
manuscript submitted to Water Resources Research

Neural network to infer bed topography from velocity
field: U-net architecture on huge experimental data

Mehrdad Kiani-Oshtorjani1, Christophe Ancey1

1École Polytechnique Fédérale de Lausanne, Écublens 1015 Lausanne, Switzerland

Key Points:

• Entropy-based models applied to gravel-bed flumes could provide cross-sectional
velocity fields,

• First attempt to use the U-net model for bathymetry inference have been done
in this work,

• The U-net could provide satisfactory bathymetry inference from the velocity fields.

Corresponding author: Mehrdad Kiani Oshtorjani, Mehrdad.Kiani@epfl.ch

–1–

manuscript submitted to Water Resources Research

Abstract
Measuring bathymetry has always been a major scientific and technological challenge.
In this work, we used a deep learning technique for inferring bathymetry from the depth-
averaged velocity field. The training of the neural network is based on 5742 laboratory
data using a gravel-bed flume and reconstructed velocity fields (namely, the topographies
were obtained from real-world experiments and the velocity fields were estimated using
a statistical model). To examine the predictive power of the proposed neural network
model for bathymetry inference, we applied the model to flume experiments, numerical
simulation, and field data. Results show the model properly estimates topography, lead-
ing to a model for riverine bathymetry estimation with a 26.3% maximum relative er-
ror for the case study (confluence of the Kaskaskia River with the Copper Slough in east-
central Illinois state, USA). The dataset and the codes are attached to the present pa-
per.

1 Introduction

Imaging riverine bathymetry is fraught with difficulty. Among the available tech-
niques in riverine bathymetry, a typical example is provided by the use of airborne bathy-
metric LiDAR systems (Marcus, 2002; Wozencraft & Millar, 2005). While these tech-
niques do provide direct access to bathymetry, it is time consuming and costly. Other
examples include the use of indirect bathymetry techniques, which usually involve solv-
ing an inverse problem relating flow depth to surface elevation (Durand et al., 2008), sur-
face velocity (Emery et al., 2010), and thermal imagery (Puleo et al., 2012).

Inferring bathymetry from surface flow data is predicated on the assumption of a
strong causal relationship between the two (Smith & McLean, 1984). This assumption
is often true, especially in shallow flows, when vertical velocity is low compared to the
streamwise velocity component. Employing surface velocity data is an alternative to es-
timate bathymetry, thanks to its affordability and sensitivity to river depth (Landon et
al., 2014; Wilson & Özkan-Haller, 2012; Ghorbanidehno et al., 2021). There are several
techniques for estimating surface velocity, including the use of drifter GPS recordings
(Honnorat et al., 2010; Landon et al., 2014). Landon et al. (2014) investigated whether
drifters’ trajectories are sensitive enough to bottom topography to allow for depth de-
termination. They successfully extracted river bathymetry using velocity field measure-
ments collected from drifter GPS records in an ensemble-based data assimilation approach.
Estimated bathymetry based on this technique on a shallow braided and deep meander-
ing reach of the Kootenai River in Idaho in the United State of America (USA) were more
accurate than the previous estimations. Wilson and Özkan-Haller (2012) applied this tech-
nique to one dimensional (1D) channel, and for two real-world reaches, namely, the Sno-
homish River, Washington and Kootenai River, Idaho, in the USA. The main difference
with Landon et al. (2014) was this: they used depth-averaged velocities (based on nu-
merical solutions to the shallow water equations), and a least-square method to mini-
mize a cost function that combines known information, and measured data. By using
a state augmentation technique, the measured variable (velocity) is connected to the un-
known parameter (bathymetry), providing a model for deep water bathymetry estima-
tion (depth in the 3–10 m range).

In recent years, deep learning has become one of the most powerful tools for over-
coming some deterministic approaches limitations. It can be used to image bed topog-
raphy from surface flow data. Due to their ability to identify patterns or trends in data,
neural networks are becoming increasingly popular in geophysics and hydraulics (Yu &
Ma, 2021). For instance, Ghorbanidehno et al. (2021) used the neural network technique
to obtain bed topography based on the depth-averaged flow velocity field, using limited
labeled data. In order to reduce network size, the authors combined a fully connected
deep neural network with principal component analysis (PCA). Usually, training the net-

–2–

manuscript submitted to Water Resources Research

Input
Output

1x256x64

16x128x32

16x64x16

32x32x8

64x16x4

64x8x2

64x4x1

64x8x2

64x16x4

32x32x8

16x64x16

16x128x32

1x256x64

4x4 convolution

2x2 convolution 2x2 resize-convolution

3x3 resize-convolution

Feature-wise concatenation

Figure 1. A diagram showing the input and output fields of the neural network. Convolu-

tional layers are shown in blue, and skip connections are shown in orange.

work needs a huge amount of data to avoid the curse of dimensionality, which implies
that the data occupy less and less of the data space as the data space moves from lower
to higher dimensions. The volume of this space grows so fast that the data cannot keep
up and thus become sparse—the sparsity problem is a major statistical significance is-
sue. To enhance the training dataset size, Ghorbanidehno et al. (2021) divided the river’s
entire domain into small subdomains. As a result, each river profile provided several hun-
dred training samples rather than just one.

The training of neural network for bathymetry estimation could be done by solv-
ing the shallow water equations and using the resulting solutions. A typical example is
provided by Liu et al. (2022), who employed shared-encoders and separate-decoders, where
bathymetry’s input image is encoded and then decoded to three outputs, namely, the
flow’s longitudinal and transverse depth-averaged velocity components, and the water
surface elevation. Two-dimensional (2D) simulations using randomly generated input bathymetry
data were used to generate the training data.

Recent advancements in measurement techniques have led to the availability of high-
resolution and low-cost surface velocity fields. These techniques include the use of La-
grangian drifters (Honnorat et al., 2010), large-scale particle image velocimetry (PIV)
(Bradley et al., 2002; Lewis & Rhoads, 2015), and synthetic aperture radar (SAR) (Biondi
et al., 2020). This work intends to predict bathymetry by using indirect measurements,
i.e., the velocity field through a convolutional neural network. The neural network train-
ing is based on a U-net architecture, used for the first time for segmentation problems
(Ronneberger et al., 2015), and to our knowledge, this is the first attempt to use the U-
net model for bathymetry inversion. To this end, we used an experimental dataset made
of 5742 data. It was not realistic to measure the velocity field, but we could estimate it
using entropy-based models. A U-net neural network model is implemented in PyTorch
framework (https://pytorch.org). Fig. 1 shows the model’s architecture. In this net-
work, the encoder and decoder are connected by skip connections - by contrast with reg-
ular convolutional networks. By doing so, we ensure we actually lose no information dur-
ing the feature extraction process. In order to develop a well-trained neural network model,
we need to collect a large amount of data. Due to the size of the experimental dataset
used in this study, we had no problems with dataset size. As an alternative, if we were
dealing with a small dataset, we could divide the experiment domain into smaller regions,
thereby, we could increase the amount of data.

–3–

manuscript submitted to Water Resources Research

Figure 2. Gravel-bed flume illustration which all the dataset is gathered based on the experi-

ments performed on this channel. It has 17 m length but the useful length (removing 1.5 m from

each side) is 14 m.

