 

estimated by measuring the projected intermediate axis (b-axis) of grains 67 

on photographs. Although less field time is required (only photographs 68 

need to be taken), this method still necessitates large processing times to 69 

measure grain features individually (Bunte and Abt, 2001). Since the early 70 

2000s, numerous studies were dedicated to automatizing grain sizing 71 

procedures on images (McEwan et al., 2000; Butler et al., 2001; Graham 72 

et al., 2005). Two distinct approaches have been followed. The first 73 

approach involves deriving grain sizes from image statistics (Carbonneau 74 

et al., 2004; Buscombe, 2013; Woodget and Austrums, 2017; Woodget et 75 

al., 2018). This methodology derives characteristic grain sizes using 76 

image texture metrics, autocorrelation or wavelet transformations. Such 77 

methods are based on regression between single parameters and grain 78 



sizes (e.g., Carbonneau et al., 2004; Warrick et al., 2009; Woodget et al., 79 

2018), or on more novel methods based on Convolutional Neural 80 

Networks (CNN; e.g., Buscombe, 2020; Lang et al., 2021). The second 81 

approach focuses on detection and measurement of individual grain 82 

features, and is thus referred to as ‘object-based’. Individual surface 83 

grains can be identified by using image thresholding and segmentation 84 

processing (e.g., Graham et al., 2005; Detert and Weitbrecht, 2012; 85 

Purinton and Bookhagen, 2019), or with most recent object detection 86 

algorithms based on CNN (e.g., Soloy et al., 2020; Mörtl et al., 2022; 87 

Chen et al., 2022). The advantages of object-based grain sizing over 88 

image statistics-based methods are (i) that the former does not require 89 

site-specific calibration and (ii) that one can derive more information from 90 

object-type data (e.g., grain arrangement). Object-type data can also be 91 

converted into grid-type data whose cell provide the local GSD. 92 

The grain size distribution of gravel-bed rivers presents significant 93 

variations at local scale (Bluck, 1979). Many studies regarding the local 94 

GSD variability have been based on sparse manual grain size 95 

measurements combined with visual analyses (e.g., Lisle and Madej, 96 

1992; Dietrich et al., 2006; Guerit et al., 2014). The first object-based 97 

grain sizing tools have been initially developed for applications on 98 

handheld imagery or images from pole-mounted camera (e.g., Butler et 99 

al., 2001; Graham et al., 2005). This imagery approach limits the 100 

investigation to local spatial scales. Applying object-based grain sizing 101 

methodologies to orthoimages may provide information on spatial 102 



variations in GSD that occur over distances spanning from several 103 

hundred meters to a few decimeters.  104 

The quality of the grain size information derived from orthoimages and its 105 

potential for understanding geomorphological processes depend a great 106 

deal on the accuracy of the applied technique. Therefore, testing the latest 107 

object-based methodologies on high-resolution orthoimages is key to 108 

identify specific limitations and biases. Mair et al. (2022) evaluated the 109 

uncertainties in grain size measurements on aerial imagery with regard to 110 

the UAV-SfM approach. A performance assessment of a set of existing 111 

grain sizing routines has been conducted by Chardon et al. (2022) for 112 

applications to handheld imagery. To the best of our knowledge, no study 113 

evaluated multiple object-based techniques for applications to high-114 

resolution orthoimages. 115 

In this context, we evaluated three object-based grain sizing software 116 

routines (BASEGRAIN, Detert and Weitbrecht, 2012; PebbleCountsAuto, 117 

Purinton and Bookhagen, 2019; GALET, Mörtl et al., 2022) and compared 118 

their outcomes to in-field manual measurements of grain sizes and 119 

manual labelling on orthoimages. We wanted to answer the following 120 

questions. First, which automated grain-sizing software performs the best 121 

on orthoimages of a gravel-bed river? Second, which are the limitations of 122 

each tool? We then investigated how the information issued from these 123 

software routines can be used for mapping and quantifying spatial 124 

variations of surface grain sizes in a braided mountain river located in the 125 



Swiss Alps. Global and local spatial autocorrelation statistics (e.g., Moran, 126 

1948; Anselin, 1995) have been extensively used for assessing 127 

geographical clustering in various scientific fields—from crop and landform 128 

classifications (e.g., Maimaitijiang et al., 2020; Drăguţ and Eisank, 2012) 129 

to criminological and epidemiological investigations (e.g., Baller et al., 130 

2001; Auchincloss et al., 2012). We wanted to explore their potential for 131 

analysing the spatial distribution of grain sizes along a river reach. 132 

   133 



2. METHODS 134 

The surface grain size distribution of a mountain river (Sect. 2.1) was 135 

investigated by conducting line sampling (Sect. 2.2). We designed UAV 136 

surveys to reconstruct orthoimages of the study site based on SfM 137 

algorithms (Sect. 2.3). Grain sizes were measured digitally on these 138 

orthoimages by using manual labelling (Sect. 2.4) and three object-based 139 

grain sizing methods (Sect. 2.5). These digitally measured grain sizes 140 

were compared to grain sizes measured manually in the field (Sect. 2.6). 141 

Finally, we evaluated the spatial variability of surface grain sizes over the 142 

study reach using one of the object-based grain sizing software (Sect. 143 

2.7). 144 

2.1 Study site 145 

The Navisence is a mountain river located in the South-West Swiss Alps, 146 

tributary to the Rhône River (Figure 1a). This 23-km-long river drains a 147 

257 km2 catchment. Its main water source is the Zinal Glacier at 2300 m 148 

a.s.l. The river is hydrologically undisturbed upstream of the village of 149 

Zinal.  150 

The study site is a 500-m-long and 60–90-m-wide river reach, located in 151 

the upstream part of a 2-km-long floodplain named "Plats de la Lée" with 152 

an average slope around 3% (Figure 1b). The Navisence flows across this 153 

alpine floodplain and develops a braided network upstream of the village 154 

of Zinal (1650 m a.s.l.). There, the catchment area is 77 km2. A gauging 155 

station managed by a Walliser research institute (CREALP, Sion) is located 156 



downstream of the study reach, and has gathered data since 2011 (flow 157 

rates and bedload transport rates).  The river has a glacio-nival 158 

hydrological flow regime, with very low flow rates in winter and high 159 

discharges in summer related to snow and glacier melting, with significant 160 

circadian variations (Travaglini et al., 2015). The typical low flow 161 

discharge is 1 m3/s in winter, while maximum hourly discharge can 162 

exceed 25 m3/s in summer. Over the last five years, the morphology of 163 

the braided network has been mostly impacted by a single major flood in 164 

July 2018.  Regarding the sediment lithology, the surface alluvial deposits 165 

found in the river bed at the Plats de la Lée are mostly composed of 166 

metamorphic rocks (mainly orthogneiss). Therefore, sediments found on 167 

the study reach often exhibit variations of rock texture inside single 168 

grains, due to foliation or veins for example.169 



 170 

Figure 1. (a) Location of the study site and the Navisence River watershed in 171 
Switzerland (© swisstopo). (b) Location of the UAV surveys over the study reach (the 172 
river flows northwise). The river image is an orthoimage obtained from a UAV survey 173 
carried out on 13 Sep 2022 (50-m-high flight). (c) Detailed view of the three 174 
orthoimages which were reconstructed from UAV collected images, with positions of the 175 
line sampling analysis, ground control points (GCPs) and check points (CPs). 176 
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2.2 Manual measurements of grain sizes 178 

