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The primary goal of this work is that of providing the readers who are not
familiar with the methods of dimensional analysis and similarity the basic ideas
and the necessary tools to treat practical problems in fluid dynamics and its
applications to problems of cosmic physics.
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1 INTRODUCTION

The symmetry of systems, viz., the property of remaining unchanged
(invariant) when certain transformations are performed, has important
consequences such as the conservation of physical quantities. One can
take advantage of this fact to achieve useful simplifications in solving
problems. For example, the homogeneity of space implies that an
isolated system is translationally invariant, and from this it ensues that
momentum is conserved (Landau and Lifschitz, 1959a); this fact allows
to simplify the analysis of the motion of a system of interacting parti-
cles, because it is posible to investigate the movement of the center of
mass independently of the motion of the particles with respect to it. In
a similar fashion, an isolated system is rotationally invariant due to the
isotropy of space, with the consequence that its angular momentum is
conserved; it is well known how this circumstance simplifies the descrip-
tion of planetary motion. Many other examples can be given, that show
that the analysis of symmetry properties is a powerful tool for inves-
tigating physical phenomena.

The symmetries we have mentioned above are based on geometrical
properties, either characteristic or the space-time manifold in which
physical phenomena are embedded, and/or specific of the particular

SIMILARITY AND SELF SIMILARITY IN FLUID DYNAMICS 3

problem one is considering. However, not all the symmetries that
appear in Physics are purely geometrical. The reason is that physical
quantities are characterized by their dimensions, in addition to their
geometrical attributes. The dimension of a quantity is related to the
units in terms of which it is measured. Owing to their dimensional
properties, the quantities that describe a physical system have symme-
tries that are related to the fact that the choice of the units of measure-
ments is arbitrary, and bears no relationship with the substance of the
phenomena. This is in essence what 1s called scale symmetry, and its
manifestation consists in that the description of physical phenomena
must be invariant with respect to changes of the units of measurement,
or, equivalently, with respect to the scaling of the quantities themselves.

Dimensional analysis exploits the invariance with respect to the
group of scale transformations by reducing the number of combina-
tions among the variables and parameters that govern a problem, and
restricting the type of functional dependencies among them, thus sim-
plifying the analysis and allowing to derive useful scaling laws.
Sometimes a problem is invariant with respect to a larger group and
further restrictions on the number of parameters and their relations are
obtained.

Self similarity results when the symmetry of a physical problem leads
to a reduction in the number of the independent variables. In this way
a considerable simplification is achieved, that frequently allows the
analytical treatment of the problem. Very elegant solutions are thus
derived. Usually the self similar behavior appears in the intermediate
asymptotics of phenomena, when certain details of the initial or boun-
dary conditions are no longer relevant, so that the corresponding
parameters can be ignored. The peculiarities of the passage to the limit
that leads to the intermediate asymptotics of a given problem allows to
classify the similarity solutions as self similarities of the first and second
kind. Self similarity of the first kind can be established by dimensional
analysis (eventually supplemented by other symmetry considerations).
The self similarities of the second kind cannot be derived in this way:
it is necessary to follow the evolution of the solution either experiment-
ally or numerically until it passes into its self similar asymptotics, or
they can be obtained by direct construction. In the second case this
process leads to a nonlinear eigenvalue problem.

This paper is organized as follows:

In Section 2 we introduce in a simple and intuitive way the notion of
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scale symmatry (similarity) in physics, and its connection with dimen-
sional analysis; some of its consequences are illustrated by means of
examples.

In Section 3 we present the concept of self similarity, which is of great
importance not only in the Mechanics of Fluids, but also in many other
branches of Physics. We show how self similarity permits to simplify
problems by reducing the number of independent variables.

In Section 4 we discuss the role of dimensional analysis in establish-
ing the self similarity of a problem; we introduce the self similarities of
the second kind, that cannot be established by dimensional analysis
alone but require to solve a nonlinear eigenvalue problem to determine
the self similar variable, and we discuss the intermediate asymptotic
character of the similarity solutions.

In Sections 5, 6 and 7 we develop the phase plane formalism, that
allows to find self similar solutions in various problems of Fluid Dyn-
amics, and discuss several applications to the dynamics of gases, the
shallow water theory, and to nonlinear diffusion-type phenomena,
exemplified by viscous gravity currents.

This work is an outgrowth of the notes of my lectures of 1988 and
1990 on Dimensional Methods and their Applications (a postgraduate
Course of the Facultad de Ciencias Exactas y Naturales, Universidad
de Buenos Aires), and on Self Similarity in Fluid Dynamics at the
International School on the Physics and Mechanics of Fluids at Tandil,
Argentina, in 1989,

2 SIMILARITY AND DIMENSIONAL ANALYSIS

21 Geometrical Similarity

The idea of physical similarity is a generalization of geometrical similar-
ity. Accordingly, we shall begin with a brief review of this simpler
concept. In its simplest form, we can define geometrical similarity by
saying that two figures are similar if all the ratios between correspond-
ing lengths are identical. Thus the polygons in Figure | are similar
because

& B e g ()
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FIGURE I Two similar polygons.

The ratio r is called similarity ratio, scale factor, or briefly scale.
A similarity transformation:

F - F, 2
is effected by means of a change of scale, or scaling:
L' =y = rh .., 3

1.e. all the lengths /" of F’ are obtained multiplying the corresponding
lengths / of F by the scale factor r.

A related but more general concept is that of affine similarity, or
affinity. We speak of affinity when there is similarity, but only with
reference to a particular system of parameters. Let us consider an
example, for more clarity: imagine we have chosen in the plane of
Figure 2 a particular system of cartesian axes (x, y). If P = (x, y)
represents a point of a certain figure F, and P’ = (x', y’) represents the
corresponding point P’ of the figure F', we say that Fand F’ are affine
{or that there is an affine similarity between them) if

X gt
— = r, = const,, y = r, = const,, 4)
¥ ]

%
for any pair of corresponding points of F and F".

It can be observed in Figure 2 that any two ellipses F, F” are affine,
if we refer them to a system of axes whose origin is at the center of the
figures, and that is oriented along their principal axes. This choice, with
respect to which the affinity is defined, is the particular system of
parameters we mentioned above. Recall that a simple method for the
construction of ellipses is based just on the affinity between the ellipse
and the circle.
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F’ P’ (x, y'J\

FIGURE 2 Two affine ellipses.

Ap important concept related to any type of transformation (and in
par_tlcular to similarity and affine transformations, or mappings) is that
of mv.ariant. An invariant is an quantity that is not changed by the
mapping (in the present case by the similarity, or the affinity). For
example

(2) Consider the angle « whose vertex is at O, and whose sides are OA
and OB (Figure 3). Let s denote the arc of a circle whose center is O and

whose radius is r, subtended by a. Let us consider a similarity mapping

(r,s) = (7,5, (5

that transforms s and r in a new arc 5" and a new radius r* (Figure 4).

B
FIGURE 3 Arc of a circle.
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A
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FIGURE 4 The angle ts scale invariant.

Clearly the ratio between the arc and the radius (i.e. the angle subtend-
ed by the arc) is an invariant:

o = = — = const. (6)

Then angles are scale invariant. On the other hand it is easy to see that
angles are not affine invariants.
(b) Consider the ratio between the surface and the linear size of the
rectanguiar elements of Figure 5. Clearly
ds das’

= = i 7
dx dy dx’ dy’ )

so that ¢ is scale invariant, and in this case it is also an affine invariant.

2.2 Scaling Laws

The existence of similarity and affinity invariants allows to derive
scaling laws. For instance, if S and S” are the surfaces of two similar
figures Fand F’, and if / and /" denote any two corresponding lengths

ds dy ds dy

dx

T

FIGURE 5 The relationship between surface and linear size.
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FIGURE 6 The scaling law of the surface.

associated to F and F’' (Figure 6), one has:

S S’
BT e IT = const, (8)
/ "
and from this we obtain the scaling law:
5 = IP, %)

that expresses that the surface of any geometrical figure is proportional
to the square of its linear size. Here IT can only depend on other
invariants that determine the shape of the figure (for example, for a
polygon, these invariants will be angles and ratios between the sides).

As applications of the surface scaling law we shall demonstrate the
theorem of Pithagoras, and derive the formula for the surface of an
ellipse.

22.1  The theorem of Pithagoras

Consider the rectangular triangle of Figure 7, whose sides are a, b, ¢. A
line perpendicular to a, passing through the opposite vertex, divides it
into the two triangles denoted by 1 and 2. The surface of the original
triangle is equal to the sum of the surfaces of its two parts:

ube
Notice that the three triangles (abc), 1, 2 are similar. Now, for any
rectangular triangle one must have

S = nw, (11)

where /1 denotes the hypothenuse, and the invariant IT can only depend

- AN

DA

RN R =k

O = . Vv P

T,
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FIGURE 7 The theorem of Pithagoras.

on other invariants that determine the shape of the (rectangular) triang-
le; then

I = f(a), (12)
where a denotes one of the angle adjacent to the hypothenuse, since the

knowledge of « is sufficient to determine the shape of a rectangular
triangle. Using (11) and (12) in (10) on obtains

fld = f@b’ + fla), (13)
and canceling the common factor we obtain the result:
@ = b+ (14)

It is left as an exercise for the reader to explain why the same resuit
cannot be obtained if the triangle is not planar (Migdal, 1977, see also
Barenblatt, 1979).

2.2.2 The formula for the surface of an ellipse as a consequence of
affinity

Figure 8 depicts an ellipse whose half axes are a, b, and whose surface
is S,. We have already shown that the ratio

S
= = TII,, (15)
ab ¢

is an affine invariant, and in the present case must be a numerical
constant, since the ellipse is completely defined by its half axes. Then the
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FIGURE 8 The surface of an ellipse.

following scaling law holds:
S, = I.ab. (16)

Since the number II, must be the same for any ellipse, it can be
determined once for ever using an ellipse of our choice. In particular,
the circle is an ellipse with equal half axes. Then

I, = n = 3.1415926. . .. . (17
The formula for the surface of an ellipse is then
S, = mab. (18)

We now discuss similarity in physics.

2.3 Physical Similarity

Similarity in physics is analogous to geometrical similarity, provided
due attention is paid to the fact that physical quantities are charac-
terized by other dimensions in addition to those of geometrical charac-
ter. We say that two physical phenomena are similar when the charac-
teristics of one of them can be obtained from the characteristics as-
signed to the other by means of a simple change of scale. Such a change

LR R

R

U D R S

i

v e AR e b L s T
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FIGURE 9 The pendulum.

of scale is analogous to the transformation from a system of units of
measurement to an other.