In this work, training the convolutional neural network model to infer bathymetry
is based on bed topography scans and velocity field estimates. Solving the governing par-
tial differential equations will be bypassed and the solutions infered solely by convolu-
tional neural network that is trained based on a huge experimental dataset. Closely re-
lated to our work is Ghorbanidehno et al. (2021)’s PCA-DNN framework, which com-
bined the traditional fully connected deep learning method and principal component anal-
ysis. They trained the deep neural network model based on field data, whereas we fo-
cused on a convolutional neural network; besides, our dataset is produced in the labo-
ratory. Our trained model is suitable for gravel-bed rivers whereas their model is suit-
able for deep rivers. All of the training networks in this work has been done using Co-
laboratory on GPU: Nvidia Tesla P100-PCIE-16GB.

This paper is structured as follows: The methodology for generating the dataset
based on experiments and analytical derivation is explained in section 2. Moreover, the
U-net network architecture is described and the basic parameters, regularization and hy-
perparameters - such as dropout, learning rate, weight decay, and training dataset size
- are studied in that section. In section 3, the model’s performance and accuracy has been
studied. In addition, the neural network model’s predictive power has been studied by
applying it to flume experiments, the numerical simulation of a gravel-bed flume, and
field data performed at the confluence of the Kaskaskia River and Copper Slough in central-
east Illinois state, USA. Sections 4, and 5 discuss and summarize our achievements and
future work, respectively.

2 Methodology

2.1 Data generation

The dataset is based on the experiments conducted at LHE-EPFL (Dhont, 2017).
Table. 1 represents the input parameters and each experiment’s duration. It consists of
three long experiments. Experiments were carried out in a tilted flume at an angle of
S = 1.6% and 1.7%, a length of L = 17 m and a width of w = 60 cm, as depicted in
Fig. 2. The useful length of the flume is 14 m because of technical limitations (1.5 m from
each side is ignored). The flume bed was made of natural gravel with a height of 31.5

–4–

manuscript submitted to Water Resources Research

cm at the beginning of the experiments. Sediments mean diameter was d = 5.5 mm,
with a 1.2 mm standard deviation, and density of ρs = 2660 kg/m3. The water discharge
and sediment feeding rates at the flume inlet were set to 15 L/s and 2.5, 5, and 7 g/s,
respectively. Each experiment lasted for hundreds of hours. At the beginning of each ex-
periment, the bed surface was flattened. These long-term experiments are conducted via
short-term experiments that last 8 hours. To prevent the destruction of the bed topog-
raphy, these short-term experiments are lunched with very low flow discharge. During
the experiment, water discharge and sediment feeding rate were kept constant for 8 hours.
Experiment 1 included 1566, experiment 2, and 3 consisted of 741, and 3435 scans, re-
spectively (in total 5742 scans, each consisting of bed topography and flow depth data).
Based on the entropy-based models, we computed the depth-averaged velocity field us-
ing the flow depth data and knowing the constant flow discharge as a constraint. In the
next following sections, the details of entropy-based models to inferring the velocity fields
will be explained.

Table 1. Input parameters of the experiments.

Exp. 1 Exp. 2 Exp. 3

Flow rate (L/s) 15 15 15

Flume slope (%) 1.6 1.7 1.6

Sediment feed rate (gr/s) 2.5 7.5 5.0

Duration (h) 250 556 118

During an experiment, measurements of the bed topography and flow depth are
recorded with a fine resolution. The bed topography is measured by laser-sheet imag-
ing technique i.e., using two angled lasers. Those lasers are mounted on an automated
moving cart. By calibrating the distance between two angled lasers projected on the bed,
the bed topography can be induced with a resolution of 60 × 281 pixels. Every 10 min-
utes, the cart programmed to scan the bed proceeds, using MatLab. Each scan took about
145 seconds and covered 14 m × 60 cm. During each scan, the bed topography by lasers,
and flow depth by ultrasonic probes are measured. The ultrasonic probes determine flow
height, a sound pulse is emitted and the travelling time between the sensor and the ob-
ject can be used to infer flow depth (see Fig. 2). The sediment feeding system moves the
sediments from the hopper by a conveyor belt into the inlet of the flume and feeds into
the channel through a pin board that distributes the gravel along the width. The sed-
iment feed rate was controlled by controlling the speed of a rotating cylinder that clogs
up the hopper outlet. The most frequent mode happening in the flume using the afore-
mentioned flow condition is alternate bars. In Fig. 3, the bed topography and alternate
bars appearance are illustrated based on the third experimental data at t = 200 min-
utes.

Due to erosion, deposition, and transport processes, the bed topography changes
over time during the experiments. In turn, the hydraulic conditions in the system are
affected by the bed morphology, as a result of a feedback loop driven by the movement
of particles (Griffiths, 1993). Based on the Froude number Fr = v/

√
gh (where g is the

gravitational acceleration, v is flow velocity and obtained by particle image velocimetry
using tracking light polystyrene balls, and h is flow depth measured by ultrasonic probes),
the flow regime was turbulent and super-critical with a Froude number more than 1. As
a result of the highly variable bed topography and hydraulic conditions in alternate bar
systems, calculating the shear stress is not straightforward. Since the flow depth is uni-
form at the beginning of each experiment, thus the streamwise bed shear stress can be
measured by τ = ρgRhS where Rh = hw/(2h + w) is the hydraulic radius, and ρ is

–5–

manuscript submitted to Water Resources Research

Figure 3. An example of experimental topography using the gravel-bed flume. The bed and

flow heights are measured from the bottom of the flume. The initial height of the bed is at 31.5

cm.

fluid density. The shear stress is estimated by computing its average value along longi-
tude bed profiles (Venditti et al., 2012). The value of shear stress in our experiments varies
between 4.89 to 10.75 kg/(ms2). The Shields number and the shear velocity can be ob-
tained by τ∗ = RhS/R/d, and u∗ =

√
τ/ρ =

√
gRhS, respectively where R = (ρs −

ρ)/ρ. The shear velocity varies in a range of 0.07 ≤ u∗(m/s) ≤ 0.10 and the Shields
number changes between 0.05 ≤ τ∗ ≤ 0.11 among all experimental data.

In order to have a suitable input/output image size for training the neural network,
we applied a bicubic interpolation over 4×4 pixels neighborhood to the flow depth and
bathymetry data to change the size of the data i.e, bed topography and velocity fields
from 60×281 into 64×256 pixels. Then, the dataset was divided into three subsets: train-
ing, validation, and test dataset. The total number of samples was distributed this way:
80% training data, and 20% validation data. Moreover, the training data was again di-
vided to 90% as the training and 10% as the test dataset. Training, and validation data
will be used to fit the models, and to estimate the prediction error for model selection,
such as hyperparameter tuning, respectively, and finally a test dataset will be used to
assess the generalization error of the selected model. The dataset composed of 5742 pair-
wise (bed topography and velocity field) grayscale images and, therefore, the training,
validation, and test datasets consist of 4133, 1149, and 460 data, respectively. The dataset
are published attached to this work on Kaggle.com/MehrdadKianiOsh/bedtopo vel fields.
A total of 11484 fields are included in the published dataset, including both bed topog-
raphy and depth-averaged velocity data.