We used the line sampling procedure proposed by Fehr (1987). This 179 

procedure has been specially devised for mountain rivers, and has thus 180 

been used in numerous field studies of hydraulics and sediment transport 181 

in mountain rivers across the Alps (e.g., Ramirez et al., 2022; Schneider 182 

et al., 2016; Konz et al., 2011; Rickenmann and McArdell, 2007; 183 

Rickenmann, 1997). There are alternatives to Fehr’s method; for instance, 184 

grid sampling protocols such as the Wolman pebble count (Wolman, 1954) 185 

and its variants are much more common than line sampling. The main 186 

advantage of Fehr's method over other techniques is that it is much easier 187 

to georeference a sample line than a grid (or a random walk) in the field 188 

and in orthophotographs. When comparing grain size estimates from field 189 

measurements and automated methods, it is thus possible to sample the 190 

same stones in the field and orthophotographs and thus, by doing so, we 191 

can benchmark methods on a fair basis. Another major advantage of 192 

Fehr’s method is that by considering all the stones crossed by the 193 

sampling line, it requires a smaller sampling space than methods based on 194 

areal or random particle sampling, which is of great interest for 195 

characterising spatial variations in grain size distribution when the 196 

riverbed involves patches of distinct grain sizes. A possible disadvantage 197 

of Fehr’s method is that its accuracy has been much less studied than 198 

Wolman-based methods (Rice and Church, 1996; Daniels and McCusker, 199 

2010). The recommendations drawn for Wolman-based methods should, 200 

however, apply to Fehr’s method: the sampling line has to cross a large 201 



number of stones—as large as 400 according to Rice and Church (1996)—202 

if sufficient precision in the quantile (or percentile) estimation is desired. 203 

In practice, this requirement is problematic for mountain rivers like the 204 

Navisence because of spatial variations in grain size over short distances. 205 

From a statistical viewpoint, the central limit theorem can help understand 206 

why accuracy of grain size quantiles varies as the sample size’s square 207 

root as Rice and Church (1996) found in their field study, and why this 208 

result holds only when the sample is drawn from the same population, 209 

with the same mean and variance. When the grain size distribution 210 

exhibits substantial spatial variations, obtaining unbiased estimates 211 

becomes particularly difficult: (i) if the sample size is small, then it is 212 

probably representative of the local population, but estimates are 213 

inaccurate, (ii) if the sample size is large, then in principle, a higher 214 

accuracy is expected in quantile estimation, but measurements are 215 

biased. The Navisence riverbed is characterised by a typical median stone 216 

size of around 10 cm and patch length of approximately 10 m. These 217 

features led us to consider that a sample size of about 150 stones—as 218 

proposed by Fehr (1987)—provided a suitable trade-off between precision 219 

and representativeness. 220 

We collected samples over 17 lines distributed over areas A, B and C 221 

(Figure 1c). Following Fehr (1987), we stretched a string over the dry 222 

bed-material surface to be analysed.  The b-axis of all stones underneath 223 

the string was measured. Stones with a b-axis smaller than 1 cm were not 224 

considered. The stones were divided into diameter classes and the number 225 



of stones falling in each grain size interval was computed. Approximately 226 

150 stones should be measured to ensure a good representativeness. This 227 

led us to choose sampling lengths of 5 or 10 m depending on the local 228 

grain size. The largest stones (over 10 cm) were often imbricated or 229 

clogged, which prevented a correct measurement of the b-axis. They were 230 

therefore manually extracted, which required significant effort and the use 231 

of a pickaxe. For one sample and a single operator, this procedure lasted 232 

about 1 hour. To georeference each line on geographic information 233 

systems, we measured the starting and end point positions using a pole-234 

mounted GPS/GNSS system—Leica Zeno 20 coupled with a GG04P 235 

antenna, with real-time kinematic correction (Swipos-GIS/GEO network). 236 

Fehr’s method involves converting the line samples into approximate 237 

volumetric-sample equivalents of the subsurface grains via empirical 238 

relations between surface and subsurface grain sizes (Fehr, 1987). The 239 

frequency-by-number grain size distribution is converted into a frequency-240 

by-weight distribution (describing the weight fraction of each grain size 241 

interval), so that the results are comparable with standard volumetric 242 

sampling. The conversion is based on the voidless cube model (Kellerhals 243 

and Bray, 1971), which was empirically adapted by Fehr (1987). As grains 244 

whose b-axis is smaller than 1 cm are neglected during the sampling 245 

process, the cumulative frequency of the components larger than 1 cm 246 

has to be corrected to take neglected finer components into account. 247 

According to Fehr (1987) observations based on field mechanical sieving 248 

in a large set of Swiss gravel-bed rivers, 20% to 30% of the subsurface 249 



layer volume is smaller than 1 cm in diameter. Finally, the GSD is 250 

extrapolated toward the finest grain sizes. Fehr (1987) observed that for 251 

the Swiss Alps, the distribution of the fine fraction of the bed and bedload 252 

material generally follows a Fuller curve. When predicting the proportion 253 

of fine material in the GSD, Fehr assumed that the final GSD follows a 254 

Fuller curve for the undersampled finest grain sizes (see Supporting 255 

Information for the detail). We consider this tail correction to be well 256 

suited to our field site, whose bed is mostly structured by coarse particles 257 

and clogged by glacier flour (Figure 2). 258 

 259 

Figure 2. Navisence: view from upstream of the riverbed in the southern sector of area 260 
C. 261 

  262 



2.3 UAV surveys and structure-from-motion photogrammetry 263 

Areas A, B and C: data acquisition 264 

Three UAV surveys were carried out over different sectors of the study 265 

reach. The covered areas were named A, B, and C and their location is 266 

shown in Figures 1b and 1c. We conducted these surveys in order to 267 

evaluate the accuracy of digital object-based grain sizing tools on 268 

orthoimages, compared to in-field line sampling. Nine manually sampled 269 

lines were located in area A, seven in area B and four in area C. We used 270 

a DJI Phantom 4 pro and a DJI Phantom 4 pro v2 UAVs. These rotatory-271 

wing quadcopters are equipped with a GPS for automated flights. They 272 

have an integrated camera with a 20-mega-pixel resolution. The 273 

automated flights were planned using Pix4Dcapture software (v. 4.13.1; 274 

developed by Pix4D, Lausanne, Switzerland). Images were taken vertically 275 

on a predefined trajectory, with a frontal and lateral overlap between 276 

individual images in the order of 70%. During image acquisition, the UAV 277 

stayed stationary to avoid motion blur. It then moved to the next 278 

predefined position along the grid line map. In order to obtain the best 279 

compromise between image resolution and spatial coverage, we 280 

conducted our flights at an elevation of approximately 10 m above the 281 

take-off position. As the UAVs flew horizontally, the effective flight height 282 

