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The dam-break problem

In engineering, dam break: sudden release of water

Teton dambreak (Idaho, 1976)
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The dam-break problem

Release of a fixed volume of fluid

Y

gate

Questions:

Front position over time x ¢(t) ?
Flow depth profile h(x,t) ?
Velocity profile within the flow (far from the sidewall) ?

Further questions: stability, slip, influence of surface tension, etc.
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with ¢ = pgH? /(uU,) a dimensionless group and € = H, /L, < 1 the

aspect ratio.

Ca = pU, /v > 1and Re = pU,H,/u < 1 : capillary and Reynolds

numbers.

L. and H, selected so that L, H, = V, viz, L, — \/f//e and

~

H, =VeV
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Dominant balance;

Diffusive regime. Balance between the pressure and shear stress

gradients : U, = pgH?2/(3uL,) and ¢ = 3 /¢

Advection diffusion regime. Balance between the body force and shear
stress gradient + pressure gradient within the leading edge: € = tan 6,

U, = pgH2sin6/(3u),and ¢ = 3/sin 6

Steep slope regime. Increasing role of the body force: € = tan? 0,

U, = pgH2sin6/(3u),and ¢ = 3/sin 6
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Diffusive regime observed for Ca — oo, Re = O(1), and § < 1.
Dimensionless governing equation for 8 > 0

oh  Oh® 0 (hgah)

8t+8x_5’x

ox

Dimensionless governing equation for 0 = 0

oh _ 0 (,30h
ot Oz ox )’

No analytical solution (available), but asymptotic solutions at short or long
times ¢ with the following change of variable

h(z,t) =t " H(E, )

e short-time solution: n = 1/5 (Nakaya, 1974 ; Huppert, 1982) ;

e long-time solution: n = 1/3 (Huppert, 1982 ; Lister, 1982).

' Simulation of avalanches: modelling and numerics — Sevilla workshop March 2014 — 13/ 49



S

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Introduction

Diffusive regime at ¢t < 1

Newtonian fluids

® The dam-break
problem

e Navier-Stokes
equations

® Flow regimes

e Diffusive regime

e Diffusive regime at
t <1

e Diffusive regime at
t>1

e Comparison with
experiments

Viscoplastic material

Concentrated particle
suspension

Conclusions

Huppert's (or Barrenblatt-Pattle’s) solution

—3/

- e) " e g LV
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Comparison between the numerical solution and Huppert’'s self-similar

solutionatt =1, 2, 4, 8, 16, 32, 64, 128, 256, 512, and 1024
|
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Huppert’'s solution (+ higher-order terms Ancey, JFM 2009)

h(z,t) =t713 | /2 —

+ K ((ff = xt1/3)t2/3) — /2L

with the position of the front given by

with

1\ |
T = fftl/?’ + (logQ — 5) %‘ft_l/?’,

§r =

2/3
3v/3
—5 VvV

§f
3

This solution requires a boundary-layer treatment at the front as the
diffusive effects (pressure gradient) prevail over the advection term.
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. slope § = 6°, attimest = 1, 2, 4, 8, 16, 32, 64, 128, and 256. .
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Comparison of flow depth profiles for & = 0°. For (b), we show the

self-similar solution and the experimental trend
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Viscoplastic material

Simple shear constitutive law

u(z,y,t) = <

v

\

n

n+1
n
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K(l—cot@
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Velocity profile for y < Yy ory > Y{ (Liu & Mei, 1990)
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forT > 7,
for 7 < 7,
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0

)

oh
— cot 95’_:1:)

where Yy = max (0, h — 7./(pg cos @(tan @ — O, h))) denotes the
position of the yield surface and K = pgsin 0/ p.
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Dimensionless depth-averaged equations (e.g. Craster & Mater, 2009)

Several simplifications developed:

Oh

Ohu

ot

_ 2
cRe (8hu +68hu ) -+ ecot@h% =h

Ot ox

ox

= 0,

ox

o = h(??’h
Ca 0Ox3

kinematic wave model (Huang & Garcia, 1994). balance between the

driving and ‘viscous’ forces;

diffusive wave model: balance between the driving and ‘viscous’ forces

+ pressure gradient;

Saint-Venant model: in the limit of C'a — oo and € < 1, with a closure

equation for 7.
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A simple nonlinear advection equation (hyperbolic)

oh , oha
ot ox

=0

Analytical solutions (using the method of characteristics) in an implicit form.
For a 25° slope
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A nonlinear advection-diffusion equation (parabolic)

oh o O\ Y™ h(1+n) + nh, 1+

— +nkK— tanf — —

ot Ox Ox (n+1)2n+1)"°

No analytical solution.
For a 25° slope

X¢ (M)