To carry out the transformation it is necessary to know the scaling
factors. Physical similarity is the basis for employing scaled down
models to study the behavior of systems and devices of large size in the
laboratory.

Nothing is best than an example to clarify the concepts involved in
physical similarity. Consider, say, a pendulum. We shall see that the
motion of a particular pendulum belongs to a class of similar phenome-
na; this is a consequence of the scale invariance of the equation of
motion

% = - %sin 6, (19)
in which # denotes the angle of the pendulum with the vertical. /is the
length of the string, and g is the acceleration of gravity (see Figure 9).
The scale invariance of (19) can be verified explicitly: if all lengths are
scaled by a factor R,and all times by a factor R,, one obtains {(we denote
with * the scaled quantities):

I" = RILt = R0 = 6, = RR g (20)
and substituting in the equation of motion:
dae g
— = — =sin#, 21
dr” 7 2

so that the transformed quantities satisfy the same equation as the
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original ones: the equation of motion does ot change. The consequence
of this invariance is that the characteristics of the motion of a pendulum
can be obtained from the characteristics of the motion of an other
pendulum, by means of a simple change of scale. Notice that the initial
conditions (that do not appear in the equation of motion) must also be
included in the change of scale.

The scale symmetry can be made evident if the equation of motion
is written tn terms of the scale invariants of the problem, i.c.

6;t = ¢T; I = Tgfl, (22)
in which T denotes the period of the oscillation:
d*o .
=il I1 sin 6. (23)

Since this equation is written entirely in terms of invariants, is itself
manifestly invariant,
From the invariant IT one derives the scaling law of the period:

T = (Tg)". (24)

Notice that IT must be a function of the constant invariants of the
problem: 6, the amplitude of the oscillation, and ¢,, the initial phase.
But obviously the period cannot depend on the initial phase, so that we
can write:

n'e = f(b,), (25)

{
T = [=f(6,).
\/;f(@ ) (26)

In the limiting case of small amplitude oscillations (6, — 0}, I must
be independent of §,, consequently /' must tend to a constant number
(the value of this numerical constant is of course 1/(2r), but clearly this
value cannot be derived by means of dimensional considerations alone).

Based on this example we can make some generalizations, that are
consequence of the above mentioned fact that the choice of a system of
units is arbitrary, and has no connection with the substance of the
phenomenon:

then one obtains

(a) Scale invariants are always dimensionless quantities, that is,
guantities whose value is independent of the choice of the system of

e o

2

bk Sy, i
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units. The invariants are constructed combining the dimensional vari-
ables, parameters, and physical constants of the problem.

(b) Any physical relation corresponding to a given problem (equa-
tions of motion, equilibrium conditions, initial and boundary con-
ditions, etc.) can be expressed as a relationship between scale invariants.

(c) Two phenomena are similar if. and only if, all their dimensionless
variables and parameters have the same numerical values.

Dimensional Analysis allows generally (later on we shall show that
there are some limitations) to determine the dimensionless combina-
tions appropriate to each particular problem. The Pi Theorem of
Buckingham (see for example Bruhat, 1963, Sedov, 1959, Li and Lam,
1964) allows to determine the number of independent dimensionless
combinations that can be formed from the quantities corresponding to
a given problem: if » is the number of the characteristic dimensional
parameters of the problem (constant or variable), and among them
there are k that have independent dimensions, the number of indepen-
dent dimensionless combinations that can be formed is equal ton — k.

Scale symmetry and its consequences are always fruitful:

(a) If the governing equations of the prblem are known, the param-
eters, variables, and constants are determined by inspection, and are the
basis for discussing similarity, for the dimensional considerations, and
for obtaining scaling laws. In this case scale symmetry usually simplifies
the investigation by allowing to reduce the number of parameters, and
by imposing restrictions on the type of functional dependencies.

(b) It may be impossible to solve the problem by the processes of
analysis and calculations because of overwhelming mathematical dif-
ficulties, or because we lack a mathematical formulation of the problem
(due to the great complexity of the phenomenon under study, or to
insufficient knowledge). In these cases scale symmetry and dimensional
arguments are still useful, since they allow to investigate experimentally
the problem by means of models of a convenient scale, or because they
yield in a simple straightforward way approximate and/or qualitative
theoretical answers. Sometimes this may be all that is required, or that
we may reasonably hope to obtain. Finally, this type of analysis may
throw some light on the nature of the knowledge that is missing in the
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A
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FIGURE 10 A body that is moving in a fluid.

formulation of the problem, thus pointing the direction for further
investigation.

2.4 Application: The Motion of a Body in a Fluid

This problem is of paramount importance because of its many applica-
tions to engineering and natural sciences. We shall briefly discuss it to
show how to take advantage of scale symmetry to simplify the analysis
(see Sedov, 1959).

Consider a body that is moving inside an infinite fluid with a uniform
translational velocity v, which we shall assume to be much less than the
speed of sound in the fluid. Suppose that the shape of the object does
not change, so that it is completely specified by giving a characteristic
length, /, and a certain number of constant scale invariants that deter-
mine its shape. We shall lump together the latter in a form factor £ (itself
a constant invariant). The motion of the fluid will be completely deter-
mined if we fix the angles that give the orientation of the object with
respect to v, which we shall denote collectively by « (Figure 10). We
shall take into account the inertia of the fluid, determined by its density
p, and its viscosity, given by the corresponding coefficient u. For
simplicity we shall assume that no body forces (such as gravity) are
acting. Then, if we observe the phenomenon from a reference frame
moving with the body. the motion of the fluid will be determined by the

W
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following parameters:
Lo f a, p, (27)

We want to know the force F that the fluid exerts on the body (that is

usually called the total drag). Clearly the ratio
F
pl*v?

(28)

is an invariant. This invariant must be a function of the other invariants
of the problem, namely 2, /. and the Reynolds number
» = (29)
H

Then
F = pl’vg(a, f, R). (30)

The determination of the function g (a, f, #) is a fundamental pro-
blem of acrodynamics and hydrodynamics. Let us see what information
about it can be derived from dimensional analysis.

Since u enters in g only through #, some general conclusions con-
cerning the role of viscosity can be derived from the formula (29). First,
the effect of viscosity diminishes as Z is increased; if viscosity is ignored
(u — 0) we arrive at the concept of an ideal fluid. Then in the limit
# — oo, F must be independent on the viscosity. Therefore, for fast
motion (# — o) one must have:

F = plvg(x, f). (& > ). (31)

In the opposite limit (slow motion) viscous forces dominate over the
inertia of the fiuid. Then in the limit # — 0, p must drop out from t.hc
expression of F; consequently in this limit g oc /2. We then obtain:

F = pvigi(a, [). (Z - 0). (32)

Then we conclude that Stokes's law is correct for objects of any shape
if the inertia terms in the Navier-Stokes equation are neglected.

2.5 Two Astronomical Examples

To conclude this Section we shall apply dimensional analysis to a
couple of problems of interest in Astronomy.
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FIGURE 1l Gravitational bending of a ray of light.

2.5.1  The gravitational bending of light by the Sun

Let us consider the gravitational bending of light by a point mass M.
In Figure 11 we sketch the geometry of the problem. Clearly. the
deflection angle § must depend on M, ¢ (the speed of light), G (the
gravitational constant), and r, the closest distance of approach of the
ray from M:

8 = f(M,c. G, r) (33)

The invariants of this problem are # and ¢ = GM/c’r, so that (33)
must be of the form

0 = d(p) (34)

To determine the form of ®, we notice that for ¢ — 0, lim,_,® = 0,
and that lim,,_,(d®/dp) exists. From this it follows that in this limit one
must have

0 = Ko = KGM|’r, K = const., for ¢ - 0. (35)

Consider now the case of an extended deflecting body, that we shall
assume to be spherically symmetric. Now the problem is much more
complicated, as the deflection will also depend on R, the radius of the
body, and on the dimensionless function A(&) that describes its density
distribution as a function of ¢ = s/R (s is the distance from the center).
Then if one considers a class of bodies having the same structure, i.e.,
with the same density distribution A(), the deflection will depend on ¢
and on { = R/r:

0 = @.(p, Q) (36)

SRS
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where the function @, will depend on the density distribution of the
bodies, as described by 4.

As before, it is reasonable to assume that for a sufficiently small mass,
i.e., for ¢ — 0, the deflection is arbitrarily small, so that lim,_, ®, = 0,
and that lim,_,(d®,/dp) = ,({)/{ exists. Then

0 = o = (GM[*RW:({) for @ — 0. (37)

In (37), ¥, ({) must tend to K{ as R — 0, i.e., { — 0. Then it seems
reasonable to assume ¥, ({) = K{, so that

0 = K(GM/c*R)(R[r) for ¢ — 0. (38)

For the case of the Sun, ¢ < (GM/c*R) = 2 x 107% = 04" < 1, so
that it can be conjectured that the approximate formula (38) can be
applied. One then obtains:

3 = 04" x K(R]r). 39

The magnitude of the dimensionless proportionality factor K cannot be
found by dimensional analysis. Its determination requires a more de-
tailed physical theory (relativity). Nevertheless, its order of magnitude
may be expected a priori to be unity; the relativistic value is 4.

2.5.2 The advance of the perihelion of Mercury

Let us assume that, to a first approximation, a planetary orbit is a
closed curve about the Sun. Consider also a class of geometrically
similar orbits. Then the period P is a function only of a parameter
related to the size of the orbit, such as its major half axis a (see Figure
12), of the mass of the Sun, M, and of G (Kepler’s Third Law):

P = C@IGM)", (40)
where the constant C depends only on the shape of the orbit. If the mass

m of the planet is small but not negligible, this formula. can be
generalized to

P = C(@|GM)Y" f(m/M). 4D

Now imagine that as a better approximation, the planetary motion
is obtained by a superposition of the motion around the closed orbit,
with a slow rotation of the orbit in its plane. Let a be the angle through
which the closed curve rotates during one revolution of the planet.
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FIGURE 12 Advance of the perihelion.

Since this precession is a relativistic effect, « will be determined by ¢, in
addition to G, M, and a. Therefore:

a = YY)y = GM/ca. (42)

It is reasonable to assume that lim,_,¥(¢) = 0, and that lim,,_,d"¥/
dy = K # 0. In consequence, for small ¢ we obtain, with good ap-
proximation

a = KGMca. (43)
The angular velocity of the precession is then
w = afP = KG'Mc‘a’)", (44)

in which the proportionality factor k depends on the shape of the orbit,
but can be expected to be of the order of unity.