varied depending on ground slope and local topographic features. Ground 283 

resolution ranged from 2.9 mm/px to 3.7 mm/px. The survey C was 284 

conducted under sunny conditions, whereas the surveys over area A and B 285 

were conducted under shaded conditions, on clear days and before the 286 



sun illuminated the study reach (see Table 1). These three UAV surveys 287 

were always performed before manual line sampling. Further information 288 

about the camera parameters used can be found in Tables S1 and S2 of 289 

the Supporting Information. 290 

Area D: data acquisition 291 

In order to evaluate the spatial variability of surface grain sizes in the 292 

study reach, we carried out a large-scale UAV survey in a second step, 293 

covering approximately 14’000 m2 (named area D). The flight was 294 

planned using the Map Pilot Pro software (v. 4.1.16; developed by 295 

Automotive Data Research, California). The advantage of this UAV flight 296 

planning software over Pix4Dcapture is that it makes it possible to fly at a 297 

constant height above a digital elevation model (DEM) generated from 298 

NASA's Shuttle Radar Topography Mission (resolution of 30 m/px). 299 

Therefore, images could be collected at similar flight height (about 10 m) 300 

as the approximate floodplain topography was considered. The survey was 301 

carried out using a DJI Phantom 4 pro. To avoid motion blur in the 302 

images, we selected a fast shutter speed (see Table S2 of the Supporting 303 

Information for specific camera parameters). The survey was carried out 304 

on a clear sky day when the river reach was shaded. Images were taken 305 

along a single grid line map at a rate of one image per second and the 306 

flight speed of the drone was set at 2 m/s. The images had an overlap in 307 

the order of 60% in flight direction and a lateral overlap of approximately 308 

70%. The other characteristics of this survey are summarized in Table 1.  309 



Table 1. Summary of the UAV surveys (GCP = Ground Control Points and CP = Check 310 
Points). 311 

Area 
name 

Area 
size 
[m2] 

Date Weather UAV 
model 

Number 
of 

images 

Number 
of tie 
points 

Number 
of 

GCP|CP 

Ground 
sampling 
distance 
[mm/px] 

A 2’500 5 Oct 
2022 

Shady, 
clear sky 

DJI 
Phantom 

4 pro 
232 6’070’47

9 4 | 9 2.9 

B 3’450 
12 
Oct 

2022 

Shady, 
clear sky 

DJI 
Phantom 

4 pro 
223 6’053’89

8 3 | 5 3.7 

C 5’850 
26 
Oct 

2022 
Sunny 

DJI 
Phantom 
4 pro v2 

419 12’511’9
31 6 | 6 3.3 

D 14’350 
11 
Nov 
2022 

Shady, 
clear sky 

DJI 
Phantom 

4 pro 
787 17’680’4

34 8 | 21 3.1 

 312 

Auxiliary georeferenced points 313 

Ground control points (GCP) were distributed over the surveyed areas to 314 

constrain more accurately the SfM photogrammetric reconstruction and to 315 

assess errors. The GCP were marked with paint, and their position was 316 

measured using the same GPS/GNSS system described in Section 2.2. 317 

This provided a horizontal positioning accuracy close to 1 cm and a 318 

vertical accuracy in the 2–4-cm range. The GCP coordinates were 319 

measured in the CH1903+/LV95 coordinate system (EPSG 2056). During 320 

the SfM reconstruction preprocessing steps, we located the GCP position 321 

on the images. The start and end points of the manually-sampled lines 322 

served as independent check points to evaluate the accuracy of the 323 

reconstructed orthoimages. Some start and end points could not be 324 

located with certainty on the basis of the photographs taken in the field 325 

(14 out of 34), and were therefore not considered check points. Eight 326 

GCPs were defined in area D. Additional check points were defined on the 327 



basis of three orthoimages produced from 50-m-high flights covering the 328 

entire “Plats de la Lée” (UAV surveys pertaining to a different study). 329 

Twenty-one fixed features were identified on these three orthoimages and 330 

in the orthoimage of area D (see Table 1). The mean coordinates of these 331 

features labelled in the three orthoimages served as check points. The 332 

resulting orthoimage positioning errors are given in Table 2. 333 

Table 2. Quality assessment of Structure‐from‐Motion photogrammetry results. Mean error 334 
(ME) and standard deviation of error (STDEV) on ground control points and check points 335 
after bundle block adjustment. 336 

Area 
name 

Ground Control Points Check Points 
X [cm] 

ME | STDEV 
Y [cm] 

ME | STDEV 
Z [cm] 

ME | STDEV 
X [cm] 

ME | STDEV 
Y [cm] 

ME | STDEV 
Z [cm] 

ME | STDEV 
A 0.0 | 0.8 0.0 | 0.9 0.0 | 1.0 0.2 | 1.5 -2.8 | 2.3 0.3 | 2.8 
B 0.0 | 0.8 0.0 | 0.5 0.0 | 0.0 -0.9 | 1.5 -1.8 | 2.1 -4.2 | 2.0 
C 0.0 | 1.0 0.0 | 0.9 0.0 | 1.2 0.8 | 1.8 0.7 | 1.7 2.8 | 1.4 
D 0.0 | 7.3 0.0 | 5.4 0.0 | 1.4 -0.1 | 4.1 2.1 | 7.3 2.5 | 3.8 

 337 

Data processing 338 

Geo-referenced orthoimages were obtained by processing the images with 339 

the Pix4Dmapper software (v. 4.8.0; Pix4D, Lausanne, Switzerland). By 340 

combining SfM photogrammetry and multi-stereo view algorithms, the 341 

software reconstructs the three-dimensional (3D) surface topography. In 342 

the SfM framework, the 3D positions of a large set of features 343 

automatically extracted from images are retrieved, simultaneously with 344 

camera positions and orientations by iteratively solving a highly redundant 345 

system of triangulation equations (Westoby et al., 2012). This method 346 

provides a point cloud, which can then be converted into a DSM and an 347 



orthoimage. The main parameters used in Pix4Dmapper can be found in 348 

Table S3 of the Supporting Information. 349 

2.4 Digital manual labelling 350 

Manual labelling was performed by a single operator on the orthoimages 351 

using the QGIS software (v. 3.22). We manually drew a polygon on all 352 

visible grain features intersected by the georeferenced lines. This labelling 353 

operation took approximately 10–15 minutes per line. We measured the 354 

b-axis of all labelled grains by automatically fitting an ellipse to each 355 

feature (fitting based on the second central moment of the object 356 

geometry). The detailed ellipse fitting procedure is described in the 357 

Supporting Information. The b-axis corresponds to the minor axis of the 358 

fitted ellipse. This procedure for extracting the b-axis of each labelled 359 

grain is similar to the ellipse fitting procedure used by the object-based 360 

grain-sizing methods described in Section 2.5. Finally, we derived the GSD 361 

from the b-axis of the identified grain features for each line using Fehr’s 362 

(1987) method implemented in a Python script. 363 

2.5 Description of selected object-based grain sizing tools 364 

In this section, we describe the internal frameworks of the three object-365 

based grain sizing tools under investigation. We specify how each tool was 366 

implemented to derive grain size distributions that are comparable with 367 

those based on in-field manual samples. Figure 3 shows an example of 368 

detected grain features along a line using the different methodologies. 369 



 370 

Figure 2. Example of digital line sampling with manual labelling and the software 371 
routines investigated. The blue line corresponds to the location of the georeferenced line. 372 
The grain features displayed for manual labelling and GALET are the original grain feature 373 
polygons and not the fitted ellipses. The BASEGRAIN image originates from the software 374 
GUI. 375 
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BASEGRAIN 377 

