Fluid avalanches

Christophe Ancey

March 2014

Outline

Introduction

Newtonian fluids

Viscoplastic material

Concentrated particle suspension

- Context: the dam-break problem
- Laboratory insight: flow visualization
 - Newtonian flow
 - Viscoplastic material
 - Concentrated particle suspension
- Summary and references

- The dam-break problem
- Scientific issues
- Induced sediment transport
- Related phenomena
- Muddy debris flow
- Glide avalanches
- Laboratory avalanches

Newtonian fluids

Viscoplastic material

Concentrated particle suspension

Conclusions

The dam-break problem

In engineering, dam break: sudden release of water

Teton dambreak (Idaho, 1976)

Scientific issues

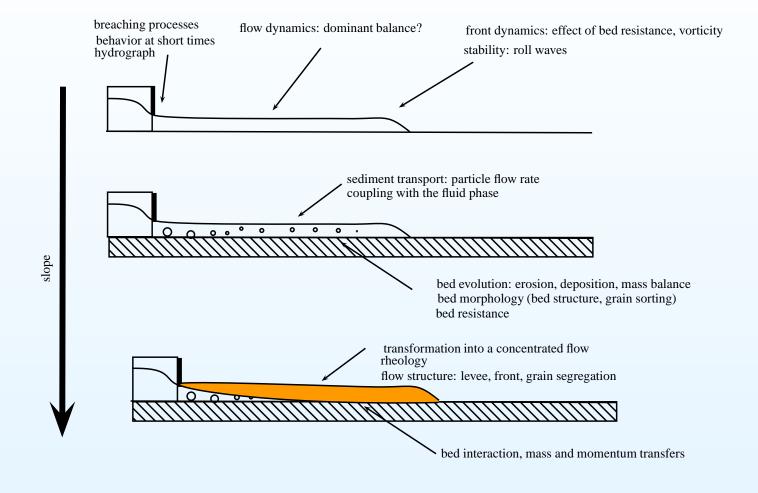
Introduction

- The dam-break problem
- Scientific issues
- Induced sediment transport
- Related phenomena
- Muddy debris flow
- Glide avalanches
- Laboratory avalanches

Newtonian fluids

Viscoplastic material

Concentrated particle suspension



Induced sediment transport

Introduction

- The dam-break problem
- Scientific issues
- Induced sediment transport
- Related phenomena
- Muddy debris flow
- Glide avalanches
- Laboratory avalanches

Newtonian fluids

Viscoplastic material

Concentrated particle suspension

Conclusions

Taum Sauk dam break (Missouri, Dec. 2005) intense erosion of the bed (down to the bed rock) and sediment transport

Related phenomena

Introduction

- The dam-break problem
- Scientific issues
- Induced sediment transport
- Related phenomena
- Muddy debris flow
- Glide avalanches
- Laboratory avalanches

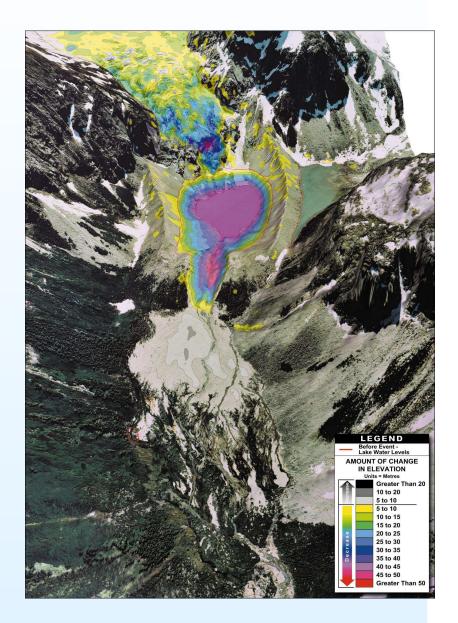
Newtonian fluids

Viscoplastic material

Concentrated particle suspension

Conclusions

Outburst flood: Lake Nostetuko (British Columbia, Canada) July 1983



Muddy debris flow

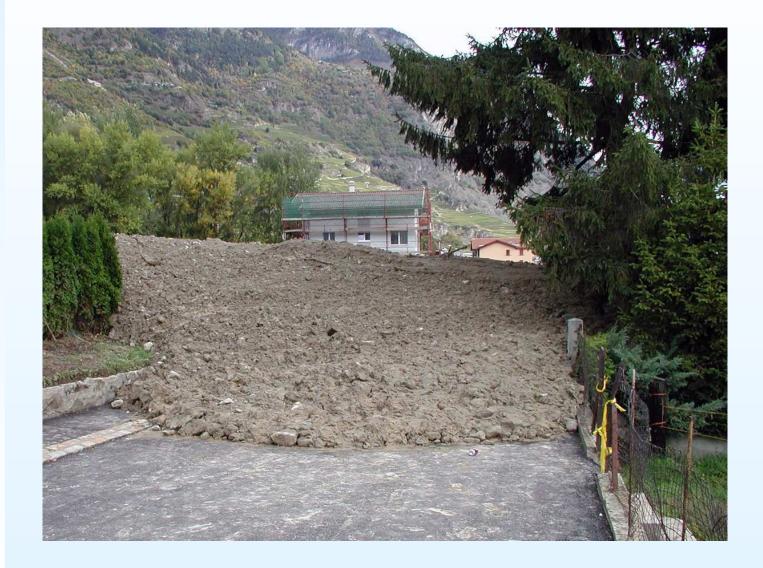
Introduction

- The dam-break problem
- Scientific issues
- Induced sediment transport
- Related phenomena
- Muddy debris flow
- Glide avalanches
- Laboratory avalanches

Newtonian fluids

Viscoplastic material

Concentrated particle suspension



Glide avalanches

Introduction

- The dam-break problem
- Scientific issues
- Induced sediment transport
- Related phenomena
- Muddy debris flow
- Glide avalanches
- Laboratory avalanches

Newtonian fluids

Viscoplastic material

Concentrated particle suspension

Laboratory avalanches

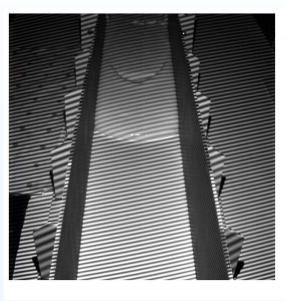
Introduction

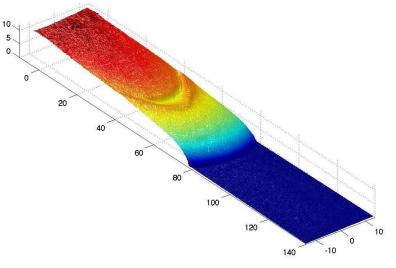
- The dam-break problem
- Scientific issues
- Induced sediment transport
- Related phenomena
- Muddy debris flow
- Glide avalanches
- Laboratory avalanches

Newtonian fluids

Viscoplastic material

Concentrated particle suspension





Newtonian fluids

- The dam-break problem
- Navier-Stokes equations
- Flow regimes
- Diffusive regime
- Diffusive regime at
- $t \ll 1$
- Diffusive regime at
- $t \gg 1$
- Comparison with experiments

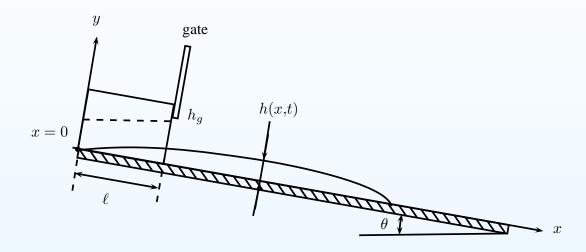
Viscoplastic material

Concentrated particle suspension

Conclusions

The dam-break problem

Release of a fixed volume of fluid



Questions:

- Front position over time $x_f(t)$?
- Flow depth profile h(x,t) ?
- Velocity profile within the flow (far from the sidewall) ?
- Further questions: stability, slip, influence of surface tension, etc.