A large collection of applications of dimensional analysis to as-
trophysical problems can be found in Kurth (1972); these include topics
of interest for stellar structure such as polytropic and isothermal gas
balls, stellar envelopes, stellar interiors, ete. In the classical monograph
of Sedov (1959) the reader can find applications to the equilibrium and
motion of a self gravitating gaseous mass as well as mass, radius and
luminosity relations, equilibrium solutions, pulsating stars and novas
and supernovas. Impact cratering is discussed in Zel’dovich and Raizer
(1967).
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3 THE CONCEPT OF SELF SIMILARITY

There is an important class of phenomena in which scale symmetry
allows to reduce the number of independent variables of the problem.
This happens because the solution is similar to itself (self similar) if the
variables are conveniently scaled. In gas dynamics, fluid mechanics, in
the physics of waves, as well as in many other fields of physics, one can
find many instances of self similarity. Let us discuss a couple of exam-
ples that bring into evidence its basic features.

3.1 The Diffusion of Heat

We shall present here this problem, although it does not belong to the
dynamics of fluids, because is one of the simplest examples of self
similarity (Barenblatt, 1979), and in addition is mathematically equiva-
lent to the phenomenon of the diffusion of vorticity due to the effect of
viscosity (see Sedov, 1959), as well as to (linear) diffusion.

Suppose that at a certain moment, which we shall take as ¢t = 0, a
certain quantity of heat @ is dumped in a small volume ¥ of an infinite,
homogeneous, and isotropic medium. We shall use a coordinate system
with its origin within §V. As time passes, heat will diffuse through the
medium. We want to find the temperature distribution T'(r, ¢) for large
values of r and ¢, so that the details of the initial distribution of heat
within 6V are irrelevant. The variables and parameters of this problem
are then

T,rot,x, H = Q/pC,, (45)

where  is the thermal diffusion coefficient, p the density, C, the specific
heat capacity, and H (=0V{T,)) is related to the initial average
temperature within 6 V. Since the dimensions of all these variables and
parameters can be expressed in terms of the fundamental dimensions of
length, time, and temperature. there will be two independent scale
invariants (dimensionless combinations of the variables and paramet-
ers). These invariants can be chosen as:

& = [Alxn] ¢ = (kt)Y)"H'T, (46)
and therefore one concludes that,
o H r
= f(Qie, T = Wf(w) 47)

~F
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FIGURE 13 Diffusion of heat.

This result means that if r is scaled as /', and T as 1=, the temperature
distribution will look the same at any time. In other words, if we
represent 7'(r, t) for any fixed ¢, the same graph will also represent the
temperature distribution 7(r, t') for any other fixed t’, provided the
scales of the r axis and of the T axis are changed by the scale factors
(¢'/)"* and (/1) 2, respectively (see Figure 13). For this reason we say
'that the temperature distribution is self similar, that is, similar to itself
in fact, given the distribution at a certain time, the distribution at any
otherltime can be obtained from the first by means of a similarity
mapping.

To complete the solution we must determine f. To this end dimen-
sional analysis does not suffice, what is needed is to solve the heat
diffusion equation

erT

¢t

(here A denotes the Laplacian) subject to the initial and boundary
conditions of the problem. Notice that actually in the present case it is
not possible to carry out this program, as we have not specified com-
pletely the initial temperature distribution. However, if ¥ is small, and
if we are only interested in the solution for large r and 7, we can assume
that for fixed time, the temperature distribution depends only on the

= KAT, (48)

S AR R i 3
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distance to the origin, then T'(r, 1) = T (r. ¢). and we must solve

or L, 0/,
5 = K 5;<r Er_) (49)

The solution of the partial differential equation (49) is still a complicat-
ed affair. Here is when self similarity comes to our help, since /(&) does
not depend on r and t in an arbitrary way, but only through the

combination

r

¢ = e (50)
Thanks to this fact an important simplification is achieved, because
actually it is sufficient to solve an ordinary differential equation in the
single independent variable ¢, that is called the self similarity variable.
The consequence of self similarity is then a reduction of the number of
the independent variables of the problem: in the present case we pass
from the two variables r and ¢ to the single variable &. Substituting (46)
and (47) in (49), we find an equation for /"

SN+ 1Y +321E+ /) = 0, (51

in which “ denotes the derivative with respect to £. Since the solution we
need must vanish at infinity, we must have

A0+ f =0, (52)
that can be immediately integrated yielding
f = Ke ¥, (53)
where K denotes a normalization factor, so that one finally obtains
KH —rdjdns —32 ;
1) = opme Wi (K= o), (54)

We notice that (51) is an exact solution of (49) that describes for any
time the temperature distribution produced by an instantaneous point
source of heat, i.e., a source whose spatial distribution is a Dirac delta
function. However, its meaning goes far beyond that, because whatever
initial temperature distribution we assume (as long as it is localized
within the small volume element 8 V'), it will always tend for large r and
¢t (that is, asymptotically) to the self similar solution (54). Many



22 J. GRATTON
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FIGURE [4 Geometry of the laminar boundary layer problem.

phenomena share this property, of tending asymptotically to self sim-
ilarity when certain details of the initial conditions can be ignored
because they have ceased to be relevant.

3.2 The Laminar Boundary Layer

Let us consider the steady flow of a viscous incompressible fluid over
a semi infinite plane plate located at y = 0 and extending on the
interval 0 < x < o0 (see Figure 14). Let » be the coordinate perpen-
dicular to the plate. We assume that the fluid is moving in the positive
x direction, and that for x < 0 its velocity u, is uniform and parallel to
the x axis (see Sedov, 1959). The fluid occupies all the space beyond the
plate. We shall study this problem by means of the equations of Prandtl
(1904), that can be derived from the Navier-Stokes equation by means
of some approximations (see for example Landau and Lifschitz,
1959b):

Cu Ju u
u 2,‘); + v 5 = 3 E}.—z, (55)
u v
— &= = 0 56
ox + ey 0 (56)

Here u« and v are, respectively, the x and y components of the velocity,
and v is the kinematic viscosity coefficient. To derive these equations it
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has been assumed that the thickness d of the boundary layer is small,
so that the flow is nearly parallel to the surface (thatis, v < u), and that
near the plate the velocity varies rapidly in the y dircction, but slowly
in the x direction, so that it changes appreciably only over distances
much larger than d; in consequence d/éy » &/éx. The boundary con-
ditions of the problem are

u =v = 0aty = 0.x >0, 5N
u = uyaty = 00, (58)

The parameters are
Uy, ¥, X< Y, (59)

and there is no characteristic length (the plate is infinite). The dimen-
sionless parameters are then

p = 2.0 = 2 (60)
X

Jvx[u,

The solution must then be of the form

w o= uf(n.0), v = /% O, ). 61)

We shall now show that the parameter n is not essential. To this
purpose let us perform the following change of varables:

x = X,y = \/g}’,u = wUv = /11“—“1/, (62)
(V]

where / is a constant length (> 0), so that the new variables X, Y, U v
are dimensionless (notice that this transformation employs different
scales for the variables x and - it is then an affinity). The equations (55)
and (56) are transformed into

U%WLV%:gzi—iﬁt%:O. (63)

and the boundary conditions are
U=V = 0aY = 0,X >0, (64)
U= latY = . (65)
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According to (61) we must have

U = Vv = 11 66
) - imm) ©
where # = uy,lfv is the Reynolds number. These equations, together
with the boundary conditions (64) and (65) are the dimensionless
formulation of the problem of the boundary layer. We now observe
that the solution we are seeking cannot depend on £, since this par-
ameter does not appear in the Prandtl equations (63) nor in the boun-
dary conditions. Then it is clear that the first argument, y/x, cannot
enter in the formulae (61), and the solution must be of the form

vidg y
u uf(0), v \/j (). ¢ NoT (67)
so that it is self similar in the variable {. It i1s interesting to notice that
in this case the self similarity does not follow only from scale invariance
{(whose consequence is (61)), but from the additional fact that the
equations of Prandtl are invariant with respect to a larger transforma-
tion group, that includes the affinity (62). We shall come back to this
issue later on.
From (67) we can derive a scaling law for the thickness of the
boundary layer. We obtain:

d = y(*) = {*Jvxfu,. (68)
where {* 1s the value of { for which u attains a certain fraction of its
asymptotic value u, (see Figure 15).

To complete the solution of the problem it is necessary to find f and
®. To this end we change the dependent variable f according to:

/= ¢ (69)
From the continuity equation we obtain
¢ = " = (0" — ¢). (70)
Then, using this relationship
vu
o= ud. v o= —9—(¢> ®), (71)

and substituting in {55) we get

20" + ¢¢” = 0. (72)

PR
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X
FIGURE I5 The thickness of the boundary layer.
The boundary conditions take the form:
¢ (0) = ¢(0) = 0, ¢'(0) = L (73)

The nonlinear differential equation (72) with the boundary con-
ditions (73) can be solved numerically (Blasius, 1908). It is convenient
to take advantage of the following very general property of (72) (Tép-
fer, 1912): if ¢, is a solution of (72), then for any constant a

() = agy(al). (74)

1s also a solution. Then, let us call ¢, the solution of (72) that satisfies
the boundary conditions

$0(0) = ¢o(®) = 0,¢5(0) = L (75)

This solution can be found by means of the usual methods of numerical
integration. From it one can evaluate the limit

ime_, $i(() = k(=2.0854..). (76)
We next set
Q) = 2P gy(a'0), (77)
that satisfies the boundary conditions
¢(0) = ¢'(0) = 0,¢70) 2 im_,,¢() = ko™ (78)

Then, with « = k= *(=0.332. . .) we obtain the desired solution, that
satisfies at infinity the condition (73).
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The preceding examples illustrate the advantages that derive from
the self similarity of a phenomenon. Self similarity simplifies the analy-
sis and the representation of the characteristics of the problem. In the
above examples, the self similarity of the solutions of the governing
partial differential equations allowed to reduce the latter to ordinary
differential equations, thus making the mathematics much simpler.

The widespread use of computers produced a change of disposition
with respect to self similar solutions, but they did not cease to deserve
interest. Before the advent of computers, the possibility of reducing
partial differential equations to ordinary differential equations was
considered very important, so that the interest in the self similar solu-
tions was mainly due to the fact that they are easy to obtain and
analyze. Then the situation changed, as in many problems it was found
that the simplest procedure for solving numerically the boundary value
problems for the systems of ordinary differential equations that arise in
the construction of self similar solutions, is to solve the original partial
differential equations by means of stabilization methods. Nevertheless,
self similarity still attracts much attention because it is a manifestation
of a deep physical property that consists in the presence of a certain
type of stabilization in the phenomenon under study. In addition, self
similar solutions are used as a starting point for numerical calculations
with computers, and as a comparison standard to check approximate
methods for the solution of more complex problems.