We used BASEGRAIN (v.2.3), which is a free access MATLAB-based 378 

method developed by Detert and Weitbrecht (2012). It performs individual 379 

grain segmentation on digital top-view photographs in five preprocessing 380 

steps. Three out of five steps require supervised parameter tuning to 381 

optimise performance. Ellipses are then fitted to the detected objects, and 382 

the minor axis is considered as the b-axis of the grain feature.  383 

Orthoimages were cut out into image tiles corresponding to the bed 384 

surface patches where the line sampling was conducted. This splitting was 385 

required because BASEGRAIN is not able to handle georeferenced 386 

orthoimages. The image tiles were rotated in order to position the line 387 

vertically. The BASEGRAIN processing was much influenced by the 388 

variations in colour and texture of the Navisence sediments, thus no 389 

unique set of parameters allowed for optimised object detection for all 390 

image tiles. Therefore, object detection had to be performed individually 391 

for each image tile when using BASEGRAIN. We tuned the different 392 

parameters until a visually optimal segmentation of the grains was 393 

obtained. No postprocessing was applied to the detected objects. The 394 

virtual sampling line implemented in BASEGRAIN was placed so as to 395 

match the position of each field sampling line. We extracted the 396 

dimensions of all the grains detected and intersected by the line in 397 

BASEGRAIN. We then tallied grains using the same grain size intervals as 398 

those used for manual sampling, and computed the GSD according to 399 

Fehr’s (1987) method. 400 



GALET 401 

GALET is a deep-learning image segmentation model for grain size 402 

analysis developed by Styx4D (Bourget-du-Lac, France) and presented in 403 

Mörtl et al. (2022). The CNN model implemented in GALET was trained 404 

using a dataset generated by a technique based on automated image 405 

creation. Mörtl et al. (2022) used manually-cropped grain images and 406 

synthesised artificial grain images to generate labelled training images. 407 

During the grain detection and segmentation steps in GALET, orthoimages 408 

are split into 512 or 1024 pixel-large tiles. The software performs grain 409 

detection and estimates the shapes of overlapping grains. A final shapefile 410 

is produced in which all detected instances are vectorised.  411 

The entire GALET segmentation process was applied on each orthoimage. 412 

The routine detected the grain features and provided the corresponding 413 

shapefiles. We measured the b-axis of all detected grains by automatically 414 

fitting an ellipse using the same method as the one utilised for manual 415 

labelling. Digital line sampling was performed on these shapefiles in QGIS, 416 

as the positions of the field sampling lines were georeferenced. We 417 

classified the vectorised grains that intersected the georeferenced lines 418 

according to their b-axis. The same grain size intervals used for manual 419 

sampling were considered and the GSDs were computed by using the Fehr 420 

(1987) method.  421 

 422 

 423 



PebbleCountsAuto 424 

PebbleCounts is an open-source Python-based algorithm, developed by 425 

Purinton and Bookhagen (2019). Here we used, its highly-automated 426 

version named PebbleCountsAuto. It is an image segmentation method 427 

that performs individual grain detection. Resulting grain features are 428 

measured via ellipse fitting.  429 

As PebbleCountsAuto requires significant computing time to process entire 430 

orthoimages (Purinton and Bookhagen, 2021), grain feature detection was 431 

performed on image tiles cut out from the orthoimages (similarly to the 432 

procedure used with BASEGRAIN). These tiles corresponded to the 433 

locations where in-field line sampling was performed. PebbleCountAuto 434 

only required us to manually tune the threshold level of Otsu’s threshold 435 

matrix. This parameter was tuned for each processed image tile in order 436 

to obtain a visually optimal segmentation of grain features. The default 437 

parameter defining the minimum area in pixel for a feature to be 438 

considered a grain was modified and set at 23 pixels in order to be 439 

consistent with the same parameter defined in BASEGRAIN—value based 440 

on the limit of grain feature detectability in images (see Graham et al., 441 

2005). The model uses a size cut-off criterion to discard grains whose b-442 

axis is too small. By default, the cut-off value is set at 20 px, but we 443 

decreased it to 3 px so that all grains with a b-axis exceeding 1 cm could 444 

be considered. PebbleCountsAuto allows one to work with georeferenced 445 

orthoimages. Therefore, information about detected grain features such as 446 

northing and easting coordinates in an UTM coordinate system, major and 447 



minor axis of the fitted ellipses and their orientation could be exported as 448 

text files. This data was used to reconstruct the detected features as 449 

georeferenced ellipses in QGIS. Digital line sampling was then performed 450 

by computing the GSD from grain features intersected by each 451 

georeferenced line. 452 

2.6 Accuracy evaluation 453 

The grain size percentiles obtained by manually labelling images and 454 

those obtained by applying the three grain-sizing tools were compared 455 

with the grain sizes retrieved by on-field manual line sampling. The 456 

comparisons were done by normalising all digitally obtained grain size 457 

percentiles by their corresponding in-field manually measured grain size 458 

percentiles as follows: 459 

d୬୭୰୫ ൌ  
dୢ୧୥୧୲ୟ୪
d୫ୟ୬୳ୟ୪

 460 

where ddigital corresponds to the digitally obtained grain size percentiles, 461 

while dmanual corresponds to the grain size percentiles obtained from in-462 

field manual sampling. Therefore, if the digital measurements were 463 

accurate, dnorm should be close to unity. 464 

We considered the Normalised Root Mean Square Error (NRMSE) to 465 

quantify the errors of digitally-based grain size percentiles in terms of the 466 

corresponding fraction of the mean grain size percentiles obtained from 467 

in-field manual sampling. This error metric allowed us to directly compare 468 

the accuracy of the model estimates for different grain size percentiles, 469 



even if the grain scales were different (like for d16 and d84 values which 470 

may not be of the same order of magnitude). For each grain size 471 

percentile, the NRMSE was calculated as follows: 472 

NRMSE ൌ
ඥ∑ ሺy୧ െ x୧ሻଶ୬

୧ୀଵ

√n ∙ x୫ୣୟ୬
 473 

where yi is the value of the digitally estimated grain size percentile on 474 

sample i, xi is the value of the manually measured grain size percentile on 475 

sample i, xmean is the mean value of the manually measured grain size 476 

percentiles and n is the number of line samples—n = 17 in this study. 477 

2.7 Spatial variability of grain sizes 478 

The spatial variability of surface grain sizes in the study reach was 479 

investigated by considering the spatial distribution of the dataset of grain 480 

geometries detected by the GALET software on the orthoimage covering 481 

the area D reach. The objective was to determine whether grain sizes 482 

were randomly distributed over the river bed, or whether some spatial 483 

arrangements could be statistically identified in the grain-size samples. 484 

We investigated this spatial variability (i) in a regular grid of d50 estimates 485 