Newtonian fluids

- The dam-break problem
- Navier-Stokes equations
- Flow regimes
- Diffusive regime
- Diffusive regime at
- $t \ll 1$
- Diffusive regime at
- $t \gg 1$
- Comparison with experiments

Viscoplastic material

Concentrated particle suspension

Conclusions

Navier-Stokes equations

Dimensionless form

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0,$$

$$\epsilon \operatorname{Re} \frac{\mathrm{d}u}{\mathrm{d}t} = \phi \cos \theta \left(\tan \theta - \epsilon \frac{\partial p}{\partial x} \right) + \epsilon^2 \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2},$$

$$\epsilon^2 \operatorname{Re} \frac{\mathrm{d}v}{\mathrm{d}t} = -\phi \cos \theta \left(1 + \frac{\partial p}{\partial y} \right) + \epsilon^3 \frac{\partial^2 v}{\partial x^2} + \epsilon \frac{\partial^2 v}{\partial y^2},$$

with $\phi=\rho g H_*^2/(\mu U_*)$ a dimensionless group and $\epsilon=H_*/L_*\ll 1$ the aspect ratio.

 $Ca=\mu U_*/\gamma\gg 1$ and $Re=\rho U_*H_*/\mu\ll 1$: capillary and Reynolds numbers.

 L_* and H_* selected so that $L_*H_*=\tilde{V}$, viz, $L_*=\sqrt{\tilde{V}/\epsilon}$ and $H_*=\sqrt{\epsilon\tilde{V}}$

Newtonian fluids

- The dam-break problem
- Navier-Stokes equations
- Flow regimes
- Diffusive regime
- Diffusive regime at
- $t \ll 1$
- Diffusive regime at
- $t \gg 1$
- Comparison with experiments

Viscoplastic material

Concentrated particle suspension

Conclusions

Flow regimes

Dominant balance:

- Diffusive regime. Balance between the pressure and shear stress gradients : $U_* = \rho g H_*^3/(3\mu L_*)$ and $\phi = 3/\epsilon$
- Advection diffusion regime. Balance between the body force and shear stress gradient + pressure gradient within the leading edge: $\epsilon = \tan \theta$, $U_* = \rho g H_*^2 \sin \theta/(3\mu)$, and $\phi = 3/\sin \theta$
- Steep slope regime. Increasing role of the body force: $\epsilon = \tan^2 \theta$, $U_* = \rho g H_*^2 \sin \theta / (3\mu)$, and $\phi = 3/\sin \theta$

Newtonian fluids

- The dam-break problem
- Navier-Stokes equations
- Flow regimes
- Diffusive regime
- Diffusive regime at
- $t \ll 1$
- Diffusive regime at
- $t \gg 1$
- Comparison with experiments

Viscoplastic material

Concentrated particle suspension

Conclusions

Diffusive regime

Diffusive regime observed for $Ca \to \infty$, Re = O(1), and $\theta \ll 1$. Dimensionless governing equation for $\theta > 0$

$$\frac{\partial h}{\partial t} + \frac{\partial h^3}{\partial x} = \frac{\partial}{\partial x} \left(h^3 \frac{\partial h}{\partial x} \right).$$

Dimensionless governing equation for $\theta = 0$

$$\frac{\partial h}{\partial t} = \frac{\partial}{\partial x} \left(h^3 \frac{\partial h}{\partial x} \right).$$

No analytical solution (available), but asymptotic solutions at short or long times t with the following change of variable

$$h(x,t) = t^{-n}H(\xi,t)$$

- short-time solution: n=1/5 (Nakaya, 1974; Huppert, 1982);
- long-time solution: n=1/3 (Huppert, 1982; Lister, 1982).

Newtonian fluids

- The dam-break problem
- Navier-Stokes equations
- Flow regimes
- Diffusive regime
- Diffusive regime at
- $t \ll 1$
- Diffusive regime at
- $t \gg 1$
- Comparison with experiments

Viscoplastic material

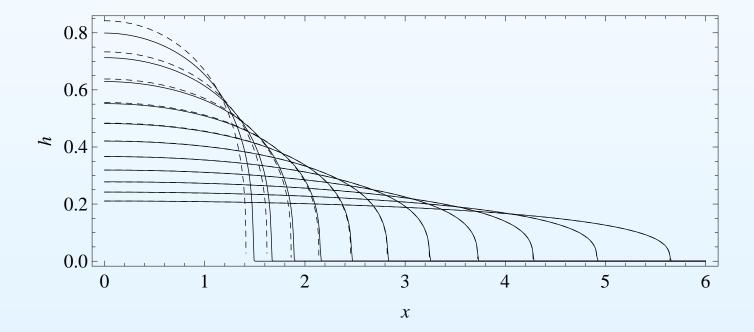
Concentrated particle suspension

Conclusions

Diffusive regime at $t \ll 1$

Huppert's (or Barrenblatt-Pattle's) solution

$$h(x,t) = t^{-1/5} \left(\frac{3}{10} (\xi_f^2 - \xi^2) \right)^{1/3} \text{ avec } \xi_f = V_0^{3/5} \left(\frac{\sqrt[3]{\frac{3}{10}} \sqrt{\pi} \Gamma\left(\frac{1}{3}\right)}{5\Gamma\left(\frac{5}{6}\right)} \right)^{1/3}$$



Comparison between the numerical solution and Huppert's self-similar solution at t=1, 2, 4, 8, 16, 32, 64, 128, 256, 512, and 1024

Newtonian fluids

- The dam-break problem
- Navier-Stokes equations
- Flow regimes
- Diffusive regime
- Diffusive regime at

 $t \ll 1$

• Diffusive regime at

 $t \gg 1$

 Comparison with experiments

Viscoplastic material

Concentrated particle suspension

Conclusions

Diffusive regime at $t\gg 1$

Huppert's solution (+ higher-order terms Ancey, JFM 2009)

$$h(x,t) = t^{-1/3} \left(\sqrt{\frac{1}{3} \frac{x}{t^{1/3}}} + K_0 \left((\xi_f - xt^{1/3}) t^{2/3} \right) - \sqrt{\frac{\xi_f}{3}} \right).$$

with the position of the front given by

$$x_f = \xi_f t^{1/3} + \left(\log 2 - \frac{1}{2}\right) \sqrt{\frac{\xi_f}{3}} t^{-1/3},$$

with

$$\xi_f = \left(\frac{3\sqrt{3}}{2}V\right)^{2/3}$$

This solution requires a boundary-layer treatment at the front as the diffusive effects (pressure gradient) prevail over the advection term.