4 SELF SIMILARITY AND INTERMEDIATE
ASYMPTOTICS

Superficially self similarities seem to be nothing else than isolated exact
solutions of certain special problems, perhaps elegant, sometimes use-
ful, but of a limited scope and significance in what concerns the fun-
damental properties of physical theories. It took a deeper understand-
ing to realize that the meaning of this type of solutions goes much
beyond that of being a simple description of the behavior of systems
under very particular conditions. Actually the self similar solutions
reveal the intermediate asymptotic behavior of the solutions of a much
wider class of phenomena. By intermediate asymptotics we mean the
range in which these solutions have ceased to depend on certain details
of the initial andfor the boundary conditions, although the system is
still far from having arrived to its limiting state.

)

s
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Take for example the diffusion of heat: we have seen that the solution
(54) not only describes the temperature distribution due to an instan-
taneous point source; it also describes the temperature distribution in
a finite region, of a certain size A, as long as initially the same quantity
of heat Is concentrated not at a single point, but in a finite region §V
(it is not even necessary that this region be symmetric), whose linear size
4 is such that®

i o<<< A (79

The temperature is measured at a distance r from the center of 8V, such
that 2 < r, and at the same time r < A (A can be thought as the
distance of the boundaries). This intermediate asymptotic property of
the solution (54) can be rigorously derived in the mathematical theory
of heat conduction.

Similar comments can be made concerning the laminar boundary
layer, since actually the property we are considering is quite general.
The self similar solutions are always solutions of degenerate problems
in which the constant parameters whose dimensions are the same as
those of the independent variables of the probiem, take values which
are zero or infinite. Accordingly the self similar solutions always corres-
pond to singular initial and/or boundary conditions. This is what
happens in the examples of the preceding Section. Then, the self similar
solutions always represent the intermediate asymptotics of the solu-
tions of non degenerate, non self similar problems (more precisely, the
stable self similar solutions, see Barenblatt, 1979).

It is frequently believed that the self similar solutions can be derived
from dimensional analysis (i.e., from physical similarity), which if
applied to the formulation of a degenerate problem that admits self
similar solutions, always allows to obtain the form of the solutions (that
is to say the expression of the self similar variables); after the exact self
similar solution has been found it is not difficult to find the class of non
degenerate problems whose intermediate asymptotics it describes. This
is indeed the case of the preceding examples. However, it is essential to
recognize that the self similar solutions obtained by means of dimen-
sional analysis do not exhaust the field of self similarities. Actually, it
can be shown that many problems have a self similar intermediate

fwe say that @ < < < b when there is a range of values of x such that a € x, and at
the same time x < b.
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asymptotics that cannot be obtained by means of simple dimensional
arguments based on the original formulation of the degenerate prob-
lem. This is related to the fact that the passage to the limit from the
complete (non degenerate, non self similar) problem to its self similar
intermediate asymptotics, is not regular.

The interpretation of self similarities as intermediate asymptotics
allows to clarify the role (and the limitations) of dimensional analysis
with respect to establishing self similarity and determining the similar-
ity variables; to this purpose we shall now discuss examples in which
dimensional analysis does not allow to achieve these purposes. It was
Zel’dovich (1956) who first established on this basis a classification of
self similarities in two classes, that he called First and Second Kind. Seif
similarities of the First Kind are those that are established, and the self
similar variables determined, by means of dimensional analysis. The
self similarities of the Second Kind are those for which this is not
possible.

4.1 Flow Past a Wedge: Self Similarity of the Second
Kind

One of the simplest examples of self similarity of the second kind is the
well known problem of the plane potential flow of an incompressible
fluid around a wedge-shaped obstacle (Barenblatt and Zel’dovich,
1972). The geometry is represented in Figure 16; the cross section of the
wedge has the shape of an isosceles triangle, 2« is the angle of the vertex;
at infinity, upstream from the wedge, the fluid velocity is parallel to the
axis of symmetry of the triangle and its value is U. From dimensional
analysis it is evident that the velocity potential ¢(r, 6) can be expressed
as

¢ = rUf0,n),n = Lir, (80)

in which @ is the polar angle, r the distance to the vertex of the wedge,
L its thickness, and f is a dimensionless function of its dimensionless
arguments.

We are interested in the limit L — oo, that is, in the degenerate
problem of the flow past an infinite wedge (or, equivalently, in the
asymptotics of the solution near the vertex of the wedge). At first sight,
it would seem that in this limit the parameter L ceases to be significant,
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FIGURE 16 Flow past a wedge.

and in consequence the solution should not depend on the second
argument of £, that should drop out from the problem. This is not true;
in fact it can be easily verified that ¢ = rUg(8) is not a solution. Now,
in this simple problem it is easy to find by means of a conformal
mapping the complete non self similar solution in closed form (see for
example Landau and Lifschitz, 1959b). It is found that for large #,

f6,n) = n*¢() + small quantities, (81

so that the leading term of the asymptotic expansion of the velocity
potential near the vertex, that is by itself a solution of the Laplace
equation, has the form

b = APIp@), 4 = UL (82)

The value of A can be found by substituting (82) in the Laplace equa-
tion, and requiring that the azimuthal component of the velocity
vanishes on 8§ = + o and 6 = +x, and only on these lines. Thus one
finds

A = —af(n — ). (83)

The solution (82)-(83) is manifestly self similar, but it is evident that
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it cannot be derived from (80) by passing to the limit L — oo; in fact,
however large is L/r (that is, however near to the vertex), we cannot
ignore the second argument of the function f/ because for n — oo the
function f does not tend to a finite limit. Then n remain essential,’
however large is L. In addition, the exponent A cannot be obtained from
dimensional analysis, but it is obtained in the course of the construction
of the self similar solution'’. Finally, the numerical value of the con-
stant A cannot be obtained by considering only the self similarity of the
solution, but must be found from the analysis of the asymptotics of the
full non self similar solution.

4.2 The Modified Heat Diffusion Problem

As a second example of self similarity of the second kind we shall
discuss a modified version of the problem of Section 3.1; the difference
is that now we shall assume that the thermal diffusion coefficient x has
a constant value when the medium is heating up, but a different value
', also constant, when it is cooling off (see Barenblatt, 1979). This is
what happens, for example, if pores are produced in the medium when
it cools. The same type of equtions are also found in the theory of
filtration of an elastic fluid in an elasto-plastic porous medium (Baren-
blatt and Krylov, 1955, Barenblatt ef al., 1972). We shall consider the
case of planar symmetry. The equations of the problem are

oT aZT(ar> ) oT ,alr(gz

—_— = K==\ 5 sy =T = K 13
ot ox* \ dt at ox? \ ot

in place of (49). It is essential that the discontinuous behavior of the
thermal diffusion coeflicient be related to a difference of the specific
heat capacity between heating and cooling, and that the thermal con-
ductivity be independent of the sign of the temperature change. Then
&T/éx must be continuous to ensure the continuity of the heat flow.

We shall now try to construct a solution representing the effect of the
instantaneous deposition of a quantity of heat at the origin. This
solution must satisfy the following condition at ¢t = 0 and at x = oo:

< 0), (84)

T(x,0) = 0(x # 0),

A

“”x T(x,0) dx = H;T(c, 1) = 0485)

. TWe say that a parameter is essential when it actually governs the phenomenon.

+It is evident that it is not possible, by dimensional analysis alone, to determine any
dimenstonless parameter other than the exponents of the physical quantities that enter in
the expressions of the invariants of the problem, according to the Pj theorem.

L
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in which H is a constant. It is well known (and it was shown in Section
3.1 for the spherically symmetric case) that in the case k = k" such a
solution exists, and is self similar. [t would seem that the same dimen-
sional considerations of the former case should also hold when x # x'.
In effect, the modification we have introduced has increased the number
of parameters, but the only difference is that now the new dimensionless
parameter ¢ = x’/x has appeared. Then, it should be expected that the
solution we are seeking might be expressed in the form

H . X
T = =®(4,8, = —,
VKt VKt
where @ is continuous with a continuous derivative with respect to &,
and is an even function. Furthermore, by virtue of the self similarity,
the domain in which T increases must be given by

(86)

Il = x(0) = &JrL, (87)

where &; is a constant that depends on &.

However it is not difficult to verify (we omit details for brevity, see
Barenblatt, 1979) that if k 3 &’ there is no solution of (84) of the form
(86), that is continuous, has a continuous derivative with respect to x
(i.e., has a continuous heat flow), is even, and vanishes at infinity.

The paradox can be solved if we observe that the conditions (85) are
of a singular character, and must be described by a generalized function
(a distribution). The solution that satisfics these conditions, if it exists,
should represent the asymptotics for large times of the class of solutions
that satisfy initial conditions described by ordinary smooth functions
(i.e. functions that are continuous and that have continuous derivatives
up to a required order) of the form (see Figure 17):

H X
T(x,0) = A T, (L) (88)
where L is a certain length that measures the size of the region where
heat was initially deposited, and T, is an even, smooth dimensionless
function that decreases monotonically, faster than any power, as the
absolute value of its argument is increased, and that in addition satisfies
obvious normalization conditions. It can be shown (Kamenomost-
skaya, 1957) that with these initial conditions the solution of the
Cauchy problem exists, is unique, and satisfies the remaining conditions
we are requiring. However. the new dimensinnal naramater I antarc in
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T, 0)]

FIGURE 17 [nitia! condition for the modified heat diffusion problem.
\

the problem, so that the solution is no longer self similar. In fact,
dimensional analysis tells us that now

H L

= — = —. 89

r N7 O, n, €)1 N (89)

-The exact self similar solution for the instantaneous source of the

case k = k' corresponds to the singular initial condition that results

from (88) when L — 0. But this solution represents in addition some-

thing else. We notice that (89) is also valid for ¢ = 1, and that n — 0

when ¢ —» co. By an adequate choice of x we can pass to this limit in
such a way that

& = = = const., (90)

VKt
and in the limit we obtain the already mentioned self similar solution.
For this reason, as said before, when k = x’ the self similar solution of
the singular initial conditions problem is, in addition, the asymptotics
for large times of a whole class of solutions of regular initial value