computed from the detected grain features, and (ii) directly in a set of 486 

discrete grain features.  487 

The d50 estimates were computed on 2  2 m grid cells. This cell size was 488 

chosen as a trade-off between local GSD representativeness (that is, the 489 

cell was large enough to contain approximately 100 stones in most cells) 490 

and spatial variability (that is, the cell was small enough to exhibit grain-491 



size variations at the bar scale). Grid cells including water were not 492 

considered, as GALET is generally unable to detect underwater grain 493 

features. We computed the GSD from the grain features detected by 494 

GALET, by considering all detected stones whose centroid was located in 495 

the cells. This sampling procedure corresponds to areal sampling 496 

(Kellerhals and Bray, 1971). According to the voidless cube model, the 497 

factor  for converting the frequency-by-number into equivalent 498 

volumetric frequency-by-weight is equal to 2 for areal sampling (Church, 499 

McLean and Wolcott, 1987). We applied a correction factor to the finest 500 

fraction, as described in Fehr’s method (which assumes that 25% particles 501 

are smaller than 1 cm, and that the lower end of the GSD can be captured 502 

using the Fuller curve). We extracted the d50 value from the GSD on each 503 

cell. 504 

Metrics of spatial autocorrelation were computed to investigate whether 505 

the grains are distributed randomly in space according to their size, and 506 

thus to evaluate the overall clustering tendency. Spatial clusters are 507 

defined by Knox (1989) as "geographically bounded groups of occurrences 508 

of sufficient size and concentration to be unlikely to have occurred by 509 

chance." A commonly used indicator of clustering is Moran’s spatial 510 

autocorrelation index (referred to as Moran’s I; Moran, 1950; see Getis, 511 

2010). It summarises the correlation between the value of one spatial unit 512 

and the mean value of its neighbouring units, via a spatial weight matrix. 513 

For the maps of d50 estimates, the neighbours (and thus spatial weights) 514 

of each cell were defined according to a queen contiguity, meaning that all 515 



cells sharing a common border or one vertex are considered neighbours 516 

(i.e. the 8 cells surrounding each cell). For the grain-feature shapefile, the 517 

spatial weights were set for the 100 nearest neighbours of each feature. 518 

This number corresponds to the size of typical surface samples (Bunte and 519 

Abt, 2001), and thus allows to assess the spatial autocorrelation at a grain 520 

sample scale.  521 

Moran’s I varies between -1 and 1, and takes values close to 0 when there 522 

is no spatial autocorrelation (i.e. individual variables are independent from 523 

the mean variable of neighbouring units). It tends towards 1 or -1 when 524 

there is strong positive or negative spatial autocorrelation, respectively. 525 

The variables considered here were the d50 estimates (grid-type data) and 526 

the b-axes of the sample of discrete grain features. By plotting the 527 

standardised variables (i.e., variables rescaled to have a mean of 0 and a 528 

standard deviation of 1) against the mean of standardised neighbouring 529 

variables in a so-called Moran scatter plot, Moran’s I can be computed as 530 

the least square slope of the regression through the origin (Anselin, 531 

1996). This procedure for computing Moran’s I is equivalent to the formal 532 

definition of I, but also enables the visualization of spatial associations in 533 

the dataset (Anselin, 1996). The statistical significance of Moran’s I was 534 

evaluated by testing the null hypothesis that Moran’s I is equal to 0, 535 

meaning that d50 estimates or grain-sizes would be distributed randomly 536 

across the space. The reference distribution of Moran’s I under the null 537 

hypothesis was derived by applying a Monte-Carlo method. The attributes 538 



of all individuals in the dataset were randomly moved over the locations 539 

and Moran’s I was computed. This process of randomisation followed by 540 

Moran’s I computation was performed 999 times, to infer the probability 541 

density function of Moran’s I under the null hypothesis. Finally, we 542 

assessed the statistical significance through the pseudo p-value (Anselin, 543 

1995). We compared Moran’s I of the original dataset to Moran’s I density 544 

function obtained from the Monte-Carlo simulations and rejected the null 545 

hypothesis if the p-value was lower than a significance level of 0.05. 546 

Moran’s I provides information about the overall trend towards clustering 547 

in the spatial distribution of grain sizes; it does not give any indication 548 

about cluster location. To evaluate the strength variations in spatial 549 

autocorrelation with location, we conducted an analysis of the Local 550 

Indicator of Spatial Association (LISA; Anselin, 1995). Following Anselin 551 

(1995), we decomposed Moran’s I into local coefficients for each individual 552 

observation. The local Moran value Ii for each spatial unit is computed as 553 

follows: 554 

𝐼௜ ൌ
ሺ𝑥௜ െ 𝑥̅ሻ ∙ ∑ 𝑤௜௝ሺ𝑥௝ െ 𝑥̅ሻ௡

௝ୀଵ

∑ ሺ𝑥௜ െ 𝑥̅ሻଶ௡
௜ୀଵ

 555 

where xi is the value of unit i (i.e. its d50 value or its b-axis size), xj is the 556 

value of unit j, xത is the mean value of all units, wij is the weight that 557 

defines the relationship between units i and j (wij = 1 if j is a neighbour of 558 

i, wij = 0 otherwise) and n is the total number of spatial units. We 559 

assessed the statistical significance of each spatial unit’s spatial 560 



correlation with its neighbours (i.e. local Moran value), similarly to what 561 

was done for the global Moran I. We computed a density function of the 562 

local Moran for each spatial unit by running a Monte-Carlo simulation—563 

involving 999 random permutations (significance level of 0.05). In the 564 

resulting LISA map, data were partitioned into five topological 565 

relationships: 'high–high', 'low-low', 'low–high', 'high-low', and 'not 566 

significant'. 'High–high' and 'low-low' indicated a positive spatial 567 

autocorrelation, which implies the presence of clustered high (respectively 568 

low) values. 'Low–high' and 'high-low' indicated a negative spatial 569 

autocorrelation, implying a low value with a high-value neighbourhood 570 

(respectively a high value with a low-value neighbourhood). 'Not 571 

significant' indicated the absence of significant spatial autocorrelation. All 572 

spatial statistics were computed using the GeoDa software (Anselin et al., 573 

2010).  574 

 575 



3. RESULTS 576 

Section 3.1 covers the results regarding the accuracy of digital grain sizing 577 