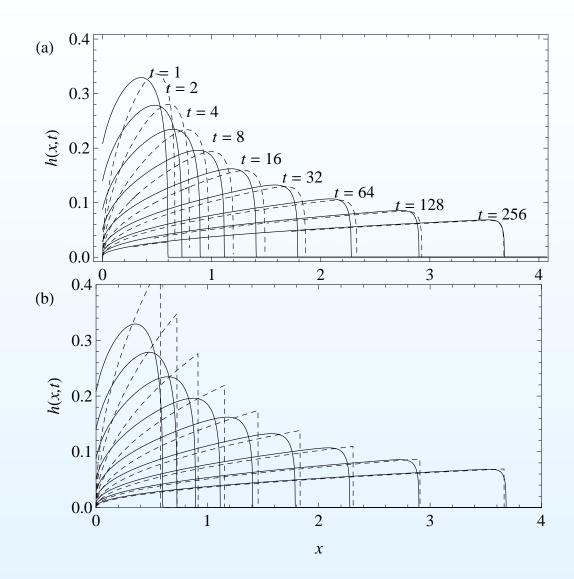
Newtonian fluids

- The dam-break problem
- Navier-Stokes equations
- Flow regimes
- Diffusive regime
- Diffusive regime at
- $t \ll 1$
- Diffusive regime at
- $t \gg 1$
- Comparison with experiments

Viscoplastic material

Concentrated particle suspension

Conclusions



Comparison of flow depth profiles: numerical solution (solid line) and asymptotic solution (dashed line), with diffusion included (a) or not (b), for slope $\theta=6^\circ$, at times t=1, 2, 4, 8, 16, 32, 64, 128, and 256.

Newtonian fluids

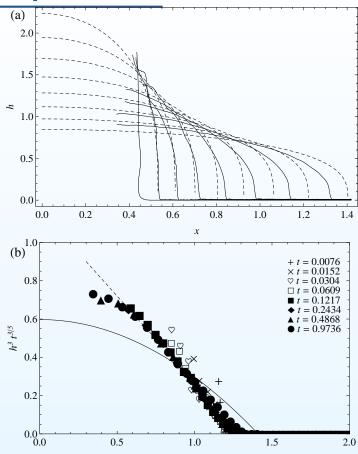
- The dam-break problem
- Navier-Stokes equations
- Flow regimes
- Diffusive regime
- Diffusive regime at
- $t \ll 1$
- Diffusive regime at
- $t \gg 1$
- Comparison with experiments

Viscoplastic material

Concentrated particle suspension

Conclusions

Comparison with experiments



Comparison of flow depth profiles for $\theta=0^\circ$. For (b), we show the self-similar solution and the experimental trend $(h/t^{-1/5})^3=\frac{9}{10}(1.3-\xi)$. Fluid: glucose ($\mu=345$ Pa s)

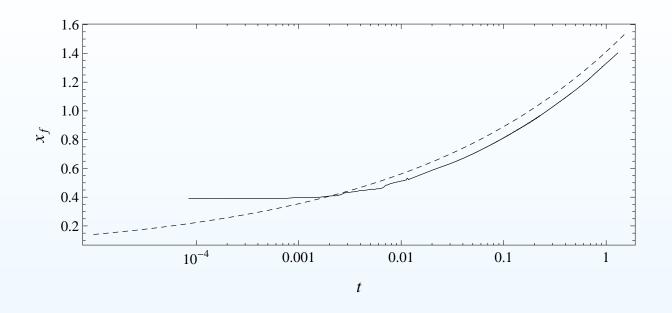
Newtonian fluids

- The dam-break problem
- Navier-Stokes equations
- Flow regimes
- Diffusive regime
- Diffusive regime at
- $t \ll 1$
- Diffusive regime at
- $t \gg 1$
- Comparison with experiments

Viscoplastic material

Concentrated particle suspension

Conclusions



Front position over time: experimental data (solid line) and theory (dashed line)

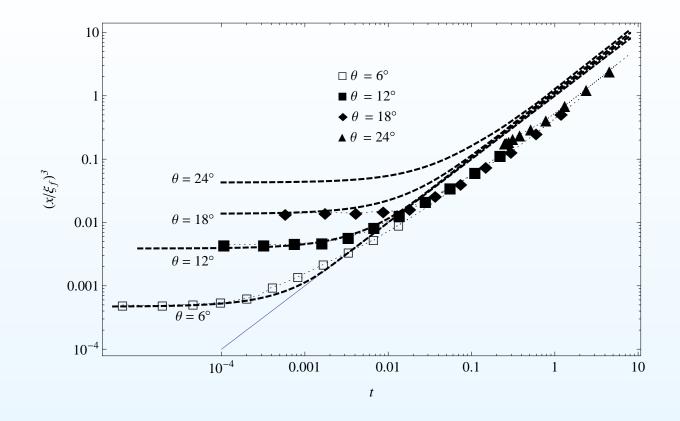
Newtonian fluids

- The dam-break problem
- Navier-Stokes equations
- Flow regimes
- Diffusive regime
- Diffusive regime at
- $t \ll 1$
- Diffusive regime at
- $t \gg 1$
- Comparison with experiments

Viscoplastic material

Concentrated particle suspension

Conclusions



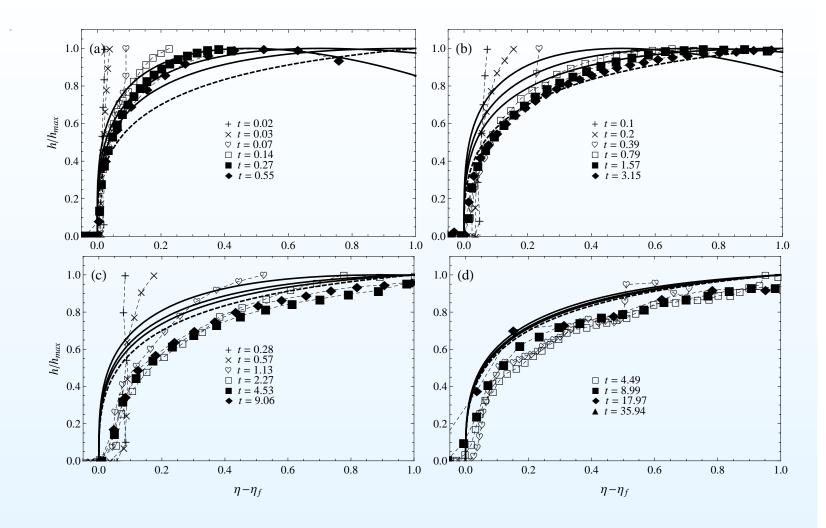
Front position over time for slopes ranging from 6° to 24°

Newtonian fluids

- The dam-break problem
- Navier-Stokes equations
- Flow regimes
- Diffusive regime
- Diffusive regime at
- $t \ll 1$
- Diffusive regime at
- $t \gg 1$
- Comparison with experiments

Viscoplastic material

Concentrated particle suspension



Flow depth profiles for slopes ranging from 6° to 24° and different slopes

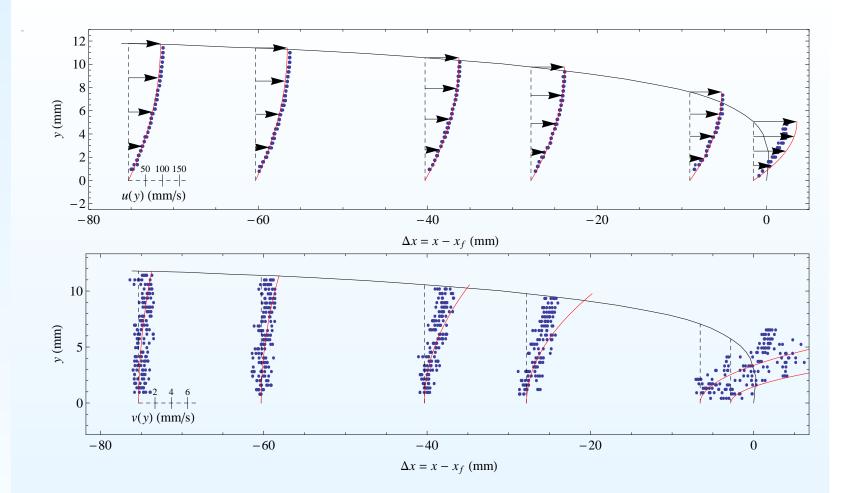
Newtonian fluids

- The dam-break problem
- Navier-Stokes equations
- Flow regimes
- Diffusive regime
- Diffusive regime at
- $t \ll 1$
- Diffusive regime at
- $t \gg 1$
- Comparison with experiments