B T T
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problems. The non existence, for ¥ # &', of a solution of the singular
initial values problem indicates that now, when n — 0, the function
B¢, n, €) does not tend to a finite, non vanishing limit. But notwith-
standing this, the solution (89) has still a self similar asymptotics. In fact
it can be shown that a real number & = a(¢) exists, such that the limit

lim, o7 *®(, 0, 6) = ¢( &), oD

exists, and is finite and non vanishing. Then, for # — 0, ® admits the
asymptotic representation

D m8) = e,

In consequence the asymptotics of our problem, for + - oo, is not
expressed by (86), but is of the self similar form

HL*
(Kt)(l+a],’

Notice that the passage to the limit ¥ — 0 for finite ¢ can be also
effected by taking the limit L — 0 with fixed x, 7 (in the case x = «’,
i.e., ¢ = 1, this leads to the instantaneous point source solution). But
according to (93) this limit, for fixed H and « # 0. is zero or infinity,
according if « is positive or negative. Then in passing to the limit L — 0
with x, ¢t fixed, it is necessary (for a« # 0) that simultaneously
H — o0, 0 (according to the sign of «), in such a way as to ensure that
the product in the numerator of (93) maintains a finite value; only then
we can obtain the same limit as was obtained for finite L and 1 — 6.1
The solution resulting from this passage to the limit is self similar, but
is not of the form (86); what we get is:

A ; : . ,
qu(c, ey A = Blim,_(HL, x,(t) = &/k1.(94)

Here f is a dimensionless constant that depends on the normalization
of ¢, and the quantities « and A4 are what remains of the parameters H
and L after passing to the limit. To evaluate them two methods can be
followed:

¢) + small quantities. (92)

7 ¢, o). 93)

(a) First, we can compute numerically the non self similar solution

TThe reader should not be confused by this apparently complicated affair of passing
to a limit in which L — 0. # - =, 0, etc.. [t is nothing else than a formal mathematical
trick that allows to find the degenerate problem whose solution is the correct asymptotics
of the real, non degenerate problem in which, of course, L and A have finite, constant
values.
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FIGURE 18 The eigenvalue a as a function of ¢.

(89) and follow its evolution until it passes into the self similar asymp-
totics (this has been done by V. M. Uroev, see Barenblatt and Sivashin-
skii, 1969, and it was observed that the solution tends rather rapidly to
the asymptotics given by (94)).

(b) Second, it is also possible to construct directly the self similar
solution by taking (94) as an ansatz, and substituting it in the governing
equations and the initial conditions; in this case « and A are unknowns
of the problem, and are determined by requiring the existence of the
solution at large; this procedure leads to a nonlinear eigenvalue prob-
lem for a, that for brevity we shall not present here in detail (the
interested reader can find the complete analysis in the monograph of
Barenblatt, 1979). The result is shown in Figure 18.

It must be noticed that the last method of solution does not allow to
determine completely the seif similar asymptotics, since the constant A
(or, equivalently, the dimensionless constant f) is obtained within a
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constant numerical factor.t In the classical case (¢ = 1) in which
a = 0, the value of this constant can be obtained from the conservation

law
[, Tx.oax = H. 95)

however this law i1s not valid if k % &’ (see Barenblatt, 1979) since A is
a complicated functional of the initial temperature distribution, and
cannot be obtained from the initial conditions by application of conser-
vation laws. Notice also that the self similar asymptotics we have found
is no longer a solution of the instantaneous point source problem, it is
the solution of a different degenerate problem, namely that which is
obtained in the limit L — 0 by assuming that the quantity of heat
(~ H) that must be deposited initially in the region of size L varies as
L decreases. This is necessary in order to arrive to the same asymptotic
representation for large ¢ as that of the solution of the original non
degenerate problem: H must increase if ¢ > 1 and decreaseife < 1,s0
as to keep A constant. Finally it should be observed that according to
the solution (94), the variation of the temperature in the point where it
is a maximum, and the position of the point where the thermal diffusiv-
ity is dicontinuous are given by

A
Tmax W* x()([) = 50\/E (96)

(xt

The second of these formulae can be easily found from similarity
arguments, starting from the concept of an instantaneous point source.
The first one, on the contrary, is impossible to derive by means of this
type of argument, notwithstanding that the scaling follows a power law,

and is completely determined by the dimensions of 4. What happens is
that the dimensions of 4 are not known in advance: it is first necessary
to find o by solving the eigenvalue problem.

The previous examples illustrate the main features of the self similar

soluttons of the second kind. We observe that:

*The origin of this indeterminacy is that the same degenerate problem that is solved by

direct construction must give the asymptotics of an inifinite set of non degenerate
problems in which L and A have different finite, constant values.
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(a) Itis not possible, by dimensional analysis alone, to construct the
self similar solution of the degenerate problem.

(b) Nevertheless, the complete (non degenerate) problem has a self
similar intermediate asymptotics. The impossibility of finding it by
means of dimensional analysis can be traced to the fact that the passage
to the limit in which some of the parameters of the non degenerate
problem tend to zero or to infinity, is not regular.

(¢) In the self similar asymptotics, one of the independent variables
appears with an exponent that is not known in advance (and that by
principle we cannot evaluate by means of dimensional analysis).

(d) This exponent can be determined by direct construction of the
solution, and is obtained during the process of finding the self similar
asymptotics, as the solution of a nonlinear eigenvalue problem.

4.3 Complete and Incomplete Seif Similarity

We have found in discussing the preceding examples that the self
similarities can be classified in two groups:

(a) Insome instances there is a complete statement of the degenerate
problem, and by the application of dimensional analysis in the usual
manner plus eventually some additional Symmetry consideration, we
can establish the self similarity of the solution and construct the self
similar variables. In addition, if we succeed in evaluating some integral,
we can obtain the solution in closed, finite form. This is what happens
for the instantaneous point source of heat (Section 3.1), and for the
laminar boundary layer (Section 3.2).

(b) However, it may be sufficient to modify slightly the problem (for
instance in the case of heat conduction, to assume that the thermal
diffusion coefficient has a certain value when the medium is heating up,
and a different value when it is cooling), so slightly that at first sight one
is led to believe that the same similarity arguments are still valid, to
arrive at contradictions because the modified degenerate problem thus
obtained has no valid solution. When this happens, a deeper investiga-
tion of the difficulty discloses that the attempt to find solutions by the

standard procedure, starting from the degenerate problem, is improper-
ly posed.

It is then convenient to clarify the limitations of dimensional analysis
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in connection to the quest for the self similar solut'ions. To this purpose
itis crucial to keep in mind that when we are looking for the self similar
solution that represents a certain phenomenon, we are not actual}y
interested in the exact solution of a degenerate problem, but rather in
the asymptotics of the solutions of non degcperate problems. There is
usually no doubt (for example, because an existence theorem has bcfen
demonstrated) that a solution of the non degenerate problem dogs.emst,
but when dimensional analysis is applied we of course find th_at it is not
self similar. Which will be the form of the asymptotics c_:)f_thls non self
similar problem will depend on the passage to .thg ln.mt in which the
additional parameter (that which spoils_the self51m1¥arlty) tends to zero
(or to infinity): in certain cases this limit may be _ﬁmte and non vam'sh-
ing, but in others it may be zero, or infinity, or it may not exist at all.
In the first case one finds self similarity of the first kind. In t.heﬂoth.er
instances the situation is more complicated: it may lead to self similarity
of the second kind, but it may also happen that the problem has no self
similar asymptotics at all. . S

In Sections 4.1 and 4.2 we have shown that in certalp situations th‘e
above mentioned limit may be zero or inﬁnity. but qotwﬂhstandm_g [hl?‘
the problem admits a meaningful asymptotics, \\éhlch moreover is sel

imi is is precisely the asymptotics we need. .

Smllrlllat;e:eh :ases]? the p:ssage to the limit ‘that leat.is to the self similar
asymptotics has certain peculiarities. Consider for instance the example
of Section 4.2: in passing to the limit we cannot assume that the amount
of heat initially deposited is fixed, and at the same time lhe}t the hl?t
region tends to a point. To arrive at the 'correct asymptotics }?f t e
original non degenerate problem it is essential to assume thatast § sm;
of the region is changed the amount of h.e_at must increase (pr reduce
so that a certain “moment” A of the initial temperature distribution
remains constant. Likewise, in the case of the flow past a yvedgc, we
cannot assume from the beginning that the latter is infinite: as the
thickness of the wedge is increased we must vary_U (the ‘velo;lty l?t
infinity) so as to keep constant the parameter A Itis essent‘lal td at the
power of L in the expression of these moments is not Aknown mna ya;ﬁ?,
and it is impossible to determine by means of drmf:nsrona] analy51_s. I
exponent is found in the course of the construction qf the so?utlox?, as
the intermediate asymptotics is derived, either by sollvmg an eigenvalue
problem, or by studying numerically the asymptotics of the non de-
generate problem.
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This is how the two kinds of self similarity arise. One could think that
the difference between them js related to whether (or not) the problem
admits some integral conservation law that holds also in the non self
similar stage. This is not true: in fact we shall show in general that this
difference is a consequence of the character of the transition from the
non self similar solution to its self similar asymptotics.