methods. Section 3.2 presents the outcomes of the analysis of the grain-578 

size spatial variability. 579 

3.1 Digital grain sizing accuracy 580 

Pairs of digitally and manually measured characteristic grain sizes are 581 

presented in Figure 4 for the set of Fehr line samples collected during the 582 

field campaign. Grain size estimates from manual in-field line samples 583 

were regarded as the reference “ground-truth” values when comparing 584 

the performance of the different methods. Overall, the data pairs 585 

corresponding to digital manual labelling and their associated in-field 586 

manual measurements proved to be mutually consistent. Grain size 587 

estimates from digital manual labelling closely follow the 1:1 trend when 588 

plotted against their in-field ground-truth counterparts (Figure 4). The 589 

grain size estimates issued from GALET follow the 1:1 trendline with a 590 

particularly-good agreement on the highest half of the grain size domain 591 

for the dm, d50 and d84 cases. However, the GALET estimates were often 592 

larger than the manual ones on the lowest half of the grain size domain 593 

(Figure 4a, 4b and 4d). 594 

PebbleCounts grain size estimates included three outliers. For the sake of 595 

readability, the outliers were not plotted in Figure 4, as they differed 596 

strongly from manually measured grain sizes for the dm and d84 grain 597 



sizes (their values ranged from 20 cm to 28 cm for the dm grain size, and 598 

from 42 cm to 62 cm for the d84 grain size, see Figure S2 in Supporting 599 

Information). These outliers arose because a large grain feature (b-axis > 600 

40 cm) was detected in each of the three concerned samples. Such large 601 

features resulted from the undersegmentation of sediment patches in 602 

PebbleCounts. 603 

When ignoring the above outliers, we found that PebbleCounts and 604 

BASEGRAIN grain size estimates were often located under the identity line 605 

in Figure 4. Particularly, the largest manually measured values were 606 

systematically underestimated by BASEGRAIN and PebbleCounts routines 607 

for all characteristic grain sizes. 608 

  609 



  
a) dm measurements comparisons b) d50 measurements comparisons  

  

  
c) d16 measurements comparisons d) d84 measurements comparisons 

  
Figure 4. Characteristic grain size values from digital measurement procedures plotted 610 
against on-field manually measured characteristic grain sizes, for each of the 17 line 611 
sampling analysis performed. The black dashed line corresponds to the 1:1 trend. 612 

  613 



The normalised grain size percentiles are presented in Figure 5. The 614 

median normalised grain size percentiles derived from manual labelling 615 

are close to unity for all grain size percentiles. This indicates a good match 616 

with grain sizes issued from in-field manual sampling. The normalised 617 

grain size percentiles computed by GALET were frequently in excess of the 618 

grain size values derived from in-field manual measurements (median 619 

value above unity). This overestimation was particularly pronounced for 620 

grain size percentiles smaller than d40. Normalised grain size percentiles 621 

obtained from BASEGRAIN and PebbleCounts (whose outliers were not 622 

considered) underestimated grain size percentiles on average. This 623 

underestimation was less severe for larger grain size percentiles. If we 624 

look at the q25 and q75 quartiles in Figure 5, the object-detection software 625 

routines provide normalised grain size percentiles that are more scattered 626 

in the lower half of the grain size percentiles (i.e. between d5 and d50) 627 

than in the upper half, with a minimum scatter reached around the d80 628 

grain size. This trend was also observed for manual labelling, but it was 629 

less pronounced—the interquartile range of the normalised grain size 630 

percentiles was relatively low compared to the object detection software 631 

estimates. 632 

The evolution of the NRMSE as a function of the grain size percentile is 633 

presented in Figure 6. This error metric indicates that the digital 634 

measurement procedures were most accurate around the d84 grain size 635 

percentile, except for PebbleCounts when its outliers were considered. 636 

Grain sizes computed from digital manual labelling showed the lowest 637 



NRMSE. Concerning the software routines, they exhibited mutually-similar 638 

error values for grain size percentiles between d5 and d40. Between the d40 639 

and d90 grain sizes percentiles, GALET showed the lowest errors, whereas 640 

BASEGRAIN and PebbleCounts (without outliers) exhibited comparable 641 

higher NRMSE values. The NRMSE of grain size estimates of PebbleCounts 642 

was significantly reduced when removing the outliers from the error 643 

metric computation. 644 

  645 



 646 

Figure 5. Median normalised grain size percentile of each digital measuring procedure 647 
(thick line). The grain size percentiles were normalised by the in-field manually derived 648 
grain size percentiles (ddigital / dmanual). The q25 and q75 quartiles of the normalised digital 649 
estimates are represented by the dotted lines, meaning that 50% of the normalised 650 
estimates are located within the coloured area. Key grain size percentiles (i.e., d16, d50 651 
and d84) are indicated by vertical lines. 652 

 653 

Figure 6. Normalised Root Mean Squared Error (NRMSE) of each digital measuring 654 
procedures compared to in-field manual sampling, for each grain size percentile. Key 655 
grain size percentiles (i.e., d16, d50 and d84) are indicated by vertical dotted lines.  656 
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3.2 Spatial variability of grain sizes 658 

Given the performances of the GALET software and its capability to 659 

process large orthoimages, we chose this tool to analyse the spatial 660 

variability in surface grain sizes within the area D reach. Figure 7 shows 661 

how heterogeneous the spatial distribution of surface grain sizes was over 662 

area D. In particular, the d50 estimates revealed important spatial 663 

variations in the surface grain sizes over the study reach, with local d50 664 

estimates spanning from 2 cm to 40 cm (Figure 7b). Visual assessment 665 

indicated that the grain size pattern identified in the map of d50 estimates 666 

is consistent with the spatial distribution of grain sizes observed in the 667 

orthoimage. 668 

The Moran scatter plot (Figure 8) indicates that the spatial distribution of 669 

d50 estimates in 2 × 2 m cells was characterised by a positive spatial 670 

autocorrelation. The test of significance suggested that the Moran’s index 671 

value I = 0.41 is statistically significant. The null hypothesis (stating that 672 

d50 estimates are randomly distributed across the space) was strongly 673 

rejected, as the computed pseudo-p-value resulted equal to 0.001 674 

(meaning that no Moran’s I computed via random permutations is as large 675 

as the observed Moran’s I). Therefore, the analysis of the Moran’s I 676 

confirmed that sediments are sorted into patches of similar grain sizes on 677 

the study reach.  678 

The local indicator of spatial association (LISA) allowed us to locate 679 

statistically-significant clusters of large (high-high) and small (low-low) 680 



d50 estimates (Figure 7c). Clusters are sets of contiguous units that 681 

exhibit significant and similar spatial associations (Anselin, 1995). 682 

Relatively few cells showed negative spatial autocorrelation (i.e. 683 

significant low-high or high-low spatial associations with their neighbours). 684 