2.2 Entropy-based velocity profile

The entropy concept is originated from thermodynamics. Entropy is defined as a
measure of a system’s randomness or disorder. Shannon developed entropy’s mathemat-
ical foundation and connected it to information (Singh, 2016). To obtain the two-dimensional
and one-dimensional velocity profile, it is necessary to maximize the entropy of the ve-
locity distribution, in order to obtain the least biased velocity probability density func-
tion. It is based on the Jaynes (1957) principle of maximum entropy (POME) that en-
tropy should be maximized. According to Jaynes (1957), any system in the equilibrium
state attempts to maximize its entropy, subject to given constraints. The entropy of a
flume/river must reach its maximum value when it reaches a dynamic (or quasi-dynamic)

–6–

manuscript submitted to Water Resources Research

0.1

0.1
0.1

0.1

0.2

0.2

0.2

0.2

0.3

0.3

0.3

0
.3

0.3

0.4

0.4

0.4

0
.4

0.4

0.5

0.5

0.5

0
.5

0.5

0.6 0.6

0
.6

0.6

0.7 0.7
0.7

0.7

0.8 0.8 0.8

0.8

0 10 20 30 40 50

z (cm)

0

2

4

6

8

10

y
 (

cm
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a)

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.2

0.3

0.3

0.3

0
.3

0.3

0.4

0.4

0.4

0
.4

0.4

0.5

0.5

0.5

0
.5

0.5

0.6

0.6

0.6

0
.6

0.7 0.7

0.7

0.7

0.8 0.8 0.8

0.8

0.9 0.9 0.9

0.9

0 10 20 30 40 50

z (cm)

0

2

4

6

8

10

y
 (

cm
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b)

Figure 4. Velocity plot based on (a) Shannon-entropy, and (b) Tsallis-entropy for a cross

section in the middle of the channel based on Exp. 3 at t = 200 minutes. The border between the

white and blue regions indicates the bed topography for one cross section.

equilibrium (Singh et al., 2003). At any location where maximum velocity occurs, the
2D velocity distribution based on entropy theory should be valid (Singh, 2016).

As aforementioned, during each experiment, bed topography and flow depth are
measured locally with high resolution. Since the flow discharge is fixed to a constant 15
L/s value during all the experiments, the constraint in the entropy-based models is con-
stant flow discharge. The velocity profile can be obtained locally by maximizing entropy.
Estimating flow velocity can be achieved using a number of techniques. Two entropic
principles are known as Shannon and Tsallis (this entropy is a generalization of the Shan-
non entropy) that are often applied to river discharge assessment (Singh, 2016). Both
these principles connect the maximum flow velocity at a vertical axis of the flow area to
the cross-sectional mean flow velocity.

2.2.1 Shannon entropy-based method

Chiu and colleagues (Chiu, 1987, 1988, 1989) introduced the use of Shannon en-
tropy theory to the field of hydraulic engineering. By utilizing an entropic parameter,
they established a linear relation between the maximum flow velocity and the mean flow
velocity over a cross-section. Building upon Chiu’s work, Moramarco et al. (2004) pro-
posed a simplified version of Chiu’s entropy-based velocity distribution equation that can
calculate the 2D velocity distribution, using only the maximum velocity and bathymetry
information. This model does not require parameter calibration or the isovel equation,
and only requires knowledge of the maximum velocity and its position. Generally, max-
imum flow velocity occurs at the water’s surface; however, the phenomenon of the dip-
phenomenon may occur, in which maximum flow velocity occurs below the surface, due
to secondary currents. When w/h > 3.5, the maximum velocity occurs on the flow sur-
face (Song & Graf, 1996) which is true of our experiments. The velocity equation can
be expressed as follows (Moramarco et al., 2004)

u =
umax

M
log

[
1 +

(
eM − 1

) y

h−D
exp

(
1− y

h−D

)]
(1)

The equation for estimating the longitudinal velocity (u) along the vertical axis in-
cludes several variables, namely, the maximum flow velocity, and its depth from flow’s
surface is represented by umax and D, respectively. Shannon’s entropy parameter is de-
noted as M , and y represents the location of the velocity measurement point from the

–7–

manuscript submitted to Water Resources Research

bottom of the channel. To determine the constant value of the entropy parameter, the
following equation can be used

um

umax
=

eM

eM − 1
− 1

M
(2)

The mean velocity over a cross section um can be identified if we know the flow dis-
charge and the section area, while umax is determined iteratively (by knowing that the
maximum velocity happening on the flow surface and assuming the maximum velocity
in the first iteration and correcting the maximum velocity iteratively by calculating the
flow discharge and comparing with the ground-truth). The contour plot of the calculated
velocity profile is plotted on Fig. 4(a). However, for the sake of comparison, Tsallis entropy-
based method have been applied to the same cross section (the methodology is explained
in Appendix B). The velocity profile based on Tsallis entropy is plotted in Fig. 4(b). One
can see that the velocity gets close to 1 m/s on the surface flow, which coincides with
the measured surface velocity by tracking polystyrene balls travelling along the entire
flume length (Dhont, 2017). By comparing two velocity fields in Fig. 4(a) and Fig. 4(b),
there is no such difference in using each entropy models. We therefore decided to use Shan-
non’s entropy to calculate the velocity fields in all of our experiments.

2.3 Neural network

We use the U-net architecture for our neural network model. In the main journal
paper where the U-net has been introduced by Ronneberger et al. (2015), the input and
output images were of different sizes and used to solve the segmentation problem. Since
our input/output are of the same size, we reworked the model by changing the convo-
lution function parameters and using the model as a regression problem. It has already
been mentioned that the U-net network is divided into two parts. Firstly, a standard con-
volutional neural network architecture is used to perform the contracting process. Leaky
ReLU activation units are followed by multiple convolutions with padding in the con-
tracting path. The same structure is repeated several times. One of U-nets’ key char-
acteristic lies in the expansive path i.e., the second path. Using transposed convolution,
each stage in the expansive path upsampling the feature map. Afterwards, we concate-
nate the upsampled feature map with the corresponding layer from the contracting path.
Therefore, we obtain a U-shaped network and, perhaps most importantly, contextual in-
formation is propagated along the network, enabling a proper reconstruction of context.

The implementation is based on Pytorch deep learning framework (https://pytorch
.org). Table A1 in Appendix A shows the structure of the U-net used in all our tests
with details of the different layers. The schematic of our neural network architecture can
be seen in Fig. 1, in which a fully convolutional U-net is used. This is a famous archi-
tecture that uses a number of convolutions at various spatial resolutions. This network
differs mainly from a regular convolution network in that skip connections are used from
encoder to decoder parts. By doing this, the network can use fine-grained details learned
in the encoder to reconstruct an image in the decoder. Using it as a whole is the only
way to make this devicer work. For example, if we want to use the decoder as a stan-
dalone component, it does not work. No pooling is used. We used strides and transposed
convolutions instead (they must be symmetric in the decoder path, that is, have an un-
even kernel size).

2.3.1 Basic parameters

In order to tune the training hyperparameters such as learning rate, learning rate
decay, and normalization, these hyperparameters need be evaluated using the baseline
architecture. The learning rate is a tuning parameter of the optimizer function that de-
termines the step size that the optimizer takes at each iteration while moving toward a

–8–

manuscript submitted to Water Resources Research

(a) (b)

Figure 5. (a) Effect of different constant learning rates in terms of validation loss, (b) testing

models based on validation loss with and without learning rate decay (variable amounts of train-

ing data).

loss function minimum and to update a neural network’s weights using a gradient com-
puted from one data mini-batch. Fig. 5(a) shows the validation loss using different learn-
ing rates. As can be seen, it is clear that the lowest and largest learning rates overshoot
and have difficulty converging, considering our problem, we have the best learning rate
with a learning rate of 10−2, and 10−3.