To this purpose, consider a non degenerate problem that is governed
by n dimensional variables and parameters a,...,a, of which

a....,a have independent dimensions, and the dimensions of
@415 - - ., a, can be expressed in terms of the dimensions of
@, ...,a.Letabeanyother quantity in which we are interested, that

is a function of the governing variables and parameters. According to

the Pi theorem any relationship between n + | dimensional quantities
of the form

a = f{a“...,ak,ak¥[....,an), (97)
can be written as
n = om, ..., II,_.), (98)
where I1, IT,, . . . | I, , are dimensionless, and
a a
n = IO, = o Sk+t
alal - - - a ! afh: 5 & a,’(hx Yot (99)
a
Mo = —.
apr. .- ay

Let us now consider one of the governing parameters of the problem,
say ay, . Usually this parameter is considered to be essential if the value
of the corresponding dimensionless parameter IT, is neither too large or
too small, say, for instance, if its value lies in the range 0.1-10. If I1, is
outside this range it is assumed that its influence in the phenomenon is
negligible. Actually this argument is correct only if

lmp .. ® exists and is 0. (100)

where in passing to the limit we must keep constant the remaining I7,.*
Of course this needs not to be true in general. However, if such is the

*To be precise something eise is also needed: for IT, » 0 (= x), ® must converge

sufticiently rapidly to its limit, so that whenII, < 0.1 (> 10), @ already differs very little
from its limiting value.
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case, and if II; is sufficiently small (large), we can without loss of
precision replace ® by a function @, with one argument less:

I = &I, . .. I Ty T ), (101)
i.e., with n — k — | arguments. Here
(DO = limn'_,ojm (D (]02)

In these cases it is said that there is complete self similarity of the
phenomenon with respect to the parameter I1,. .
Let us now assume that (100) does not hold, but instead

limg Lo ® = 0/co. (103)

It is evident that in this case I, remains gsscntia] hgwever small (cg
large) it is, and clearly as IT; — 0(—»}30) it.xs not possible to ripla():f;re
by its limit, because only useless relatxﬁonshlps such as I'I = 0= o
obtained. Then in the present situation we can not snm‘ply cancel IT;
from the list of parameters, and replace f or ® by funct}or?s “./“h qn}t:
argument less. There is not in this case complete self similarity wit
res\gz?tizr?are still some cases in which it is possible to reduce the
number of parameters. For instance, suppose some real number «
exists, such that when I, - 0(— o)

(D == H?(Dl(nh . . ni—lv nH-I’ LT nn#k) + O(H?)’ (104)

in which 0(x) denotes a quantity that is arbitrarily §mall as compared
to x for x sufficiently small, or large. Then, for sufficiently small (large)

I1; we obtain

n* = IMmn;* = odt,,..., In,_,, I, ....,H._) (105
a
= afkﬂpkﬂ e a;"“'i+ra;+"
where @, has n — k — 1 arguments. Therefore we can again describe
1

the asymptotics in terms of one parameter less; as in Lhe cbatazs;n:g
complete self similarity, but now: (a) th_: form of IT* cannot be o )
from dimensional analysis, because it is necessary to kngw 2. an
the argument a,., enters in IT* so that it remains essential. .

As a second example, imagine that th; two parameters II,, I1; are
small (large), but when I1,, I1, — 0(— oo)!ndependently, o] —l> O(T:i)\:
or has no limit. Then I1.. IT. remain essential however small (large) the
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are, so that the corresponding dimensional parameters a,,,, a,,; re-
main essential. Also in this situation an exceptional case may occur in
which the list of arguments of ® can be reduced by one. In fact, suppose
that two real numbers «, § exist, such that when [1,. 11, - 0(- o),

® = oM/t m,..., 0,0, ..., (106)
o,_,, 00, ..., 00, + o).
Then we obtain asymptotically the relationship
IT* = &I1**, I'I,,...‘H,_,,H,H,...,I'I,v",, (107)
M,,,,....0,_,
in which IT* is given by (105), and

Mn** = nNmn’t = Qiyj
it a P a;k”—gfmafﬂ- (108)

Again in this case the asymptotics of the problem is given in terms of
n — k — 1 parameters, but now: (a) the form of IT* and IT** cannot
be obtained from dimensional analysis, as it does not allow to deter-
mine « and f, and (b) a,,, appears in [1* and @ yis Gy ;in IT¥* so that
they remain essential.

In a similar way we can imagine cases in which three or more
dimensional parameters tend to zero (or infinity) but there is neverthe-
less an asymptotics in terms of power laws of these parameters,
Therefore, in these exceptional cases, notwithstanding that there is not
a complete self similarity with respect to II,, IT;, ..., thereis againa
reduction of the number of arguments of the physical law (that is of @).
In all these cases we speak of incomplete self similarity with respect of
the parameters IT,, I, . . ., .

Summarizing, if the value of a certain dimensional parameter is small
(large) three possibilities can arise:

(It
limp _o.,, ® exists, and is #0 and finite, (109)

the corresponding parameters: the dimensional g, ,, and the dimension-
less IT; can be excluded from the analysis, and the number of arguments
of @ is decreased by one. All the similarity parameters can be found by
means of dimensional analysis. We are in the presence of complete self
similarity with respect of the parameter IT,.
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(2) If
limy o @ is 0. oo, or it does not exist, (110)

but one of the above mentioned exceptional cases arises, the number of
parameters in @ can also be reduced by one, but not all the remaining
parameters, II, IT,, . . . can be obtained from dimensional analysis,
and the corresponding a, ,;, . . . are still essential however small (large)
they may be. We have incomplete self similarity with respect to IT,.

(3) If the limit does not exist and the above mentioned exceptions do
not occur, there is no power law self similarity with respect to IT,. In this
situation it is not possible to obtain a relationship with a smaller
number of parameters.

In the last event it may be useful to further recognize a different
special case, that in which for large (small) values of the I, some of
these parameters separates, although not according to a power law. In
other words, the case in which for these values of the parameters, @
admits a representation of the form

& = W(II,)d, + small quantities, (1)

where ¥ is some function of I, that is not a power law, for example a
logarithm, and the number of arguments of @, is less than n — k. Itcan
be shown that in this case it is also possible to obtain self similarity, but
not of the type we are considering, namely that in which the self similar
variable is expressed as a monomial of powers of the variables of the
problem (power law self similarity).

One of the difficulties that is encountered when one attempts to find
self similarities is that often there is no way to predict to which case does
the problem at hand belong; one must then explore the various pos-
sibilities in turn, starting with the simpler ones, and compare the results
with those of numerical calculations, experiments, or other analytical
methods.

The present discussion shows that the assumptions (that are fre-
quently made when looking for self similarities) of considering ir-
relevant certain parameters that break the degeneracy of the problem,
entail in general very strong and potentially dangerous hypotheses.
These parameters may be essential, and yet it may be possible to get self
similarity. In actual practice, to distinguish between the possible cases
of self similarity it is necessary to carry out a deep mathematical
investigation, that frequently is not feasible in certain difficult non
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linear problems. Therefore, when obtaining self similar solutions or
similarity laws on the basis of dimensional analysis, one is taking risks
and to avoid errors it is strongly recommended to verify (at least by
means of numerical calculations) that the solutions or the scaling laws
one has found do actually describe the asymptotics of the problem. The
situation is enormously more complicated when a mathematical for-
mulation of the problem is not available; in this case one must resort
to experiments to verify the basic assumptions.

4.4 Self Similarity of the First and Second Kind

Let us now imagine some physical problem that describes a
phenomenon, and that has a unique solution. Let a be an unknown,
and g, . .., a, the independent variables and parameters that govern
the problem determining this unique non self similar solutions. The self
similar solutions, on the other hand, are always solutions of degenerate
problems that are obtained from the original one when certain par-
ameters a,,,, and the corresponding II, tend to zero (or to infinity).
These solutions, in addition of being exact solutions of the degenerate
problem, are also asymptotics (usually intermediate) of a wider class of
non degenerate, non self similar problems, to which the solutions of the
latter tend when the said parameter tends to zero (or to infinity).
Clearly, if the asymptotics of our problem is self similar, and if the self
similar variables are power law monomials, we must be in the presence
of one of the two first cases we discussed in Section 4.3. According to
which is obtained, it will be self similarity of the first, or of the second
kind:

(a) Self similarity of the first kind is found when the passage to the
limit is regular, that is, when there is compiete self similarity with
respect to the parameter that spoils the self similarity of the non
degenerate problem. In this case, the expressions of all the self similar
variables (both dependent and independent) can be obtained by means
of dimenstonal analysis.

(b) Self similarity of the second kind results when the passage to the
limit is irregular, but one of the exceptions discussed in Section 4.3, (2)
occurs, so that there is incomplete self similarity with respect to the
parameter in question. In this case the expressions of the self similar
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variables cannot in general be derived by means of dimensional analy-
sis. When the solutions are found by direct construction, the determina-
tion of the exponent of the self similarity variable leads to a nonlinear
eigenvalue problem and the self similar variable is obtained within a
constant numerical factor (like the § factor in the definition of 4 in eq.
(94)). This factor can be evaluated by following the evolution of the
solution of the non degenerate problem until its asymptotics is attained,
for example, by means of a numerical simulation or by experiment.

If it happens that it is possible to find A by the application of some
conservation law, it means that the problem can be reduced to a case
of self similarity of the first kind by making an adequate choice of
parameters (as was seen in connection with the case of the instan-
taneous point source of heat).

It 1s also possible to find self similar solutions that are not of the
power law type. These self similarities arise from the special case we
discussed in Section 4.3, (2); the solutions that are called limiting to self
similar in the literature (Sedov, 1959, Barenblatt, 1979) belong to this
class.

4.5 Self Similarity and Groups of Transformations

The connection between dimensional analysis and physical similarity as
a consequence of scale symmetry, suggests that self similarity must be
closely related to the properties of invariance of the governing equa-
tions of the phenomenon. The invariance in which we are interested
here is related to the group of scale transformations, i.e., the similarity
transformations. A similarity transformation is a change of the govern-
ing parameters with independent dimensions, of the type

a = Aa,...,aq = A.aq,. (112)

Such a transformation is obtained if we pass from the original system
of units of measurement to a new system of the same class. Here the

Ay, ..., A, are real positive quantities. The values of the remaining
parameters a, a,,,, - - . , 4, vary according to their dimensions as
a = ATAY- - ALa, etc. . (113)

The transformations (112), (113) form a Lie group with & param-
eters. The quantities IT, I1,, . . ., I1,_, are the invariants of the group.
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Thus, the Pi theorem is simply a consequence of the principle of the
invariance of the physically meaningful relationships between dimen-
sional quantities of the form (97) with respect to the group of the scale
transformations of the parameters with independent dimensions: in-
deed, granted this invariance, it must be possible to represent all such
relationships in terms of the invariants of the group; by necessity, any
physically meaningful formulation of a problem (and therefore any
solution) must be invariant.

However, we must keep in mind that it may happen that the problem
we are considering is invariant with respect to a richer group (i.e., a
group larger than that of the scale transformations of the parameters
with independent dimensions). Then the number of arguments of the
function ® in the invariant relationship (98), that one obtains by
application of the Pi theorem by itself, must be further reduced in
accordance with the number of parameters of the supplementary group.
This is what happens in the case of the laminar boundary layer (Section
3.2). In these cases the solution may turn out to be self similar, and the
self similar variables can be determined taking advantage of the invari-
ance with respect to the supplementary group, even if this self similarity
is not a result of dimensional analysis, that exploits the invariance with
respect of the group of scale transformations of the quantities with
independent dimensions. In this connection we may quote the work of
Birkhoff (1960) in which the concept of a generalized inspectional
analysis of the equations of mathematical physics is introduced; the
idea 1s to look for groups of transformations that leave invariant the
governing equations of a certain phenomenon, and seek the solutions
that are invariant with respect to these groups (see also Morgan, 1952).