Viscoplastic material

Concentrated particle suspension

Conclusions



Velocity profiles (u and v) in glycerol ($\mu=1.11$ Pa s) for a 6° slope

Newtonian fluids

Viscoplastic material

- Viscoplastic material
- Comparison with experiments
- Flow models
- Kinematic wave model
- Diffusive wave equation
- Saint-Venant model

Concentrated particle suspension

Conclusions

Viscoplastic material

Simple shear constitutive law

$$\mu \dot{\gamma}^n = \begin{cases} \tau - \tau_c & \text{for } \tau > \tau_c, \\ 0 & \text{for } \tau \le \tau_c, \end{cases}$$

Velocity profile for $y \leq Y_0$ or $y > Y_0$ (Liu & Mei, 1990)

$$u(x, y, t) = \begin{cases} \frac{n}{n+1} K \left(Y_0^{1+1/n} - (Y_0 - y)^{1+1/n} \right) \left(1 - \cot \theta \frac{\partial h}{\partial x} \right) \\ \frac{n}{n+1} K \left(1 - \cot \theta \frac{\partial h}{\partial x} \right) Y_0^{1+1/n}, \end{cases}$$

where $Y_0 = \max(0, h - \tau_c/(\rho g \cos\theta(\tan\theta - \partial_x h)))$ denotes the position of the yield surface and $K = \rho g \sin\theta/\mu$.

Newtonian fluids

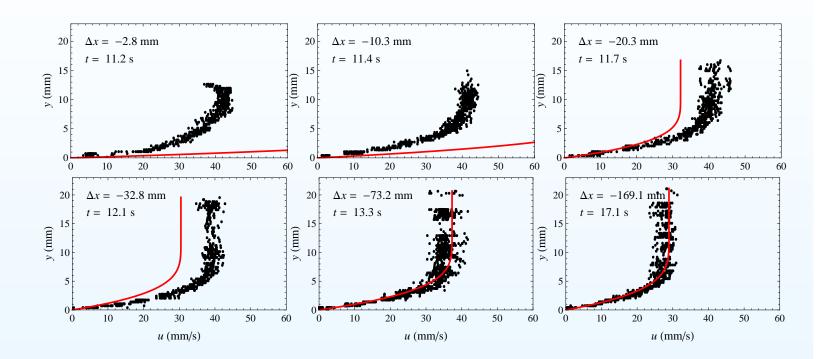
Viscoplastic material

- Viscoplastic material
- Comparison with experiments
- Flow models
- Kinematic wave model
- Diffusive wave equation
- Saint-Venant model

Concentrated particle suspension

Conclusions

Comparison with experiments



Comparison of the velocity profiles for $\theta=25^\circ$ at different distances Δx to the front. Fluid: Carbopol ultrez 10 ($\mu=26$ Pa s n , n=0.33, $\tau_c=33$ Pa)

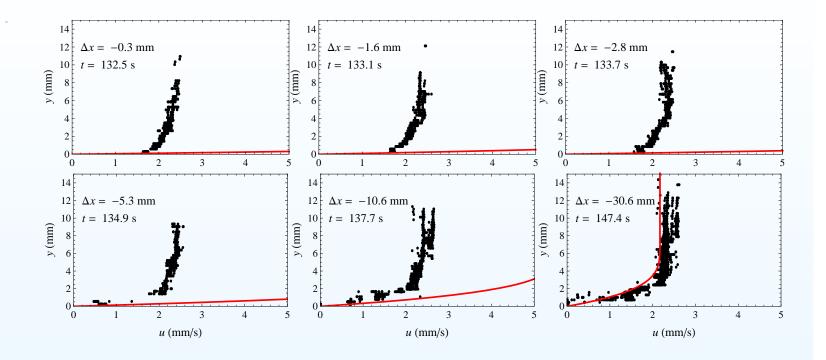
Newtonian fluids

Viscoplastic material

- Viscoplastic material
- Comparison with experiments
- Flow models
- Kinematic wave model
- Diffusive wave equation
- Saint-Venant model

Concentrated particle suspension

Conclusions



Comparison of the velocity profiles for $\theta=15^\circ$ at different distances to the front. Fluid: Carbopol ultrez 10 ($\mu=26$ Pa s n , n=0.33, $\tau_c=33$ Pa)

Newtonian fluids

Viscoplastic material

- Viscoplastic material
- Comparison with experiments
- Flow models
- Kinematic wave model
- Diffusive wave equation
- Saint-Venant model

Concentrated particle suspension

Conclusions

Flow models

Dimensionless depth-averaged equations (e.g. Craster & Mater, 2009)

$$\frac{\partial h}{\partial t} + \frac{\partial h\bar{u}}{\partial x} = 0,$$

$$\epsilon Re\left(\frac{\partial h\bar{u}}{\partial t} + \beta \frac{\partial h\bar{u}^2}{\partial x}\right) + \epsilon \cot\theta h \frac{\partial h}{\partial x} = h - \tau_b + \frac{\epsilon^3}{Ca} h \frac{\partial^3 h}{\partial x^3}.$$

Several simplifications developed:

- kinematic wave model (Huang & Garcia, 1994): balance between the driving and 'viscous' forces;
- diffusive wave model: balance between the driving and 'viscous' forces
 + pressure gradient;
- Saint-Venant model: in the limit of $Ca \to \infty$ and $\epsilon \ll 1$, with a closure equation for τ_b .

Newtonian fluids

Viscoplastic material

- Viscoplastic material
- Comparison with experiments
- Flow models
- Kinematic wave model
- Diffusive wave equation
- Saint-Venant model

Concentrated particle suspension

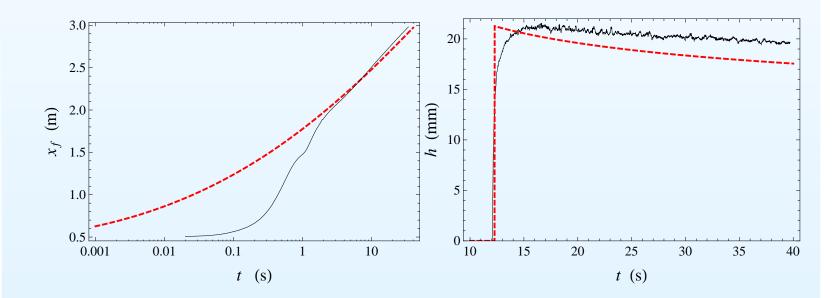
Conclusions

Kinematic wave model

A simple nonlinear advection equation (hyperbolic)

$$\frac{\partial h}{\partial t} + \frac{\partial h\bar{u}}{\partial x} = 0$$

Analytical solutions (using the method of characteristics) in an implicit form. For a 25° slope