1 . . . . .
Simulation of avalanches: modelling and numerics — Sevilla workshop

March 2014 — 28/ 49



l
B
ECOLE POLYTECHNIQUE

FEDERALE DELAUSANNE

Introduction

Newtonian fluids

Viscoplastic material

® Viscoplastic material
e Comparison with
experiments

e Flow models

e Kinematic wave

model
e Diffusive wave
equation

@ Saint-Venant model

Concentrated particle
suspension

Conclusions

For a 15° slope
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Hyperbolic partial differential equations

Oh  Ohu
at " ox
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5 + o +ghcosé’%

Coussot’s closure equation:

3
Ty = Te (1 + 1.93(;3/10) with G = (ﬂ)

0,
ghsinf — E,
0
U
T.) h
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suspension

@ Scientific issues —5

e Particle migration (¢) . /'L(qﬁ) . o ¢

@ Shear-induced n o o ¢

migration Hf m

e Solution for steady

state uniform flows . . . b o
el ®m the maximum concentration and 5 a constant : 5 = 3¢, or § = 2
time-dependent flows (Krieger & Dougherty 1959)

e Comparison with

experiments

- e e e occurrence of normal stress effects (Zarraga et al. JOR, 2001 ; Boyer et

highest concentrations al. JFM 2001 ; Couturier et al. JFM 2011)

® Stick-slip regime
® Experiments

Problem: particle migration occurs even for Ap = 0 (effect exacerbated
when sedimentation or creaming occurs, depending on Ap > 0 or

Ap < 0), so this results in a nonhomogeneous spatial distribution of the
particles, thus viscosity.

Conclusions
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e Phenomenological model developed by Leighton & Acrivos (JFM 1987)

Viscoplastic material

Concentrated particle . 9 . .
suspension ] X —¢ V’y aVGC] = q5(’ll,p — U)

e Scientific issues

e Particle migration

e Shear-induced the particle flux relative to the bulk velocity

migration

® Solution for steady e Microstructural approach by Nott & Brady (JFM 1994) and Morris &
state uniform flows

e Solution for Boulay (JOR 1999)

time-dependent flows 0

lComparison withW J X -V . 3P

experiments

® Behaviour at the The theoretical underpinning is still disputed (Lhuillier PoF 2009; Nott et
highest concentrations

® Stick-slip regime al' PoF 2011)

® Experiments

Respective merits subject of fierce debate... with no winner

Conclusions
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Phillips et al.'s model (PoF 1992) in a dimensionless form

€2 €2 dlnn
= —0 K, 2V (oY) — K, y9* 2
J=—¢K V(oY) — Kuyd™— 39

Vo,

Two processes at play:

e diffusion of particles resulting from the anisotropy in the probability of
encounter between two particles,

e Fick-like diffusion

Nonlinear advection diffusion equation for ¢
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With 5 = 2 and a = 3/2 (otherwise the solution is implicit), one gets the
Newtonian fluids quasi-explicit solution
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¢ = ¢
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e Scientific issues N Gmh — (¢m - ¢w)y Pm — Puw Do

e Particle migration

® Shear-induced By integrating the conservation of momentum
migration

e Solution for steady —

state uniform flows . 77

e Solution for V= —(h o y)’
time-dependent flows 77 (¢)

e Comparison with
experiments

® Behaviour at the
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e Stick-slip regime U= K (h _ (h _ y) )

® Experiments

we determine velocity profiles numerically. They take the form

Conclusions

n = 2 for a Newtonian fluid. Another index to characterise the deviation of
the computed velocity profile from the Newtonian profile (m = 2/3)

July ity a
~ hu(h,t)  u(h,t)’
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Conclusions ¢

Two parameter sets: = 2 and a = 3/2 (solid line) ; 3 = 2 and
a = 1.042¢ + 0.1142 (dashed line) using the model proposed by Tetlow
et al. (JOR 1998)
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Variation of n (and m) at short times

3.75¢

3.5

3.25)

c 275}

2.5

C s s P s s P | P R | |
0.01 0.05 0.10 0.50 1.00 5.00 10.00

Trend n = 2.2¢'/4. Computations done for ¢ = 52%, K .fe2 /e = 1,
B = 2,and o = 3/2. Computed steady state time: t5; = 3.56.
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Variation of x () (dimensionless)
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Variation of the flow depth and the pressure ‘head’ h,, = p/(0g cos )
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@ Conclusions
® References

The dam-break for different rheologies. Our main findings:

For Newtonian fluids: fairly good agreement between
theory/experiment.

For viscoplastic fluids: the simplest models perform better than more
elaborate models such as Saint-Venant.

For granular suspensions: we observed macro-viscous behaviour for
concentrations as high as ¢ = 0.57, then for higher concentrations,
complicated behaviour, including stick-slip motion (resulting from a
pore-pressure diffusion mechanism that is still poorly understood).
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