With gradient-based optimization algorithms, saddle points can be escaped, and
training takes longer time since surface around such points are flatter and gradients close
to zero (Goodfellow et al., 2016). Therefore, rather than using a fixed value for learn-
ing rate, it could be decreased over time. If training no longer improves our loss, the learn-
ing rate is changed, every iteration being based on some cyclic function f . The number
of iterations in each cycle is fixed. By using this method, the learning rate is allowed to
vary cyclically between reasonable boundaries. We can traverse saddle point plateaus
more quickly when we increase our learning rate, since we are less likely to get stuck in
undesirable states like saddle points. We have performed a test: in it the learning rate
decays by a gamma factor in every epoch that is set to be 0.99 i.e., lrepoch = γ×lrepoch−1.
Fig. 5(b) shows based on this strategy. We found out that the learning rate decay does
not help the improvement of the model based on validation loss comparison while it helps
decrease diversity around the mean value. By decreasing the learning rate with a γ =
0.99 in each iteration during training - since it reduces the variance in performance -,
it helps stabilize results, but it does not reduce validation loss. The influence is mini-
mal, if other parameters are chosen appropriately.

Based on Fig. 5(a) and Fig. 5(b) tests, we used Adam optimizer with a fixed learn-
ing rate of 0.001 and betas=[0.5, 0.999] for the rest of the training optimizations. In ad-
dition to a nonlinear activation function, each of the network section contains a convo-
lutional layer and a batch normalization one. In the model, we included the possibility
of normalizing batches. During training, it shifts and rescales according to the mean and
variance estimated on the batch. The literature has proven that batch normalization makes
the training process smoother. However, it requires a sufficiently large batch size, and
our choice of batch size = 100 may be too restrictive. We did not use any pooling for
the process.

2.3.2 Regularization and hyperparameters

Regularization is an essential subject for deep learning algorithms because it in-
hibits overfitting, that is, the model learns unnecessary details, noises or random fluc-
tuations in the training data as main concepts, insofar as it negatively impacts the model’s

–9–

manuscript submitted to Water Resources Research

0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Dropout

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Te
st
 e
rr
or

(a) (b)

Figure 6. (a) Dropout rates of a model with 142,689 weights are compared applied to all the

training data samples, (b) training and validation performance on the weight decay factor.

performance. Dropout, weight decay, data augmentation, weight initialization, and early
stopping are the most often used regularization techniques. The choice of initialization
is highly influential on most algorithms when training deep models. Algorithm converge-
ability can be determined by the initial point, with some initial points being so unsta-
ble that numerical difficulties arise and the algorithm fails. The weight initialization of
a neural network consists of setting its weights at small random values, which determine
the starting point of the optimization when learning or training. In order to prevent layer
activation outputs from exploding or vanishing gradients during training, an appropri-
ate initialization of the weights is necessary and manages to achieve better performance.
Here are the most widely used, among others: the He normalization (He et al., 2015) and
Xavier normalization (Glorot & Bengio, 2010), when dealing with convolutional layers.
We experimented with both initializations for our networks and the former seems to lead
to slightly better performances than the latter. We therefore sticked to that one. Based
on the He initialization method, initialization is based on a randomly generated num-
ber computed with a Gaussian probability distribution with a mean of zero and a stan-
dard deviation of

√
2/n, where n stands for the number of inputs to the node. We can

go one step further by adding mechanisms specifically designed to facilitate the train-
ing such as Dropout (Srivastava et al., 2014). Dropout consists of randomly dropping
out neurons in a layer, with a probability that corresponds to the dropout coefficient.
We implemented the possibility to include it in the model. Here is this technique’s main
advantage: it prevents overfitting as the neurons of a layer become less dependent on par-
ticular inputs. Dropout is not recommended in our work. In Fig. 6(a), the influence of
the Dropout is studied, which has a negative effect on the test error. Therefore, the Dropout
is not recommended for this study and it is considered as zero for the rest of the train-
ing. This might be the reason: dropout is usually unnecessary when the network is small
compared to the dataset. By adding this regularization, it will worsen performance if the
model capacity is already low.

On the other hand, using data augmentation to increase the amount of data is dif-
ficult in a physical application such as this work because, for a given input configura-
tion, each solution is unique. Therefore, we did not use any data augmentation meth-
ods in this work. In order to further improve the models’ performance, we can also use
the weight decay method. As this study is centered on convolutional neural networks,
which are inherently less prone to overfitting than fully connected neural networks, the
weight decay strategy is especially important for them. This approach consists in adding
a penalty to the model based on the amplitude of its weights, in order to limit overfit-
ting. The model will all the more be penalized as the values of the network connections
increase. This strategy is based on the principle that large weights in a neural network
can cause more variance at output and prevent the model from generalizing correctly.

–10–

manuscript submitted to Water Resources Research

(a) (b)

Figure 7. (a) Validation loss (L1) for models with different sizes and quantities of training

data, (b) influence of different model sizes and amounts of training data on testing accuracy rela-

tive error.

The penalty forces weights down, and permits to obtain a less flexible network that is
less specialized in the data used for training. This penalty is defined as follows Lweight decay =
λ
∑

i ω
2
i where Lweight decay is the penalty associated with weight decay, ωi is the i−th

weight in the network and λ is a positive coefficient that affects the importance of the
penalty. This parameter is yet to be determined, so we carry out training with several
values of λ as presented in Fig. 6(b) in which the validation and training loss are plot-
ted as a function of the weight decay factor. Losses for the weight decay factor larger
than 10−4 start to increase while the losses for the lower weight decay reach a plateau.
The training time using different weight decay factor does not change dramatically, there-
fore the best weight decay could be chosen by just paying attention to the losses in which
10−6 is the best for the rest of the training.

3 Results and performance

3.1 Model performance

The network in this work consists of a series of convolutional blocks and is fully
convolutional with 12 layers. All blocks structures are similar: activation, convolution,
and batch normalization. An upsampling followed by a convolution rather than a trans-
pose typical convolution is used instead. Convolutional blocks in Appendix A is param-
eterized by channel factor, kernel size, stride, and padding. In the following training runs,
the number of feature maps in the U-net convolutional layers are scaled from 250 to 5742
samples. The total amount of weights is modified by varying the number of feature maps.
With a ×2 increase in input channels, overall weights will quadruple as a result (there
is a linear change in biases), because K = Cin × Cout where K be the size of the ker-
nel tensor, Cin be the number of input channels, and Cout be the number of output chan-
nels. Fig. 7 displays the accuracy results for five distinct network sizes. An ”EXPO” vari-
able is defined in order to control the exponent for feature maps in the neural network
model. The size of a network can be scaled directly by this parameter. For example, 3
gives a network with 9.2k parameters. It is relatively small for a generative neural net-
work with 1 × 64 × 256 = 16k outputs, but it allows for faster training time and pre-
vents overfitting in view of the relatively small dataset we are working with. There are
142689 trainable parameters in this network, with an exponent of 3. This is a crucial num-
ber to keep in mind when training neural networks. It is easy to change and increase the
EXPO parameter, and end up with a network with millions of parameters, then it is highly
probable we will be faced with all kinds of convergence and overfitting issues. To avoid
the dimensionality curse, the number of parameters must match the amount of train-

–11–

manuscript submitted to Water Resources Research

0 100 200 300 400 500 600
Epochs

0

2

4

6

8

L1
 L
os

s

Training loss
Validation loss

(a)

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
prediction error L1 norm

0

10

20

30

40

50

60

co
un

t

50th Percentile

95th Percentile

(b)

Figure 8. (a) Training and validation losses for learning rate 0.001, (b) histogram plot of the

L1 norms of prediction errors (460 test cases).

ing data, as well as scale with the network’s depth. The exact relationship between these
three depends on the problem under consideration.