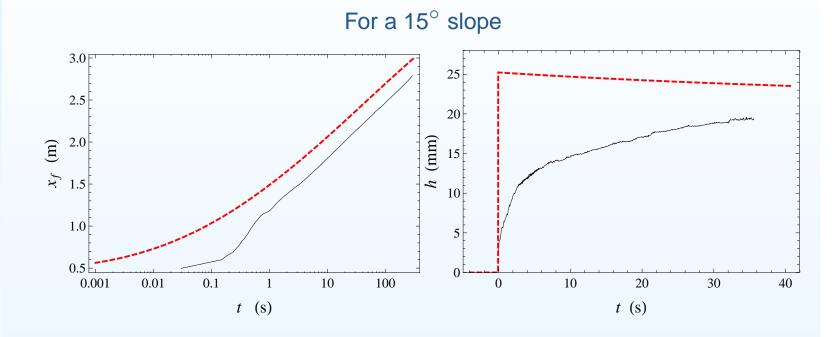


Newtonian fluids

Viscoplastic material

- Viscoplastic material
- Comparison with experiments
- Flow models
- Kinematic wave model
- Diffusive wave equation
- Saint-Venant model

Concentrated particle suspension



Newtonian fluids

Viscoplastic material

- Viscoplastic material
- Comparison with experiments
- Flow models
- Kinematic wave model
- Diffusive wave equation
- Saint-Venant model

Concentrated particle suspension

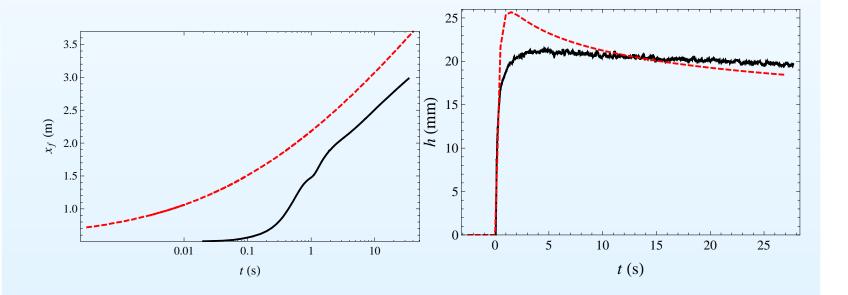
Conclusions

Diffusive wave equation

A nonlinear advection-diffusion equation (parabolic)

$$\frac{\partial h}{\partial t} + nK \frac{\partial}{\partial x} \left[\left(\tan \theta - \frac{\partial h}{\partial x} \right)^{1/n} \frac{h(1+n) + nh_c}{(n+1)(2n+1)} Y_0^{1+1/n} \right] = 0$$

No analytical solution. For a 25° slope

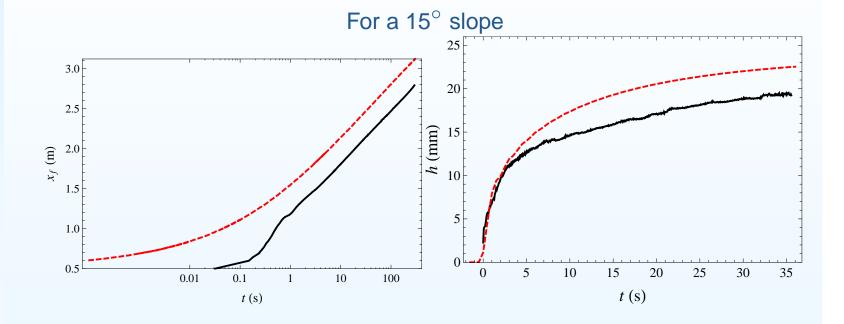


Newtonian fluids

Viscoplastic material

- Viscoplastic material
- Comparison with experiments
- Flow models
- Kinematic wave model
- Diffusive wave equation
- Saint-Venant model

Concentrated particle suspension



Newtonian fluids

Viscoplastic material

- Viscoplastic material
- Comparison with experiments
- Flow models
- Kinematic wave model
- Diffusive wave equation
- Saint-Venant model

Concentrated particle suspension

Conclusions

Saint-Venant model

Hyperbolic partial differential equations

$$\frac{\partial h}{\partial t} + \frac{\partial h \bar{u}}{\partial x} = 0,$$

$$\frac{\partial h \bar{u}}{\partial t} + \frac{\partial h \bar{u}^2}{\partial x} + gh \cos \theta \frac{\partial h}{\partial x} = gh \sin \theta - \frac{\tau_b}{\rho},$$

Coussot's closure equation:

$$\tau_b = \tau_c \left(1 + 1.93 G^{3/10} \right) \text{ with } G = \left(\frac{\mu}{\tau_c} \right)^3 \frac{\bar{u}}{h}$$

Newtonian fluids

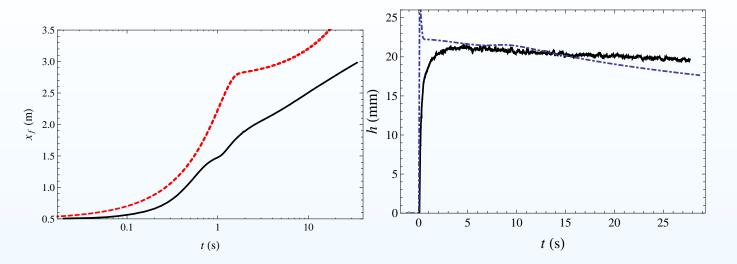
Viscoplastic material

- Viscoplastic material
- Comparison with experiments
- Flow models
- Kinematic wave model
- Diffusive wave equation
- Saint-Venant model

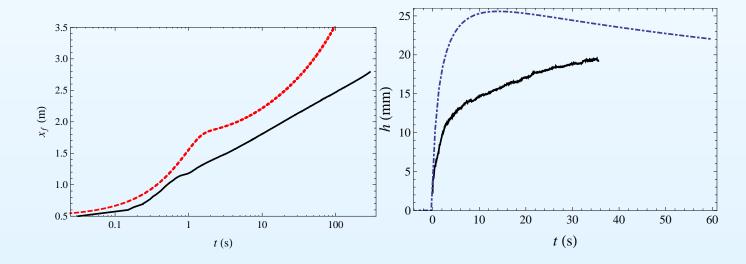
Concentrated particle suspension

Conclusions

For a 25° slope



For a 15° slope



Newtonian fluids

Viscoplastic material

Concentrated particle suspension

- Scientific issues
- Particle migration
- Shear-induced migration
- Solution for steady state uniform flows
- Solution for time-dependent flows
- Comparison with experiments
- Behaviour at the highest concentrations
- Stick-slip regime
- Experiments

Conclusions

Scientific issues

A density-matched suspension of particles within a Newtonian carrier fluid is assumed to be quasi-Newtonian:

effective viscosity given by empirical laws, e.g.,

$$\eta(\phi) = \frac{\mu(\phi)}{\mu_f} = \left(1 - \frac{\phi}{\phi_m}\right)^{-\beta}$$

 ϕ_m the maximum concentration and β a constant : $\beta=\frac{5}{2}\phi_m$ or $\beta=2$ (Krieger & Dougherty 1959)

• occurrence of normal stress effects (Zarraga et al. JOR, 2001; Boyer et al. JFM 2001; Couturier et al. JFM 2011)

Problem: particle migration occurs even for $\Delta \rho = 0$ (effect exacerbated when sedimentation or creaming occurs, depending on $\Delta \rho > 0$ or $\Delta \rho < 0$), so this results in a nonhomogeneous spatial distribution of the particles, thus viscosity.