Among the clusters identified on the LISA map, three are highlighted in 685 

Figure 7c, which makes it possible to compare their location with that of 686 

the clusters identified at the grain scale in Figure 10. Note that given their 687 

size and morphology, these clusters are generally referred to as “patches” 688 

in the gravel-bed literature (e.g., Lisle and Madej, 1992; Dietrich et al., 689 

2006). We use the term “cluster” thereafter for consistency with the 690 

definition used in the field of spatial statistics given by Anselin (1995). 691 

To study the spatial variability in the grain sizes within a single 692 

geomorphological unit at the grain scale, we selected the detected 693 

features located over a gravel bar in area D (Figure 10). Moran’s I 694 

computed from the resulting dataset indicates that the spatial grain size 695 

distribution was characterised by a positive autocorrelation (Figure 9). The 696 

Moran’s index value I = 0.12 was statistically significant, as the null 697 

hypothesis of random spatial distribution of grain sizes was strongly 698 

rejected (pseudo-p-value = 0.001). The positive Moran’s I value indicated 699 

that the surface stones were generally clustered according to their 700 

dimensions in the surveyed river reach. The large number of grain 701 

features presented in the Moran scatter plot and the relatively weak 702 

correlation makes it difficult to visually detect a clear trend in the data 703 

scatter around the linear regression line (Figure 9). The smallest 704 



standardised b-axis values are located within one standard deviation from 705 

the origin. This indicates that the grain-size distribution was largely 706 

skewed towards fine particles (approximately 70% of the detected 707 

particles were smaller than the mean b-axis value of 6.2 cm). We recall 708 

that the amount of information related to the finer grain sizes was 709 

hindered by the image resolution. The smallest particles which could be 710 

detected by GALET were of 2 cm in diameter; this limitation imposed a 711 

lower bound in the data scatter.  712 

The cluster map generated from the LISA allowed us to visualise different 713 

grain size clusters (Figure 10). A complex pattern of different surface 714 

grain sizes was observed on this bar, where the clusters 1, 2 and 3 715 

identified in Figure 7c are located. It is worth recalling that LISA outcomes 716 

and cluster identification could be influenced, to a certain degree, by the 717 

characteristics of the data sample considered (e.g., size and internal 718 

variability). The clusters identified from the LISA map computed from d50 719 

estimates on a grid matched reasonably well—in location and extent—720 

those identified from the LISA analysis based on discrete grain features 721 

(Figure 10). This good agreement means that, in our case, the dataset of 722 

samples located on the single geomorphological unit considered were 723 

highly representative of the grain size distribution over the entire area D. 724 

  725 



 726 

Figure 7. Maps of the spatial distribution of d50 estimates. (a) Orthoimage of area D on 727 
11 Nov 2022, with discharge of 1.2 m3/s. The water flows northwise. (b) d50 estimates 728 
based on detected grain features by GALET in 2  2 m grid cells. (c) Cluster (i.e. patches) 729 
identification using the local indicator of spatial association (based on the local Moran’s 730 
I), three clusters are indicated for further discussion. 731 

a) Orthoimage of the area D. 

b) GALET d50 estimates. 

 
c) Local indicator of spatial association of d50 estimates. 



 732 

Figure 8. Moran scatter plot for the measure of the overall size clustering tendency of 733 
the grid d50 estimates. The mean standardised d50 estimates of neighbouring cells are 734 
plotted against the standardised d50 estimates. The global Moran’s I corresponds to the 735 
slope value of the regression line (dashed red line). 736 

 737 

 738 

Figure 9. Moran scatter plot for the measure of the size clustering tendency of grain 739 
features. The mean standardised b-axis estimates of the 100-nearest neighbouring 740 
stones are plotted against the standardised b-axis of the 125’000 detected stones by 741 
GALET. The global Moran’s I corresponds to the slope of the regression line (dashed red 742 
line). 743 



 744 

Figure 10. Particle-size clusters (i.e. patches) identification using a local indicator of 745 
spatial association (local Moran’s I). The region of interest is a single gravel bar located 746 
in area D. The contours of the clusters 1,2 and 3, as identified from the LISA map for d50 747 
data, are plotted for comparison (solid black lines). 748 