In Fig. 7(a), different models perform differently for 1149 velocity fields from the
test dataset that were not seen during training. Using the same distribution used for gen-
erating training data, velocity fields were randomly sampled. By using these data, we
can determine the generalization capacity of the trained models, when applied to new
velocity fields. A mean relative error is shown in this graph instead of the L1 loss func-
tion which have been used for the validation data (relative errors and L1 loss behavior
are similar here). Relative error is calculated using errr = 1/n

∑
|ŷb − yb|/yb, with n

representing the number of samples, yb referring to the function in question, i.e., bed el-
evation, and ŷb represents the estimation of bed elevation, calculated based on the neu-
ral network model. For evaluating the models, we found the average relative error to be
a good metric, since it accounts for all outputs and directly indicates the inferred solu-
tions accuracy. Besides, it provides an indication on the estimated solutions relative ac-
curacy, whereas the L1 metric represents an estimate of averaged differences. Therefore,
both metrics are crucial to assess how accurate the trained models are overall.

Curves in Fig. 7(b) show the relative errors for various model sizes and training dataset
size. There is a small difference between the different model sizes for a specific number
of training samples, but the fall-off in error for larger amounts of training data appears
to be similar. We can see that using the largest number of training dataset size i.e., 4311
sample data, the difference between test errors for models with the smallest and largest
amount of training parameters is 0.2 and 0.005, respectively. This leads to a 2.6% rel-
ative error on average for the latter network. Fig. 8(a) shows the neural network is trained
well without overfitting. After 600 epochs, the validation and training losses should have
decreased from an initial value of around 8.9 to 0.02 based on the standard settings. Long-
term trends in the training can be identified by doing this. It can be difficult to deter-
mine if the overall trend of noisy numbers (the losses) in a command line log is going up
or down, but this can be seen in the visualization shown in Fig. 8(a). It is visually easy
to see the loss curves trend down for 100 epochs and, afterwards, the curve flattens out.
As we move towards the end by increasing the number of epochs, the validation loss is
still decreasing slowly, and most importantly, it is not increasing. A divergent validation
loss from the training loss would indicate overfitting, something we should avoid. The
graph illustrates the models do not exhibit overfitting over time and reach to stable lev-
els of validation and training losses.

–12–

manuscript submitted to Water Resources Research

Figure 9. Qualitative result of the U-net: the first row is the bed topography fields from the

test dataset (ground truth). The second row are the images that are predicted by the U-net. The

third row are the error images (ground truth - prediction).

To study the neural network model performances, in which we have tuned the pa-
rameters in the previous sections on a larger number of training and validation datasets,
we perform an error measurement for all the test dataset. Fig. 8(b) shows the distribu-
tion of L1 error. The 50th and 95th percentile are -0.041, and 0.058 with a mean, and
maximum error of -0.045 and 0.32, respectively. Most examples lie close to zero and the
maximum error is 3.2 mm while the bed topography changes in an interval of 18.19 to
37.02 cm, meaning in a 18.83 cm range. In Fig. 7(b), it has been shown that the best
model has a 0.5% relative error which means the model is well trained and provides ac-
curate predictions.

3.2 Model’s predictions

Following the establishment of a stable training setup in the preceding section, the
best trained network’s prediction capability may now be investigated further. We explored
how the size of the training dataset affects accuracy for the validation dataset, and gen-
eralization accuracy for the test dataset, using a database with 5742 input data and tar-
get solutions developed as mentioned in the previous sections. Additionally, we deter-
mined how accuracy varies with the number of weights utilized in the model (degrees
of freedom in a neural network). Afterwards, by selecting the best model, namely, hav-
ing 1.4 k parameters and with no dropout, learning rate of 10−3, and choosing 10−6 as
the weight decay factor, and using the whole dataset, i.e., 4133 data points for the train-
ing, the final neural network is established and used for studying accuracy and perfor-
mance on different case scenarios.

3.2.1 Model’s predictions based on experiments

A part of the dataset (460 data points) is kept for testing the neural network model’s
prediction power. The velocity fields in the test dataset feed into the neural network and
the prediction is examined by comparing with the ground truth (experiments). The ac-
curacy of the model is shown in Fig. 9 so that each column represents one of the bathymetry
in the test dataset. The first row is the ground truth of the bed topography and the sec-

–13–

manuscript submitted to Water Resources Research

Figure 10. Each column belongs to one experiment. The first row is the profile of the bed to-

pography along the channel length at z = 5 cm from the down wall, the second row is the profile

at z = 30 cm, and the last row is the bed topography at z = 55 cm. Ground truth is shown by

red and prediction by black color.

ond row shows the predicted bathymetry, using the neural network model. The differ-
ence between aforementioned topography fields (ground truth - prediction) are presented
in the third row. The mean error among all the test dataset is 0.45 cm, while the topog-
raphy varies in a range of 18.8 cm.

To quantify the model’s prediction further, the topography over a longitudinal axis
along the flow direction is compared in Fig. 10 with the neural network model’s predic-
tions. The first to third columns in Fig. 10 belong to the first to third columns in Fig. 9,
respectively. The longitudinal axes are located in z = 5, 30, and 55 cm from the down
side wall. The black and red solid lines represent the prediction and the ground truth
(experimental data), respectively. As can be seen, the curves variations are finely repro-
duced and values coincide very well. This allows to conclude that hyperparameters re-
lated to the training and the architecture of the neural network model are chosen prop-
erly and provide sufficient accuracy. In addition to the validation of the model based on
the test dataset, the numerical simulation performed and field data measurements are
used to compare with the model’s prediction in the next subsections.

3.2.2 Model’s predictions based on numerical simulation

In subsection 3.2.1, the model is applied to the test dataset coming from experi-
ments conducted at LHE-EPFL, and the model provided accurate predictions. Since the
model is trained on the same dataset (the training part of dataset), therefore the model
prediction using the test dataset in the previous subsection just shows us the model is
well trained and that, if someone applied the model to gravel-bed laboratory channel,
they can get very accurate results. An important question would be about the model’s
accuracy on the other applications. In order to further study the model’s prediction power,

–14–

manuscript submitted to Water Resources Research

Figure 11. Up: Bed topography based on simulation using Iber, down: bathymetry compari-

son of the Iber and neural network model. The red line is the Iber topography for a cross section

at x = 1.0 m (down-left), and x = 5.5 m (down-right) and the black line represent the neural

network model’s prediction.

the model will be compared with the simulation performed based on Iber (Bladé et al.,
2014).

A gravel-bed flume is simulated based on Iber. A flume with a Q = 15 L/s flow
discharge, 1% slope, 10 m length and 0.5 m width, using a structured mesh grid with
100 elements in the flow direction and with 10 elements in the transversal direction has
been simulated with final time of tf = 7200 minutes. The particle diameter considers
7 mm in addition of using Manning coefficient of 0.025, and choosing Meyer-Peter and
Müller (MPM) as the bedload model on the software. The inlet boundary condition is
set to constant flow discharge and an open boundary condition for the output has been
chosen. Afterwards, the velocity field and the topography at the end of simulation time
i.e., t = 7200 minutes are extracted from Iber. The trained neural network model has
been applied to the depth-averaged velocity field extracted from Iber and the topogra-
phy prediction from the neural network model has been compared with the topography
of Iber.

Top plot in Fig. 11 is the channel bathymetry based on numerical simulation and
down plots are a comparison of the neural network prediction versus the bed profile based
on Iber on a cross section at x = 1.0 m (left plot), and x = 5.5 m (right plot). Fig. 11
shows the neural network model’s accurate prediction in comparison with the ground truth
(bathymetry from Iber), in which prediction has a 25% maximum relative error. The mean
absolute error in cross section x = 1.0 m is 0.75 cm, while at the cross section x = 5.5
m is 0.14 cm. However, gaining such mean absolute error is small in comparison of the
range in which bathymetry changes. This validation shows that, as long as the flow sat-
isfies the mass and momentum conservation laws, the trained model is robust and ac-
curate to predict bathymetry. Despite finding out about the neural network model per-
formance in laboratory experiments, and simulation, inquiring about model performance
on the field data is a natural question and an intriguing subject to examine, which will
be answered in the next part.