Newtonian fluids

Viscoplastic material

Concentrated particle suspension

- Scientific issues
- Particle migration
- Shear-induced migration
- Solution for steady state uniform flows
- Solution for time-dependent flows
- Comparison with experiments
- Behaviour at the highest concentrations
- Stick-slip regime
- Experiments

Conclusions

Particle migration

Migration: stratification of particles as a result of shear. Two approaches:

Phenomenological model developed by Leighton & Acrivos (JFM 1987)

$$m{j} \propto -\phi^2
abla \dot{\gamma}$$
 avec $m{j} = \phi(m{u}^p - m{u})$

the particle flux relative to the bulk velocity

 Microstructural approach by Nott & Brady (JFM 1994) and Morris & Boulay (JOR 1999)

$$m{j} \propto -
abla \cdot m{\Sigma}^p$$

The theoretical underpinning is still disputed (Lhuillier PoF 2009; Nott et al. PoF 2011).

Respective merits subject of fierce debate... with no winner

Newtonian fluids

Viscoplastic material

Concentrated particle suspension

- Scientific issues
- Particle migration
- Shear-induced migration
- Solution for steady state uniform flows
- Solution for time-dependent flows
- Comparison with experiments
- Behaviour at the highest concentrations
- Stick-slip regime
- Experiments

Conclusions

Shear-induced migration

Phillips et al.'s model (PoF 1992) in a dimensionless form

$$\mathbf{j} = -\phi K_c \frac{\epsilon_a^2}{\epsilon} \nabla(\phi \dot{\gamma}) - K_\mu \dot{\gamma} \phi^2 \frac{\epsilon_a^2}{\epsilon} \frac{\mathrm{d} \ln \eta}{\mathrm{d} \phi} \nabla \phi,$$

Two processes at play:

- diffusion of particles resulting from the anisotropy in the probability of encounter between two particles,
- Fick-like diffusion

Nonlinear advection diffusion equation for ϕ

$$\frac{\partial \phi}{\partial t} + u \frac{\partial \phi}{\partial x} + v \frac{\partial \phi}{\partial y} = -\nabla \cdot \boldsymbol{j}.$$

Newtonian fluids

Viscoplastic material

Concentrated particle suspension

- Scientific issues
- Particle migration
- Shear-induced migration
- Solution for steady state uniform flows
- Solution for time-dependent flows
- Comparison with experiments
- Behaviour at the highest concentrations
- Stick-slip regime
- Experiments

Conclusions

Solution for steady state uniform flows

With $\beta=2$ and $\alpha=3/2$ (otherwise the solution is implicit), one gets the quasi-explicit solution

$$\phi = \frac{\phi_w h}{\phi_m h - (\phi_m - \phi_w) y} \quad \text{with} \quad \frac{\phi_w}{\phi_m - \phi_w} \log \frac{\phi_m}{\phi_w} = \bar{\phi}$$

By integrating the conservation of momentum

$$\dot{\gamma} = \frac{\bar{\eta}}{\eta(\phi)}(h - y),$$

we determine velocity profiles numerically. They take the form

$$u = \kappa \left(h^n - (h - y)^n \right)$$

n=2 for a Newtonian fluid. Another index to characterise the deviation of the computed velocity profile from the Newtonian profile (m=2/3)

$$m = \frac{\int_0^h u(y,t)dy}{hu(h,t)} = \frac{\bar{u}}{u(h,t)},$$

Newtonian fluids

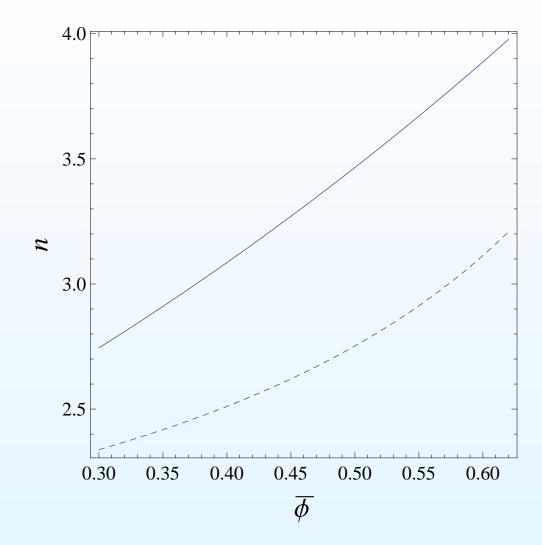
Viscoplastic material

Concentrated particle suspension

- Scientific issues
- Particle migration
- Shear-induced migration
- Solution for steady state uniform flows
- Solution for time-dependent flows
- Comparison with experiments
- Behaviour at the highest concentrations
- Stick-slip regime
- Experiments

Conclusions

Variation of n with the particle concentration



Two parameter sets: $\beta=2$ and $\alpha=3/2$ (solid line) ; $\beta=2$ and $\alpha=1.042\phi+0.1142$ (dashed line) using the model proposed by Tetlow et al. (JOR 1998)

Newtonian fluids

Viscoplastic material

Concentrated particle suspension

- Scientific issues
- Particle migration
- Shear-induced migration
- Solution for steady state uniform flows
- Solution for time-dependent flows
- Comparison with experiments
- Behaviour at the highest concentrations
- Stick-slip regime
- Experiments

Conclusions

Solution for time-dependent flows

Using the assumption $\partial_x \phi = 0$

$$\frac{\partial \phi}{\partial t} = K_c \bar{\eta} \frac{\epsilon_a^2}{\epsilon} \frac{\partial}{\partial y} \left(\phi \frac{\partial}{\partial y} \left(\frac{\phi}{\eta(\phi)} (h - y) \right) + \alpha \frac{\phi^2}{\eta(\phi)} (h - y) \frac{\mathrm{d} \ln \eta}{\mathrm{d} \phi} \frac{\partial \phi}{\partial y} \right).$$

Steady state is reached at time

$$t_c \sim \frac{\epsilon}{\epsilon_a^2} = \frac{H_*^3}{a^2 L_*}$$

Numerically one gets

$$t_{ss} = 2t_c \left(1 - \frac{\phi}{\phi_m}\right)^{-1/3}$$

Newtonian fluids

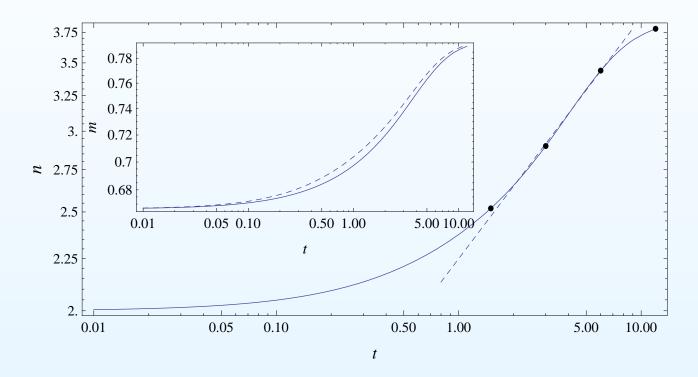
Viscoplastic material

Concentrated particle suspension

- Scientific issues
- Particle migration
- Shear-induced migration
- Solution for steady state uniform flows
- Solution for time-dependent flows
- Comparison with experiments
- Behaviour at the highest concentrations
- Stick-slip regime
- Experiments

Conclusions

Variation of n (and m) at short times



Trend $n=2.2t^{1/4}$. Computations done for $\bar{\phi}=52$ %, $K_c\bar{\eta}\epsilon_a^2/\epsilon=1$, $\beta=2$, and $\alpha=3/2$. Computed steady state time: $t_{ss}=3.56$.