"The algorithms for deriving the maximal transformation group that
leaves invariant a certain system of differential equations have been
developed by Sophus Lie, and their applications to various problems of
physics and mechanics can be found in the books of Ovsyannikov
(1962) and Bluman and Cole (1974). Lie group methods allow to
investigate systematically the similarity solutions of the first and second
types of a given set of partial differential equations, which makes this
a very powerful technique for analyzing system evolution. A derivation
of the Lie group invariance properties of radiation hydrodynamics
equations and their associated similarity solutions has been given by
Coggeshall and Axford (1986). General procedures to find new sym-
metry groups for partial differential equations are given by Bluman er

e s
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al. (1987); in this connection see also the papers of Gaffet (1983, 1985)
and of Bluman and Reid (1988).

5 SELF SIMILAR SOLUTIONS IN GAS DYNAMICS

There is very extensive literature dealing with self similar solutions of
partial differential equations of interest for the mechanics of continuous
media and in particular for the mechanics of fluids. A considerable
number of problems that lead to similarity solutions are discussed in the
books of Sedov (1959), Zel’dovich and Raizer (1967), Stanyukovich
(1960), Barenblatt (1979), as well as in countless papers in specialized
journals. With such an abundance, to attempt to give a complete list of
references would be a hopeless task. In this paper we shall not try to
give full coverage to such a large territory, rather we shall discuss in
some detail certain specific problems that lead to interesting families of
self similar solutions, emphasizing the methods that allow to investigate
systematically each family, and pointing out various typical features of
the solutions.

In particular, we shall consider time dependent problems in which the
symmetry of the phenomenon allows a description in terms of a single
spatial coordinate: that is one dimensional, time dependent problems,
like flows with planar symmetry (which depend on a single cartesian
coordinate), and axially symmetric or spherically symmetric flows.
There will be two independent variables: the time ¢, and a spatial
coordinate that we shall generically denote by x. In these problems self
similarity leads to an ordinary differential equation in the self similar
variable which is a combination of x and .

For the unsteady, one dimensional problems of the dynamic of gases,
Sedov (1959) and Courant and Friedrichs (1948) developed a powerful
formalism (called the phase plane formalism) that permits a systematic
investigation of the family of the self similar solutions (for a short
introduction of this subject, with examples, see also the Second Edition
of the well known textbook by Landau and Lifschitz, 195%9b, also
Zel’dovich and Raizer, 1967). Other authors have developed similar
formalisms to study phenomena governed by equations of a different
nature. For example, self similar solutions of the equations of
Magnetohydrodynamics have been studied by Zmitrenko and Kurdyu-
mov (1975), Velikovich er al. (1985), Liberman and Velikovich (1986),
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Felber ez al. (1988a, b). The phase plane formalism for the equations of
nonlinear diffusion and related phenomena will be developed in Section
7.

In this Section we shall briefly introduce the basic ideas of the phase
plane formalism in gas dynamics, that will be the basis for the discus-
sion of various important applications.

5.1 The Phase Plane Formalism

We shall consider an ideal, non viscous gas, and will neglect heat
conduction, so that the evolution of any volume element will be adia-
batic. No body forces (like gravity) are acting. The governing equations
will then be

cu du 1aop  dp

+_

-—na d T} =
E*FME pax—* ,'a—!""x 'a:(‘t"ﬂu)ﬂoa—l([’l’ ) =0

(114)

Here u is the velocity, p the density, and p the pressure of the gas: y is
the adiabatic exponent, and » is a geometrical index whose value is 0,
1, 2 for planar, cylindrical and spherical symmetry, respectively. We
notice that no constant dimensional parameter appears in these equa-
tions. so that the motion will be self similar depending on how many
parameters with independent dimension enter in the initial and boun-
dary conditions of the problem. If there are no more than two of these
we shall obtain self similarity.

It is useful to rewrite the eqs. (114) in terms of the dependent
variables u, p, and

: =& =32 (115)

The new dependent variable z is related to the temperature of the gas,
or equivalently, to the local value of the speed of sound ¢. Substituting
into (114) and using the notation g = lu p, one obtains

0g dg Cu u

=1 e A s - =0,
Ot ix M é Ty
8, 2, 10
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(a a>]7 I — gl = 0
5 T g lnz+ (1 -y =0 (116

The equations (116) show that the density enters into the problem only
through its logarithm, so that the governing equations are invariant
with respect to scalings of the density.

It is easy to verify (for brevity we omit details that the reader can find
in the books of Zel'dovich and Raizer, 1967, or of Sedov, 1959) that the
dimensional group of the equations (114), or (116) has similarity solu-
tions of the form

Sx ( ox

—VO.p = A4,6Ox = =

be?’

(&1

(117)

=
Il

)’Z(g). [ =

in which the dimensional parameters 4, and 4 depend, in general, on
the initial and boundary conditions of the problem, and V, G, Z are
dimensionless functions of the similarity variable {. We observe that
there must be always a parameter A, that determines the density scale:
the density may not be uniform in the initial state: the exponent w
determines the corresponding law of variation with x.

Substituting (117) in (116) one obtains a system of equations that can
be written in the following compact form:

dF,
dInC - di(V~ Zw 51 Y, n)! (IIS)

a:‘j(Va Za }’)

in which F, denotes (¥, InG, Z), and the a
and the remaining parameters:

.» d;, are functions of V, Z
1 V —1 0

Z 1
:

¥

(a)) = | V-1 , (119)

0 -z -1

w— 2

d = —(n+1—-w) d = Z — V(V — 1/9),

ZI2AV — 1]8) + oy — )V]

d
? vV — 1
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Solving the system of equations (118) we obtain

dv _ ﬁ dln G _ A, 4z A,
dln ¢ A'din{ = A’din¢ T A" (120

in Wh]Ch.A = Det(a,) = (V — 1)’ - Z, and 4, is the determinant of
(tjhe matrix that is obtained replacing the i-th colum of (a;) by the vector
. It is important to notice that the a;, d;, and thus A, A. do not depend
elther_oq Goron{. Then, ther.h.s. of (120) are only functions of ¥ and
Z Thls' Is not a coincidence, but is a consequence of the invariance of
(116) with respect to a change of scale of the density, and of the fact that
no constant dimensional parameters appear in it,

The property we have just mentioned has a very important conse-
quence for the analysis, namely that a single autonomous first order
ordinary differential equation can be extracted from the system (120):

Az _ AV, 2)
dv AWV, Z) (121)

Oqce (121) has been solved, the remaining equations, which can be
written as

dinl A dinG A,
v = A av T AP (122)

are reduc?ed to quadratures. Actually it is sufficient to evaluate only one
ofthese integrals, since by virtue of the adiabaticity of the motion, it is
possible to find an algebraic integral of the (120) of the I’"orm
F(V,Z, G, {) = const., in which the constant can be evaluated in
terms of the initial and/or boundary conditions.
. Then -the solution of a self similar problem is essential reduced to the
integration (that in general will be numerical) of (121). This is the basis
of the method of Sedov (1959) and of Courant and Friedrichs (1948)
The variables V, Z are called phase variables, and the solutions of the.
autonomous differential equation (121) are usually represented as in-
tegra]. curves in the (V, Z) plane, called the phase plane. Actually it is
spf’ﬁcnent to consider the Z > 0 half plane, as the solutions with nega-
tive Z are unphysical.

A single integral curve passes through any regular point of the phase
plane. Any integral curve (or piece thereof) represents a self similar flow
of some type. All conceivable self similarities of the type (117) described
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by the governing equations (116) are represented in the phase plane, so
that the formalism is complete. The solution of a given self similar
problem, characterized by its particular boundary and initial con-
ditions, is represented in the phase plane by a (several)} piece(s) of the
appropriate integral curve(s), and must satisfy at its ends the boundary
conditions. Each piece represents the flow in a certain domain of the
independent variables. If the solution we are seeking 1s represented by
two or more pieces, the flows corresponding to each one of them must
be adequately matched at the common boundary of the respective
domains. This will be shown when discussing the examples.

To determine which curve (or curves) correspond to the problem
under study it is necessary to know the behavior of the solutions in the
neighborhood of the singular points of the autonomous equation (121).
There are in general 9 singular points in the phase plane (of which 6 at
the finite). Their position and nature, and the topology of the integral
curves, depends on the parameters J, y, w, and #n. We shall not present
a detailed analysis of these singularities, as it would be too lengthy and
clearly beyond the scope of this paper, but when considering specific
problems we shall briefly discuss the relevant singular points. For a
detailed (but by no means complete) study of the singularities of (121)
see Sedov (1959).

It should be noticed that besides the integral curves, corresponding
to each singular point P = (V,, Z,) there is an exceptional exact self
similar solution of the equations of the dynamics of gases, represented
by

V = Vp, Z = Z,, (123)

the variable { being free. The function G is determined by the adiabatic
law. For these special solutions the physical variables are given by

simple power laws of x and ¢.
For completeness we should add a remark on the particular form of
(117), for r = 0. At that time the variables of self similar flows follow

simple power laws:
(e, t = 0) = wpx'* clx, t =0) = c¢ox'7H (124)

Xl - +w

p(xs L= 0) = p()xw’ p(xs t= 0) = PoX >

with ¢ = 1/8, provided that the limits for 1 — 0 exist. The constants
can be obtained from (117) with |4 = (x/{)* in the limit { - oo,
The advantages of the phase plane formalism are:
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(a) It allows to obtain systematically all the self similar solutions of
the governing equations,

(b) It is only necessary to integrate a first order equation.

. The counterpart of these advantages is that the physical interpreta-
tion of the integral curves that are obtained solving (121) is far from
obvious, and cannot be appreciated by simply looking at the phase
plane; to arrive to it further studies are needed.t Perhaps owing to this
obscurity the family of the self similar solutions of (114) has not been

yet fully explored, and many integral curves are stiil waiting to be
interpreted.