–15–

manuscript submitted to Water Resources Research

Figure 12. (left) Overview of the study site in east-central Illinois state, USA; confluence of

the Kaskaskia River with the Copper Slough. The arrows show flow direction. The red lines rep-

resent the cross-sections where these measurements have been conducted. (right) comparison of

the neural network prediction vs the field data measurements. The red and black lines represent

the field measurements and neural network model prediction, respectively.

3.2.3 Model’s predictions based on field data

Predicting the trained neural network model on the field data would be interest-
ing to investigate. Thus, we performed model predictions on a river located in east cen-
tral Illinois state in the United States of America (USA). Lewis and Rhoads (2018)’s work
on confluence stream provides the velocity measurements using the acoustic Doppler ve-
locimeter (ADV - Nortek Vectrino+) in addition to bed topography for several cross sec-
tions. Experiments were conducted at the confluence of the Kaskaskia River and Cop-
per Slough (KRCS), positioned at 40°04’34.1”N, 88°20’53.9”W, as can be seen in Fig. 12.
The width is about 20 meters at the confluence center and approximately 10 m down-
stream. ADVs mounted on a topset wading rod and placed at predetermined cross sec-
tions within the flow were used to determine the vertical velocity field. Three cross sec-
tions, namely, A, C, and E (see Fig. 12) are used for the purpose of bathymetry infer-
ence based on our neural network model. Sample volumes for ADV are 0.125 cm3 and
sampling frequency is 25 Hz, configured in laboratory mode. ADV sampling was carried
out with a downward-looking probe 6 cm below the surface, to position the sampling vol-
ume as close to the surface as possible. 60−80 samples 60 s in length are collected at
three cross-sections during one measurement campaign. Cross-sectional ADV measure-
ments were obtained the same day. All field campaigns resulted in only a few centime-
ters change in water surface elevation between the beginning and the end of the mea-
surements, far less than the average flow depth. Cross-sectional velocity fields are fed
into the neural network model. In order to use the trained model on the real-world river,
having prior knowledge is necessary, namely knowing the river’s maximum depth. The
bathymetry prediction for the aforementioned cross-sections based on the neural network
model are compared with the field data in Fig. 12’s right-hand side. The ground truth
(field data) is shown in red solid line while the prediction of the trained neural network
model has been shown in black color.

–16–

manuscript submitted to Water Resources Research

The predictions’ absolute errors in comparison with the measurements in cross sec-
tion A, C, and E are 16.11, 15.23, and 7.75 cm, respectively and maximum relative er-
rors are 26.31%, 24.39%, and 15.18%, respectively. However, the maximum relative er-
ror and the absolute error is still small compared to the approximately 100 cm depth of
the river, while these errors could be decreased by adding a part of the field data to the
training dataset, enhancing the number of training data, or using a more complicated
model with more layers and training parameters.

4 Discussion

This work is concerned with imaging topography from the depth-averaged veloc-
ity field, which can be obtained more easily with a lower cost-rate than the bed topog-
raphy direct measurement. The network connects velocity field and bathymetry. How
the error in Fig. 8(b) can further be reduced, however, is naturally an important ques-
tion. According to our tests, refer to Fig. 7(a), and Fig. 7(b), this requires a substan-
tial increase in training datasets, and more complicated convolutional neural network
models such as increasing the number of feature extractions. As Fig. 7 shows, merely
increasing the size of the model and training data will not result in increments in accu-
racy. Therefore, different approaches and network architectures need be investigated. As-
sessing the model’s systematic errors is a crucial aspect of the investigation. To this end,
Fig. 9 presents a subset of inferred results obtained using the 1.4 k model trained on 4133
data samples. This investigation’s purpose is to explore the extent to which model er-
rors are systematic. The bottom row of Fig. 9 shows the magnitudes of the model’s er-
rors applied to flume experiments. In any one of these cases, the model is not completely
off the error. The error distribution on the test dataset plotted in Fig. 8(b), while the
mean value is very close to zero, i.e., the model is well-trained and the hyperparameters
have been chosen properly.

The trained convolutional neural network model used the depth-averaged veloc-
ity fields, while field scientists usually measure surface velocities, for instance, by using
particle image velocimetry method. Therefore, it was worth asking how much the error
propagates when a field scientist feeds the surface velocity fields into the trained model
in this work. The experiments (which we have used in this work to train the neural net-
work) have been performed in a straight channel (no cross-stream secondary current),
near steady state, with weak sediment transport. In these conditions, the velocity pro-
file has been obtained by Song et al. (1994). Fig. 13 shows the flow velocity profile for
uniform flow at various bed slope 0.25 < S(%) < 1.5, and discharge 30 < Q(L/s) <
130 measured by Acoustic Doppler current profilers (ADVP). The log-law for the inner
region (y/h < 0.2) is presented in red solid line and the Coles wake law could repre-
sent the velocity profile in the outer region (y/h > 0.2) in a blue solid line, and the black
solid line is the averaged mean velocity. As one can see, by increasing the flow depth,
the mean velocity deviates from the velocity profile, and the maximum relative error hap-
pens on the surface flow, with a 16.8% magnitude.

In order to know how this error was propagated in the model prediction, we have
applied the trained convolutional neural network model to the field data and gained a
26.31% maximum relative error. Therefore, however, the training of the neural network
model is based on depth-averaged velocity fields but it is possible to use surface veloc-
ity to infer bathymetry while accepting a relative error in the order of a couple dozen
percentage.

Another concern about this work was about the amount of data needed to suffice
for training the neural network. A test on the dataset size in Fig. 5(b) shows that 4133
data points was enough for this work’s purpose, since the error does not significantly de-
crease after a 2500 dataset size. However, having 26.31% maximum relative error when
the model applied to real rivers is good enough for real-world applications, however fur-

–17–

manuscript submitted to Water Resources Research

6 8 10 12 14 16 18 20

0

1

2

3

4

u /u*

y
(c

m
) 1

κ
log [

y+y0

ks
]+Br

1

κ
log [

y+y0

ks
]+Br+ 2 Π

κ
(sin[

π (y+y0)

2 (δ+y0)
])2

Mean value

Figure 13. The red solid line represents the log-law velocity profile in the inner region

(y/h < 0.2) where ū is the point velocity averaged for different experiments, u∗ is the shear ve-

locity, y is distance from the top of the sediments, y0 = 0.2ks is viscous sublayer, ks is roughness

height which is equal to d50, Br=8.44 is integration constant. The Blue solid line is the velocity

profile in the outer region (y/h > 0.2) where κ is Von Karman’s constant, Π = 0.108 is the

wake strength parameter, and δ is the distance between the bed and the point where maximum

velocity occurs, here it is equal to h.

ther accuracy is possible using a more complicated model (then training time increases
and needs more datapoints in order to avoid overfitting) but whether it is necessary or
not depends on application of the model. The proposed neural network model trained
on 4133 experimental dataset applied to the flume experiments in Fig. 10 and Fig. 9, on
the numerical simulation in Fig. 11, and field measurements on a river in Illinois state,
USA in Fig. 12 and all the comparison, show an accurate prediction of the model, mean-
ing that the model is trained properly and can be used for academic/industrial appli-
cations.