Newtonian fluids

Viscoplastic material

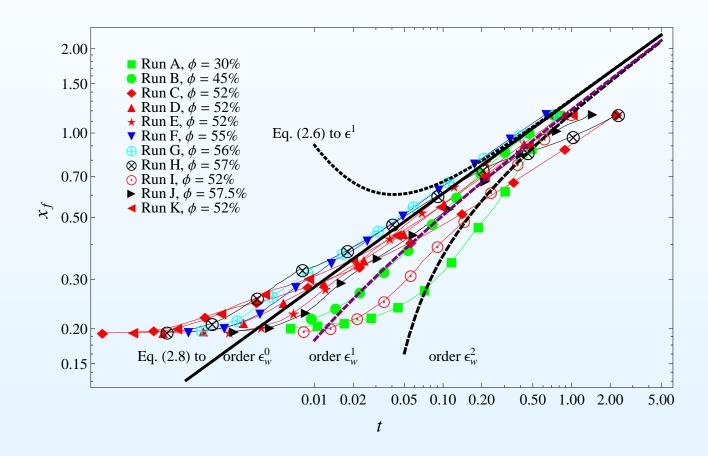
Concentrated particle suspension

- Scientific issues
- Particle migration
- Shear-induced migration
- Solution for steady state uniform flows
- Solution for time-dependent flows
- Comparison with experiments
- Behaviour at the highest concentrations
- Stick-slip regime
- Experiments

Conclusions

Comparison with experiments

Variation of $x_f(t)$ (dimensionless)



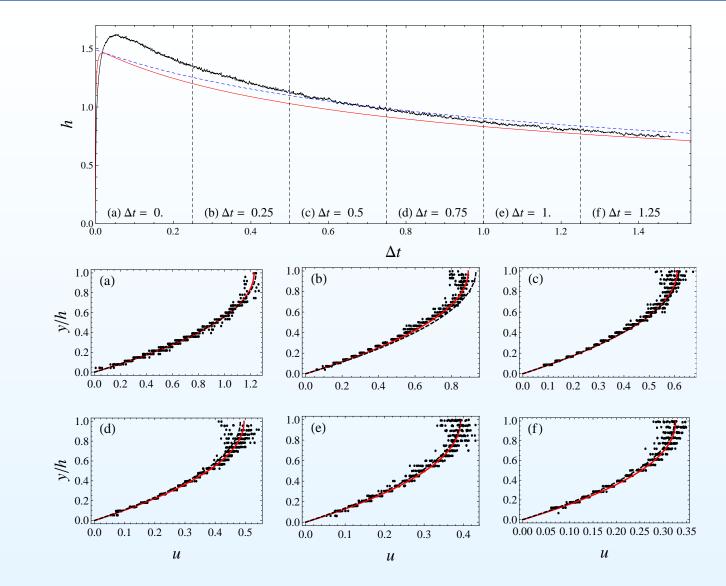
For a 25° slope

Newtonian fluids

Viscoplastic material

Concentrated particle suspension

- Scientific issues
- Particle migration
- Shear-induced migration
- Solution for steady state uniform flows
- Solution for time-dependent flows
- Comparison with experiments
- Behaviour at the highest concentrations
- Stick-slip regime
- Experiments



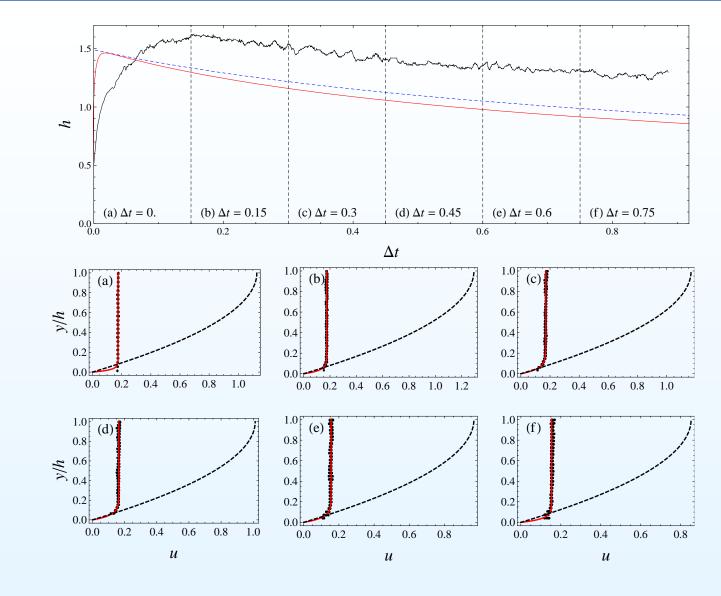
For a 25° slope, but $\phi=0.45$

Newtonian fluids

Viscoplastic material

Concentrated particle suspension

- Scientific issues
- Particle migration
- Shear-induced migration
- Solution for steady state uniform flows
- Solution for time-dependent flows
- Comparison with experiments
- Behaviour at the highest concentrations
- Stick-slip regime
- Experiments



For a 25° slope, but $\phi=0.57$

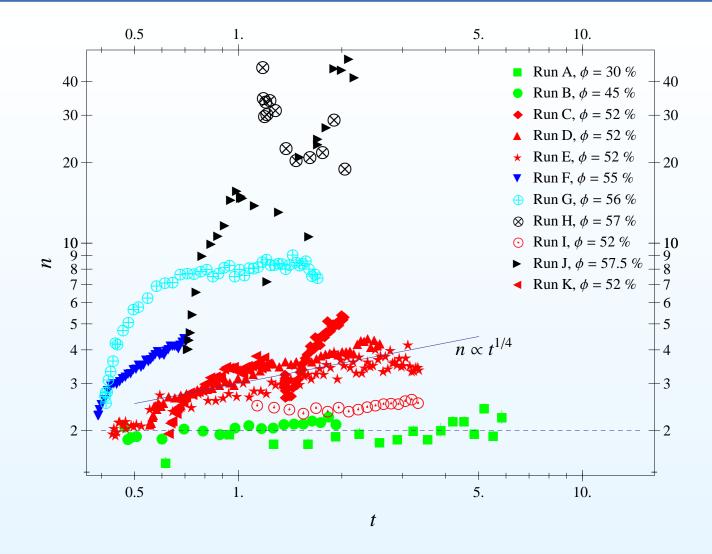
Newtonian fluids

Viscoplastic material

Concentrated particle suspension

- Scientific issues
- Particle migration
- Shear-induced migration
- Solution for steady state uniform flows
- Solution for time-dependent flows
- Comparison with experiments
- Behaviour at the highest concentrations
- Stick-slip regime
- Experiments

Conclusions



Variation of n with time (dimensionless)

Newtonian fluids

Viscoplastic material

Concentrated particle suspension

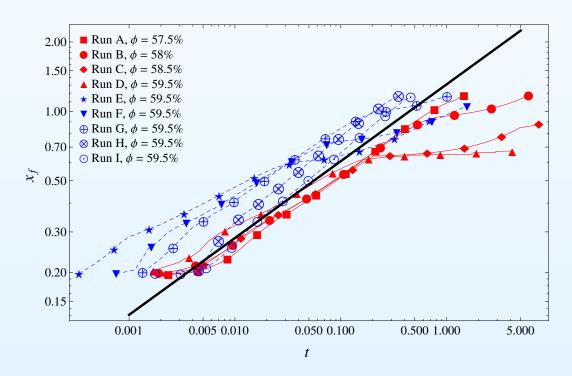
- Scientific issues
- Particle migration
- Shear-induced migration
- Solution for steady state uniform flows
- Solution for time-dependent flows
- Comparison with experiments
- Behaviour at the highest concentrations
- Stick-slip regime
- Experiments

Conclusions

Behaviour at the highest concentrations

For $\phi > 0.575$, behaviour is complicated, with three phases observed:

- ullet macro-viscous regime at short times: $x_f \propto t^{1/3}$, parabolic profile of u,
- fracture regime: wavy free surface, fracture, and en-masse flow,
- plastic regime: intermittent motion (stick-slip).