4. DISCUSSION 749 

The accuracy of digital manual labelling and of object-based grain sizing 750 

methods compared to in-field line sampling is discussed in Sections 4.1 751 

and 4.2, respectively. Section 4.3 addresses how spatial statistics of 752 

detected grain features can be used to describe the spatial organisation of 753 

surface grain sizes. 754 

4.1 Digital manual labelling accuracy 755 

The characteristic grain size values derived from manual labelling of 756 

orthoimages showed a great similarity with the values derived from in-757 

field manual sampling (Figure 4 and 5). This similarity contrasts with 758 

previous studies on manual labelling of individual grains in photographs, 759 

which found that grain sizes were generally underestimated compared to 760 

in-field sampling results (e.g., Adams, 1979; Ibbeken and Schleyer, 1986; 761 

Church, 1987; Garefalakis et al., 2023). These authors linked this 762 

underestimation to the partial information accessible in photography-763 

based grain sizing methods, since only the exposed part of grains is visible 764 

in nadir photographs. Partial burying of grains, grain imbrication or 765 

foreshortening of grains due to the angle of the photograph can lead to 766 

underestimate the true grain sizes (Graham et al., 2010). 767 

In our study, grain size percentiles derived from digital manual labelling 768 

did not suffer from underestimation, most likely because it was difficult to 769 

identify smallest particles (b-axis < 2 cm approximately) owing to the 770 

orthoimage resolution or to their location in-between coarser particles. 771 



The weak detection of finest particles resulted in different calibrations of 772 

the Fuller curves that describe the lower end of the GSDs and probably led 773 

to higher NRMSE values for grain size percentiles in the d10–d40 range 774 

(Figure 6). In our samples, percentiles smaller than d10 corresponded to 775 

grain sizes smaller than 1 cm and no grain-sizing method (including in-776 

field sampling) provided direct measurements for such small grains. 777 

Therefore, under d10, the Fuller interpolation in the Fehr method 778 

completely determined the grain-size percentiles, made the GSD tails 779 

mutually-similar and provided lower NRMSE values. The undersampling of 780 

fine grains likely counterbalanced the size underestimation for the largest 781 

particles, thus providing average grain size estimates that were similar to 782 

those derived from in-field manual sampling. It is worth mentioning that 783 

manual labelling was performed by a single operator and we did not 784 

investigate how the results may differ depending on the operator. 785 

4.2 Accuracy of object-based grain sizing methods 786 

Comparing the three software routines (BASEGRAIN, GALET and 787 

PebbleCountsAuto) revealed differences in accuracy and limitations. 788 

GALET tends to overestimate in-field grain sizes issued from line 789 

sampling. The main explanation for this phenomenon is that GALET did 790 

not detect the smallest grains (b-axis < 2–3 cm). Mörtl et al. (2022) 791 

noted that the resolution of orthoimages determines the smallest 792 

detectable grain size by GALET. The resolution of the generated 793 

orthoimages (approximately 0.3 cm/px) was likely too low for the 794 



detection of the smallest grains. Fine grained samples (with dm smaller 795 

than 7 cm, Figure 4a) were therefore particularly affected by the absence 796 

of small grains in GALET grain size estimates and thus led to 797 

overestimated values. To reduce the detection limit for small grains, 798 

shorter ground sampling distances would be required.  799 

Visual inspection of the grain features detected by GALET suggested that 800 

the software performance was not affected by different rock texture 801 

patterns inside individual grains. The CNN training dataset used by Mörtl 802 

et al. (2022) is probably well suited to applying the routine to the 803 

Navisence bed images. A significant number of grains was not detected in 804 

the GALET routine. Overall, GALET detected 40% less grain features, 805 

regardless of their size, along the lines compared to the manual labelling 806 

conducted by a human operator. The largest grains (b-axis > 20 cm) 807 

sometimes appeared over-segmented by a vertical or horizontal line. This 808 

feature splitting was caused by the edges of the finite-size moving window 809 

used for grain feature detection in GALET. This issue did not arise with 810 

large grain features along the lines, but it could lead to a size 811 

underestimation for some of the largest stones present in the river bed.  812 

BASEGRAIN and PebbleCounts produced similar results, as both software 813 

routines generally underestimated characteristic grain sizes. For three 814 

sampling lines, PebbleCounts outcomes were affected by several feature 815 

merging occurrences and missed grain detections (the outliers mentioned 816 

in Section 3.1). These errors were likely caused by glacial flour, which 817 



partially covered pebbles. This led to a large overestimation of grain size 818 

percentiles for these lines. The grain sizes of the other lines were 819 

generally underestimated because the largest stones were often not 820 

detected, which may be due to the presence of intergranular textures that 821 

prevented optimal edge detection. In addition, direct sun illumination on 822 

orthoimage C caused size underestimation of the detected stones, as the 823 

shaded grain faces were not included in the detected object boundaries. 824 

Finally, we observed that the grain masks identified by PebbleCounts were 825 

generally smaller than the apparent size of stones in the orthoimages. 826 

This shortcoming in PebbleCounts led to grain size underestimation. 827 

PebbleCounts showed a poor detection rate along the lines on the 828 

orthoimages, as the number of grain features detected is 62% smaller 829 

than that resulting from manual labelling. 830 

Concerning BASEGRAIN, rock-texture variations inside single grains (e.g. 831 

due to foliation or veins) can be detected as grain edges during the 832 

segmentation procedure. Therefore, large particles often appeared over-833 

segmented. This resulted in the detection of several smaller particles 834 

instead of a single large particle.  These over-segmentation errors were 835 

less frequent for small particles, whose detection was less influenced by 836 

rock texture details—apparently because of the limited image resolution. 837 

BASEGRAIN suffered from the same problem identified in PebbleCounts: it 838 

often did not merge shaded grain-surfaces into the object boundaries. 839 

This resulted in underestimation of the real size of grain features. Rock 840 

texture variations induced BASEGRAIN to detect fictitious edge patterns. 841 



Non-detection of large particles might arise when BASEGRAIN was unable 842 

to reconstruct a closed grain boundary from these edge patterns. The 843 

large number of tunable parameters in BASEGRAIN makes the 844 

performance highly dependent on the operator’s choices. Meticulous 845 

parameter tuning and visual checks of the quality of the object detection 846 

were performed in the present study, but it cannot be excluded that 847 

different operators could have obtained different results. 848 

Systematic grain size underestimation from automated image-based 849 

methods induced by rock texture is an issue pinpointed by earlier studies 850 

(e.g., Strom et al., 2010). We found that PebbleCounts results were 851 

relatively less influenced by rock texture patterns than BASEGRAIN ones. 852 

Over-segmentation errors with BASEGRAIN may be even more severe 853 

when no parameter tuning is performed (see Chardon et al., 2022).  854 

Among the routines considered here, GALET, based on deep-learning for 855 

object detection, emerged as the best-suited tool for grain size analysis 856 

when studying gravel bars from orthoimages. GALET was designed to fit 857 

the wide range of rock texture found in gravel-bed rivers and to conduct 858 

grain feature detection on long stream reaches. The object-detection 859 

performances of deep-learning methods (see Zhao et al., 2019), the 860 

recent implementation of deep learning in object-based grain-sizing 861 

techniques (e.g., Soloy et al., 2020; Chen et al., 2022) and the results of 862 

the present study indicate that the deep-learning technology may enable a 863 

step forward in automated optical granulometry. 864 



4.3 Spatial variability of grain sizes 865 

In Section 3.2, we provided quantitative information about the grain-size 866 

variability along the study reach. We conducted a statistical analysis on 867 

the d50 grid estimates and on the grain features detected by GALET. The 868 

accuracy evaluation of GALET revealed that this software performs at its 869 

best for grain size percentiles above d40. Therefore, the d50 map presented 870 

in Figure 7 and the associated identified clusters should correspond closely 871 

to the real grain size variability on the field. Our analysis demonstrated 872 

how variable the bed-surface material size was in the surveyed floodplain. 873 

We found that grains were arranged in patches (i.e. spatial clusters), 874 

consistently with what has been observed for bars in gravel-bed rivers 875 

(e.g., Dietrich, 2006; Guerit et al., 2014).  876 

  877 



5. CONCLUSIONS 878 

We presented a benchmarking study of three object-based grain sizing 879 

models (BASEGRAIN, PebbleCountsAuto, and GALET) on a mountain river 880 

bed. The main difference between them was that GALET uses deep 881 

learning technology whereas the two others are based on image 882 

thresholding for grain segmentation. The three methods were applied to 883 

orthoimages obtained from UAV surveys and Structure-from-Motion 884 

photogrammetry. In-field estimates of grain sizes obtained using Fehr’s 885 

line sampling technique served as a reference dataset to evaluate the 886 

accuracy of each grain sizing method. We supplemented the comparison 887 

by manually labelling grain features on the same orthoimages. By 888 

computing the grain size distributions within Fehr’s (1987) framework, we 889 

ensured that all methods were comparable on the same footing. 890 

Manual labelling provided estimates that were fully consistent with field 891 

measurements. BASEGRAIN and PebbleCountsAuto underestimated grain 892 

sizes on average, whereas GALET generally overestimated grain size 893 

percentiles. 894 

We identified some limitations in the three models. BASEGRAIN often led 895 

to over-segmentation in grain features due to the rock-texture influence 896 

on object detection. PebbleCountsAuto outcomes were often affected by 897 

missed detections of large grains. Shaded grain faces and glacier flour 898 

also influenced grain detection in PebbleCountsAuto. The available image 899 



resolution prevented the detection of the smallest grain features with 900 

GALET. 901 

Our case study confirms that automated grain-size measurement methods 902 

are cost-effective solutions for monitoring river-surface grain sizes with 903 

high spatial coverage. Such automated techniques are expected to 904 

progress in upcoming years with the advent of new grain-sizing 905 

procedures based on the deep learning technology. 906 

We studied how grain sizes were distributed over the bed surface, by 907 

mapping characteristic grain sizes variations. Computing Moran’s I and 908 

LISA statistics revealed a significant grain-size clustering and the location 909 

of such grain-size patches (i.e. spatial clusters).. We believe that the 910 

combined use of automated grain sizing techniques (applied to large scale 911 

orthoimages) and spatial statistics will give a new impetus to 912 

understanding the processes that drive sediment sorting in gravel-bed 913 

rivers. 914 

  915 
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