5 Conclusion

We applied the U-net with alternating convolutional layers to encode images, fol-
lowed by alternating convolutional and upsampling layers to decode them and a final con-
volutional layer with Leaky Relu activation to the velocity field (which was here estimated
using a statistical method), and bed topography (measured experimentally). The model
contains skip connections, which improves training efficiency. This network has a skip-
ping layer, which allows the decoding part of the network to have additional informa-
tion about the encoding without losing any information. The final neural network has
been established according to the tests performed in order to find out the best param-
eters, 1400 trainable parameters with no dropout, learning rate of 10−3, and choosing
10−6 as the weight decay factor, and using the whole dataset i.e., 4133 data points for
the training. The network is summarized in Table. A1.

The trained model does not require solving the shallow water equations numeri-
cally. It constructs the solution (bathymetry) by just looking at the input data (veloc-
ity fields). Overall, after studying the basic and hyperparameters, and training a neu-
ral network model, we have found the best model yields a good accuracy (its less than
1% relative error for estimated bathymetry) when working on the test dataset (labora-
tory experiments), less than 20% maximum relative error when applying the model to
the numerical simulations (using Iber), and with a maximum 26.31% relative error by
applying the model to field data (confluence of Kaskaskia River with the Copper Slough).

–18–

manuscript submitted to Water Resources Research

This work shows the possibility of using the U-net architecture for predicting the
bathymetry from the velocity field and provides a user-friendly tool for whoever has the
velocity field and is interested in deducing the bed topography. The user of the model
does not need to train the model once again, and can download the trained model based
on the current work from the provided Github link and apply it to the velocity fields.
The user needs to be aware that this is not a general model for every kind of flume or
rivers. This work is based on gravel-bed flume/river and therefore the model provides
accurate bathymetry for gravel-bed rivers. The strength of the proposed model is that
it is trained on experimental data and the neural network model avoids solving the par-
tial differential equations that governs the flow and gives quick access to the bed topog-
raphy. The training code and best trained model based on the analysis presented here
can be found in Github.com/MehrdadKianiOsh/Deep-learning-bedtopo-vel.

Appendix A Model architecture

The neural network consists of a series of convolutional blocks and is fully convo-
lutional with 12 layers. A similar structure can be found in all blocks: activation, con-
volution, batch normalization, and dropout. An upsampling followed by a convolution
is used instead of transposing convolutions. Table A1 shows the structure of the U-network
used in all of our tests. The network weights were initialized following He et al. (2015).
After conducting some tests, we found out that dropout does not aid learning by the model,
so we do not use it. Instead, we utilize batch normalization. Training was done using
ADAM (Kingma & Ba, 2014) with β1 = 0.5, β2 = 0.999, and ϵ = 10−8 parameter
values. Learning rate was kept at a constant value during training. A 0.001 learning rate,
and a 100 minibatch size were used in all tests.

Appendix B Tsallis entropy-based method

Tsallis introduced generalization of Boltzmann-Gibbs-Shannon (known as Shan-
non) statistics (Tsallis, 1988). Compared to Shannon entropy-based concepts, the Tsal-
lis entropy-based concepts are either superior or comparable. According to the Tsallis
entropy theory, the 2D velocity equation is expressed as follows (Singh, 2016)

u

umax
=

2

G

[
G

y

h+D
exp

(
1− y

h+D

)
+

(4−G)2

16

]1/2
−

(
4−G

2G

)
(B1)

where the entropic parameter is denoted as G. Here, D = 0 (meaning that the maxi-
mum velocity happens on the surface flow) because the flume is considered wide w/h >
3.5, and on the other hand, Song’s experiments emphasizes this hypothesis (Song & Graf,
1996). The definition of G is

um

umax
=

12 +G

24
(B2)

The mean velocity in a cross section um is known based on reckoning the flow dis-
charge and the section area, while umax occurs at the deepest vertical flow depth and
is determined iteratively (by knowing that the maximum velocity happening on the flow
surface and assuming the maximum velocity in the first iteration and correcting the max-
imum velocity iterativaly by calculating the flow discharge and comparing with the ground-
truth).

Data Availability Statement

The dataset can be found at Kaggle.com/MehrdadKianiOsh/bedtopo vel fields,
and the python and best model at Github.com/MehrdadKianiOsh/Deep-learning-bedtopo-vel.

–19–

manuscript submitted to Water Resources Research

Table A1. Model summary.

Layer (type) Output Shape Function parameters

InputLayer [1, 256, 64]
Conv2-D-1 [16, 128, 32] channel factor=2, convolution 4×4, stride=2, pad=1
BatchNorm2-D-2 [16, 128, 32] channels×2
Dropout2-D-3 [16, 128, 32] dropout = 0, inplace=True
LeakyReLU-4 [16, 128, 32] negative slope=0.2, inplace=True
Conv2-D-5 [16, 64, 16] channel factor=2, convolution 4×4, stride=2, pad=1
BatchNorm2-D-6 [16, 64, 16] channels×2
Dropout2-D-7 [16, 64, 16] dropout = 0, inplace=True
LeakyReLU-8 [16, 64, 16] negative slope=0.2, inplace=True
Conv2-D-9 [32, 32, 8] channel factor=4, convolution 4×4, stride=2, pad=1
BatchNorm2-D-10 [32, 32, 8] channels×4
Dropout2-D-11 [32, 32, 8] dropout = 0, inplace=True
LeakyReLU-12 [32, 32, 8] negative slope=0.2, inplace=True
Conv2-D-13 [64, 16, 4] channel factor=8, convolution 4×4, stride=2, pad=1
BatchNorm2-D-14 [64, 16, 4] channels×8
Dropout2-D-15 [64, 16, 4] dropout = 0, inplace=True
LeakyReLU-16 [64, 16, 4] negative slope=0.2, inplace=True
Conv2-D-17 [64, 8, 2] channel factor=8, convolution 2×2, stride=2, pad=0
BatchNorm2-D-18 [64, 8, 2] channels×8
Dropout2-D-19 [64, 8, 2] dropout = 0, inplace=True
LeakyReLU-20 [64, 8, 2] negative slope=0.2, inplace=True
Conv2-D-21 [64, 4, 1] channel factor=8, convolution 2×2, stride=2, pad=0
BatchNorm2-D-22 [64, 4, 1] channels×8
Dropout2-D-23 [64, 4, 1] dropout = 0, inplace=True
LeakyReLU-24 [64, 4, 1] negative slope=0.2, inplace=True
Upsample-25 [64, 8, 2] scale factor=2, mode=’bilinear’
Conv2-D-26 [64, 8, 2] channel factor=8, convolution 2×2, stride=1, pad=0
BatchNorm2-D-27 [64, 8, 2] channels×8
Dropout2-D-28 [64, 8, 2] dropout = 0, inplace=True
ReLU-29 [64, 8, 2] inplace=True
Upsample-30 [128, 16, 4] scale factor=2, mode=’bilinear’
Conv2-D-31 [64, 16, 4] channel factor=8, convolution 2×2, stride=1, pad=0
BatchNorm2-D-32 [64, 16, 4] channels×8
Dropout2-D-33 [64, 16, 4] dropout = 0, inplace=True
ReLU-34 [64, 16, 4] inplace=True
Upsample-35 [128, 32, 8] scale factor=2, mode=’bilinear’
Conv2-D-36 [32, 32, 8] channel factor=4, convolution 3×3, stride=1, pad=1
BatchNorm2-D-37 [32, 32, 8] channels×4
Dropout2-D-38 [32, 32, 8] dropout = 0, inplace=True
ReLU-39 [32, 32, 8] inplace=True
Upsample-40 [64, 64, 16] scale factor=2, mode=’bilinear’
Conv2-D-41 [16, 64, 16] channel factor=2, convolution 3×3, stride=1, pad=1
BatchNorm2-D-42 [16, 64, 16] channels×2
Dropout2-D-43 [16, 64, 16] dropout = 0, inplace=True
ReLU-44 [16, 64, 16] inplace=True
Upsample-45 [32, 128, 32] scale factor=2, mode=’bilinear’
Conv2-D-46 [16, 128, 32] channel factor=2, convolution 3×3, stride=1, pad=1
BatchNorm2-D-47 [16, 128, 32] channels×2
Dropout2-D-48 [16, 128, 32] dropout = 0, inplace=True
ReLU-49 [16, 128, 32] inplace=True
Upsample-50 [32, 256, 64] scale factor=2, mode=’bilinear’
Conv2-D-51 [1, 256, 64] channel factor=1, convolution 3×3, stride=1, pad=1
Dropout2-D-52 [1, 256, 64] dropout = 0, inplace=True