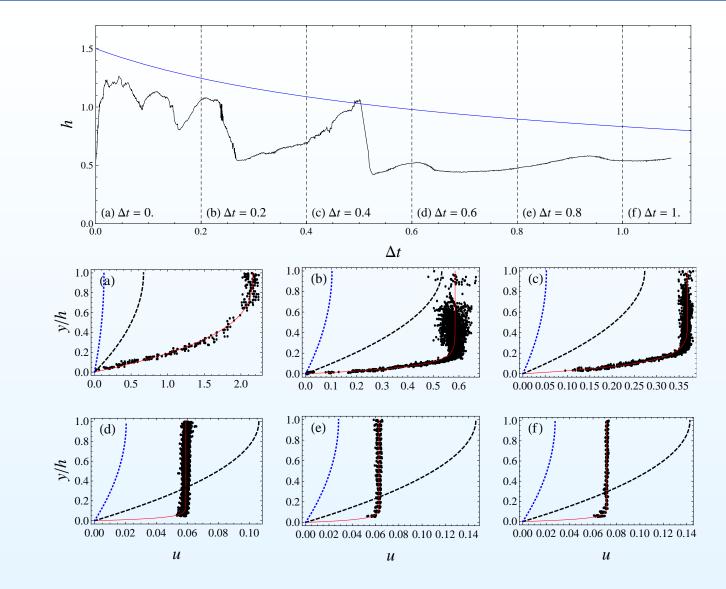


Newtonian fluids

Viscoplastic material

Concentrated particle suspension

- Scientific issues
- Particle migration
- Shear-induced migration
- Solution for steady state uniform flows
- Solution for time-dependent flows
- Comparison with experiments
- Behaviour at the highest concentrations
- Stick-slip regime
- Experiments



For 25° slope, $\phi=0.595$

Newtonian fluids

Viscoplastic material

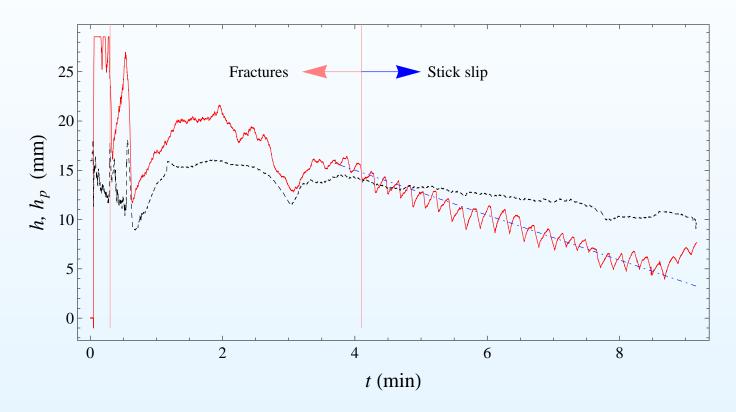
Concentrated particle suspension

- Scientific issues
- Particle migration
- Shear-induced migration
- Solution for steady state uniform flows
- Solution for time-dependent flows
- Comparison with experiments
- Behaviour at the highest concentrations
- Stick-slip regime
- Experiments

Conclusions

Stick-slip regime

Variation of the flow depth and the pressure 'head' $h_p = p/(\varrho g \cos \theta)$



Newtonian fluids

Viscoplastic material

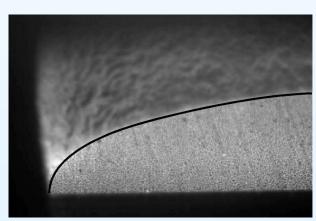
Concentrated particle suspension

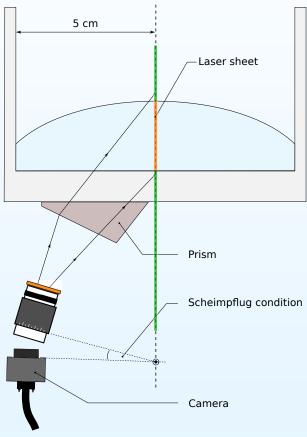
- Scientific issues
- Particle migration
- Shear-induced migration
- Solution for steady state uniform flows
- Solution for time-dependent flows
- Comparison with experiments
- Behaviour at the highest concentrations
- Stick-slip regime
- Experiments

Conclusions

Experiments

$$\phi = 0.56$$





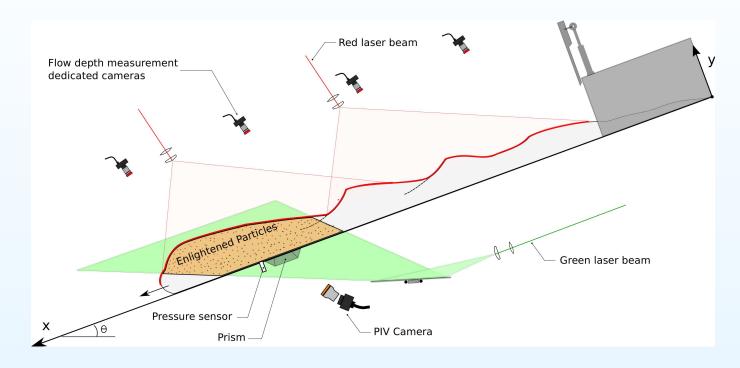
Newtonian fluids

Viscoplastic material

Concentrated particle suspension

- Scientific issues
- Particle migration
- Shear-induced migration
- Solution for steady state uniform flows
- Solution for time-dependent flows
- Comparison with experiments
- Behaviour at the highest concentrations
- Stick-slip regime
- Experiments

$$\phi = 0.595$$



Newtonian fluids

Viscoplastic material

Concentrated particle suspension

Conclusions

- Conclusions
- References

Conclusions

The dam-break for different rheologies. Our main findings:

- For Newtonian fluids: fairly good agreement between theory/experiment.
- For viscoplastic fluids: the simplest models perform better than more elaborate models such as Saint-Venant.
- For granular suspensions: we observed *macro-viscous* behaviour for concentrations as high as $\phi=0.57$, then for higher concentrations, complicated behaviour, including stick-slip motion (resulting from a pore-pressure diffusion mechanism that is still poorly understood).

Newtonian fluids

Viscoplastic material

Concentrated particle suspension

Conclusions

- Conclusions
- References

References

- Ancey, C., S. Cochard, and N. Andreini, The dam-break problem for viscous fluids in the high-capillary-number limit, JFM, 624, 1-22, 2009.
- Ancey, C., and S. Cochard, The dam-break problem for Herschel-Bulkley fluids down steep flumes, JNNFM, 158, 18-35, 2009.
- Andreini, N., Epely-Chauvin, and C. Ancey, Internal dynamics of Newtonian and viscoplastic fluid avalanches down a sloping bed, PoF, 24, 053101, 2012.
- Ancey, C., N. Andreini, and Epely-Chauvin, Viscoplastic dam break waves: review of simple computational approaches and comparison with experiments, Adv. Water Res., 48, 79-91, 2012.
- Ancey, C., N. Andreini, and Epely-Chauvin, The dam-break problem for concentrated suspensions of neutrally buoyant particles, JFM, 724, 95-122, 2013.
- Ancey, C., N. Andreini, and Epely-Chauvin, Granular suspensions I.
 Macro-viscous behavior, PoF, 25, 033301, 2013.
- Andreini, N., C. Ancey, and Epely-Chauvin, Granular suspensions. II.
 Plastic regime, PoF, 25, 033302, 2013.