Acknowledgments

This study was supported by Swiss National Science Foundation with a grant number:
200020 204108 / 1.

References

Biondi, F., Addabbo, P., Clemente, C., & Orlando, D. (2020). Measurements of
surface river doppler velocities with along-track insar using a single antenna.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing , 13 , 987–997.

Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E., . . .
Coll, A. (2014). Iber: herramienta de simulación numérica del flujo en ŕıos. Re-

–20–

manuscript submitted to Water Resources Research

vista internacional de métodos numéricos para cálculo y diseño en ingenieŕıa,
30 (1), 1–10.

Bradley, A. A., Kruger, A., Meselhe, E. A., & Muste, M. V. (2002). Flow measure-
ment in streams using video imagery. Water Resources Research, 38 (12), 51–
1.

Chiu, C.-L. (1987). Entropy and probability concepts in hydraulics. Journal of Hy-
draulic Engineering , 113 (5), 583–599.

Chiu, C.-L. (1988). Entropy and 2-d velocity distribution in open channels. Journal
of Hydraulic Engineering , 114 (7), 738–756.

Chiu, C.-L. (1989). Velocity distribution in open channel flow. Journal of Hydraulic
Engineering , 115 (5), 576–594.

Dhont, B. E. M. (2017). Sediment pulses in a gravel-bed flume with alternate bars
(Tech. Rep.). EPFL.

Durand, M., Andreadis, K. M., Alsdorf, D. E., Lettenmaier, D. P., Moller, D., &
Wilson, M. (2008). Estimation of bathymetric depth and slope from data
assimilation of swath altimetry into a hydrodynamic model. Geophysical Re-
search Letters, 35 (20).

Emery, L., Smith, R., McNeal, D., Hughes, B., Swick, L. W., & MacMahan, J.
(2010). Autonomous collection of river parameters using drifting buoys. In
Oceans 2010 mts/ieee seattle (pp. 1–7).

Ghorbanidehno, H., Lee, J., Farthing, M., Hesser, T., Darve, E. F., & Kitanidis,
P. K. (2021). Deep learning technique for fast inference of large-scale riverine
bathymetry. Advances in Water Resources, 147 , 103715.

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feed-
forward neural networks. In Proceedings of the thirteenth international confer-
ence on artificial intelligence and statistics (pp. 249–256).

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
(http://www.deeplearningbook.org)

Griffiths, G. A. (1993). Sediment translation waves in braided gravel-bed rivers.
Journal of Hydraulic Engineering , 119 (8), 924–937.

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification. In Proceedings of the
ieee international conference on computer vision (pp. 1026–1034).

Honnorat, M., Monnier, J., Rivière, N., Huot, É., & Le Dimet, F.-X. (2010). Iden-
tification of equivalent topography in an open channel flow using lagrangian
data assimilation. Computing and visualization in science, 13 (3), 111–119.

Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical review ,
106 (4), 620.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980 .

Landon, K. C., Wilson, G. W., Özkan-Haller, H. T., & MacMahan, J. H. (2014).
Bathymetry estimation using drifter-based velocity measurements on the
kootenai river, idaho. Journal of Atmospheric and Oceanic Technology , 31 (2),
503–514.

Lewis, Q. W., & Rhoads, B. L. (2015). Resolving two-dimensional flow structure in
rivers using large-scale particle image velocimetry: An example from a stream
confluence. Water Resources Research, 51 (10), 7977–7994.

Lewis, Q. W., & Rhoads, B. L. (2018). Lspiv measurements of two-dimensional flow
structure in streams using small unmanned aerial systems: 2. hydrodynamic
mapping at river confluences. Water Resources Research, 54 (10), 7981–7999.

Liu, X., Song, Y., & Shen, C. (2022). Bathymetry inversion using a deep-
learning-based surrogate for shallow water equations solvers. arXiv preprint
arXiv:2203.02821 .

Marcus, W. A. (2002). Mapping of stream microhabitats with high spatial resolution
hyperspectral imagery. Journal of geographical systems, 4 (1), 113–126.

–21–

manuscript submitted to Water Resources Research

Moramarco, T., Saltalippi, C., & Singh, V. P. (2004). Estimation of mean velocity in
natural channels based on chiu’s velocity distribution equation. Journal of Hy-
drologic Engineering , 9 (1), 42–50.

Puleo, J. A., McKenna, T. E., Holland, K. T., & Calantoni, J. (2012). Quantifying
riverine surface currents from time sequences of thermal infrared imagery. Wa-
ter Resources Research, 48 (1).

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for
biomedical image segmentation. In International conference on medical image
computing and computer-assisted intervention (pp. 234–241).

Singh, V. P. (2016). Introduction to tsallis entropy theory in water engineering. CRC
Press.

Singh, V. P., Yang, C. T., & Deng, Z. (2003). Downstream hydraulic geometry rela-
tions: 1. theoretical development. Water resources research, 39 (12).

Smith, J. D., & McLean, S. (1984). A model for flow in meandering streams. Water
Resources Research, 20 (9), 1301–1315.

Song, T., Graf, W., & Lemmin, U. (1994). Uniform flow in open channels with mov-
able gravel bed. Journal of Hydraulic Research, 32 (6), 861–876.

Song, T., & Graf, W. H. (1996). Velocity and turbulence distribution in unsteady
open-channel flows. Journal of Hydraulic Engineering , 122 (3), 141-154. doi: 10
.1061(asce)0733-9429(1996)122:3(141)

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R.
(2014). Dropout: a simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15 (1), 1929–1958.

Tsallis, C. (1988). Possible generalization of boltzmann-gibbs statistics. Journal of
statistical physics, 52 , 479–487.

Venditti, J., Nelson, P., Minear, J., Wooster, J., & Dietrich, W. (2012). Alternate
bar response to sediment supply termination. Journal of Geophysical Research:
Earth Surface, 117 (F2).

Wilson, G., & Özkan-Haller, H. T. (2012). Ensemble-based data assimilation for
estimation of river depths. Journal of Atmospheric and Oceanic Technology ,
29 (10), 1558–1568.

Wozencraft, J., & Millar, D. (2005). Airborne lidar and integrated technologies
for coastal mapping and nautical charting. Marine Technology Society Journal ,
39 (3).

Yu, S., & Ma, J. (2021). Deep learning for geophysics: Current and future trends.
Reviews of Geophysics, 59 (3), e2021RG000742.

–22–