5.2 Self Similar Unsteady Gas Flows

As said above the family of the self similar one dimensional unsteady
flows of a gas is represented in the phase plane by integral curves,

solutions of (121). Using the expressions of the A, one can write (121)
as:

dzZ

av
Z{R2V — W) + v — DVIV — 1) — (3 — DV — 1)V — p)
— [V — ) + vy — 1)]Z}
V=DV — D)V - p) + (xk — vW)Z] '

(125)

and the eqs. (122) as:
' din{ _ Z - (V- 1)} .
dv VIV — DV — ) + (x — vV)Z° (126)

and

W - 1)d]nG (o — W — VIV — DYV — p) + (v — vV)Z

din ¢ zZ—-(V—-1y ’
(127)

The present definition of ¥ and Z differs by factors & and &° respectively from that
employed by Sedov (1959) and Zel’dovich and Raizer (1967).
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in which
EM,u:é,vsn%—l. (128)
A large number of self similar gasdynamic flows have been studied.
In the book of Sedov (1959) many problems including the strong
explosion, the propagation of detonation and combustion fronts, the
spherical piston, uniform explosions and implosions, etc. are studied in
detail. The classical solution of the converging shock wave (Guderley,
1942), that is a case of self similarity of the second kind, is analyzed in
the book of Zel’dovich and Raizer (1967). The recent reviews of Meyer-
ter-Vehn and Schalk (1982) on self similar implosions and of Ostriker
and McKee (1988) on astrophysical blast waves contain many addition-
al references. Other solutions are scattered in the literature, and we shall
not attempt to give a complete list of references. Among them we can
mention the self similar implosion of a sphere of gas (Ferro Fontan et
al., 1975) and the self similar implosions of gaseous shells (Ferro
Fontan et al., 1977). In addition to explosions and implosions, of which
some examples will be discussed later one, an important class of self
similar motions comprises expansions (see for example Anasimov,
1970, Barrero and Sanmartin, 1977, Sanmartin and Barrero, 1978a,
1978b, Caporaso, 1982, Pakula and sigel, 1985, Schmalz, 1986, Liber-
man and Velikovich, 1989). Applications to cosmological problems
have been discussed by Henriksen and Wesson (1978), Sanyal et al.
(1985) and Bertschinger (1985a, 1985b). It must be recognized that the
family of the self similar solutions of the dynamics of gases is very rich,
and although a large number of papers have been published on this
subject, there still remain problems to investigate.

5.3 Solutions with Discontinuities

One of the characteristics of gaseous flows is that fronts (shock waves,
combustion and detonation fronts, etc.) may occur. At these fronts the
density, velocity, temperature, and other variables or parameters of the
gas may present discontinuities, or jumps. A self similar solution with
a discontinuity is represented in the phase plane by two disjoint pieces
of integral curves. The solution passes from one to the other by means
of a sudden transition that occurs at a certain fixed value {; of the self
similar variable.
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FIGURE 19 Solution with a discontinuity (shock wave).
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It can be seen from (121) that A = 0 on the parabola Z = (V — 1),
that is called the critical, or sonic parabola (here we shall use the
abbreviation CP). If at a certain point of an integral curve A = 0, but
A, # 0, {(V') has an extreme. Therefore, if an integral curve crosses the
CP at a regular point, in the neighborhood of the point of crossing ¥
is a multivalued function of {. But for any physically meaningful
solution Z and ¥ must be single valued functions of {, so that no part
of an integral curve that represents it can cross the CP and continue on
the other side along the same curve (the exceptions are those special
integral curves that cross the CP through a singular point in which
A, = 0). This means that when the solution we are seeking is represent-
ed by a piece of an integral curve that crosses the CP at a regular point,
at some place on the curve (no farther than the point of crossing) there
must be a discontinuity of the solution (a shock front, or a front of
some other nature), so that the rest of it is represented by pieces of other
integral curves (see Figure 19).

[t is easy to verify that the points of the CP correspond to perturba-
tions that propagate with the (local value of the) speed of sound with
respect to the gas. The points of the phase plane below the CP corres-
pond to supersonic perturbations, and those above to subsonic flow. A
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shock front will be represented by a discontinuous transition from a
point below the CP (that represents the supersonic flow in front of the
shock) to a point above it (representing the subsonic flow behind). A
detonation front that satisfies the Chapman-Jouguet condition is re-
presented by a transition to a point on the CP (that represents the sonic
flow behind the front). The reader can consult the monograph of Sedov
(1959), in which the formulae that connect the phase variables on both
sides of discontinuities of various kinds (i.e., the Rankine-Hugoniot
relationships, the Chapman-Jouguet conditions, etc.) are derived.
These formulae must be used whenever appropriate to match the pieces
of the integral curves that represent the solution of the problem under
study.

For later use we shall give formulae for ordinary shocks. Let us
denote by the subscript | the quantities on one side of the discontinuity,
and by the subscript 2 those on the other side. At a compression shock
the conditions of conservation of mass, momentum, and energy must
be satisfied. If a shock is moving with a velocity ¢, in a perfect gas we
can write

pluy, —¢) = p(uy — ¢), (129)

pw — ) +p = paluy — ) + pa (130)
SRS SR I S VNS IR, T (&)

b - ef + Il -t - af + IR

These conditions can be written in terms of V, G, and Z b}/ using (} 17)
and by noticing that for self similar flows the shock velocity ¢, is given
by
dx r
= — = §-. (132)
€ dt !
With these substitutions one finds:

, 2 Z - =V s,
L2:1+(Vl—l)[l+y+l Ty ] (133)

o — 1Y 1 221]
= |1 Ay -1+ — 134)
Z, (}‘+ l)(Vl— l)__l:(l ) — (

[”(M—W—a]
y — 1
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and
V-1
23— . 3
G, G, A {135)

Given the point (¥,, Z,) in the phase plane that represents the
conditions of the gas on one side of the shock one can find from (133),
(134) the point (V;, Z,) representing the state of the gas on the other
side. From the symmetry of (129)-(131) it is clear that the subscripts 1,
2in (133), (134) can be interchanged. It can be observed that the points
of the sonic parabola are transformed into themselves by (133), (134).
and also that points above this parabola are transformed into points
below it and conversely.

If a strong shock is propagated into a gas at rest, ¥, = 0, Z, = 0
and one obtains

2 29y ~ 1) y o+ 1
V, = —_— 27, = e _— ey 6
2 v ] 2 (_}' 1)_ GZ Gl p — ] (|3 )

These expressions shall be used later on when discussing the strong
explosion and the imploding shock wave.

5.4 Particle Trajectories and Characteristics

It is convenient to have at hand the equations that describe the trajec-
tories 7 of gas elements and of the characteristics, as they help to obtain
the physical interpretation of the integral curves representing self sim-
ilar solutions. The equation of motion of a gas particle is obviously

dx
il (137)
Introducing the similarity variables by (117) one obtains:
dIn{
. = 8V — 1), 138
(Fos) = o= (138)
in which {(¢) denotes the self similar coordinate of the particle. From
(138) it follows immediately that ¥ = | is the condition that

¢ = const. on the trajectory. In consequence, the self similar motion of
a free surface is described by ¥V = 1. In particular, the self similar
motion of a gas-vacuum interface (where p = 0) is represented in the
phase plane by the singular point C(V. = 1, Z, = 0).
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Similarly, the equations of the C, and C_ characteristics are:

(%)C: = u+ec, (139)
in which ¢ denotes the local value of the sound velocity. Using (117) one
obtains:

LS R Z 140
(dm,)ci - SV - 14 J2). (140)

From this it follows that points on the CP correspond to { = const.
characteristics (for V' < 1 it will be the C_ characteristic, for V¥ > 1 the
C, ). These limiting characteristics play an important role since they
separate flow regions that are in causal contact with the gas at
x = 0, ¢ = 0 from regions that are not causally connected with it, as
we shall see below when discussing examples. For a discussion of the
limiting characteristics and their role in self similar problems see With-
am (1974).

5.5 Unsteady Planar Flows

To acquire familiarity with the application of phase plane methods we
shall briefly discuss the self similar planar flows (# = 0) in the case
d = 1. This case is instructive and very simple because all the solutions
can be obtained in terms of elementary functions. The self similar
variable is

{ = xjbi, (141)

in which the constant parameter b has the dimensions of a velocity
(b = c¢p). It must be observed that the solutions we are going to discuss
can also be found by the method of characteristics; it is a good exercise
for the reader to recover the present results by this route.

Whenn = 0, § = 1, there is a common factor Z — (V' — 1)’ in the
numerator and the denominator of (125). For the points that are not on
the CP this common factor drops out and we are left with

iz 2z o

dav 4

that can be integrated at once yielding
Z = KV’ K = const., (143)
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then from (126) one obtains { = k/V[k = const.]. From (127) it results
G = const.. The solutions of (142) are then a family of parabolas with
their vertex at the origin of the phase plane. It is easy to see that they
represent uniform flows with constant velocity v = u, = Kcq; these
flows have z = ¢{. and their Mach number is given by .# = K~ '?. We
notice that in the present case A = A, = 0 for points of the CP, so that
it is allowed to cross the CP along these curves.

It can be verified that the CP itself is also an integral curve; along the
CP one has

2 -1 VvV — 1 =D
co k-2 6= (—2= VT (a4
: ‘ v+l * (V— G+ 1)) (144)

This solution represents an expansion, or a compression wave. The
density tends to infinity as one approaches the point B, which is located

on the CP at
2 y — 1V
V. = Lz, = [/, 145
Py + 107 (}'Jrl) a2

The point B corresponds to x = oo in the gas. In Figure 20 the phase
plane and some integral curves are shown.

Putting together these results, it can be concluded that for
n =0, = 1, the non trivial self similar solutions will in general
consist of fronts. or of expansion and/or compression waves, that
connect regions of uniform flow. Let us discuss two examples:

5.5.1 The expansion of a gas into the vacuum

The expansion into the vacuum of a gas initially at rest in the x < 0
region is represented (see Figure 21) by the following pieces of integral
curves: (a) the portion from the origin to the point (0, 1), that represents
the gas at rest (V' = 0) that has not yet been overrun by the front of the
expansion wave; (b) the piece of the CP from (0, 1) to infinity, that
represents the region x < 0 of the expansion wave; (c) the part of the
CP from infinity to the vertex at (1, 0) that represents the expansion
wave in the region between x = 0 and the vacuum, and finally, (d) the
segment from (1, 0) to the origin, that represents the vacuum (since
Z = 0). In this connection it is interesting to comment that if the
expanding gas occupied initially a finite volume (for example, if it was
contained between two walls at x = 0 and at x = L, and the last is
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Y

Cp

FIGURE 20 Integral curves for n = 0, § = l: the arrows indicate increasing |{].

removed at the initial moment) the ensuing flow is not self similar (the
solution of this problem is discussed in Stanyukovich, 1960). This is one
of the cases we mentioned in Section 4.3, in which there is no self similar
asymptotics, however large is x/L.

5.5.2  The centered compression wave

As a second example consider the flow represented for ¢+ < 0 by the
portion from (0, oo) to (0, 1) of the ¥ = 0 axis, the piece of the CP
between (0, 1) and M, and the segment of a parabola (143) between M
and the origin of the phase plane (see Figure 22). This self similar
solution represents a centered compression wave, all whose C'_ charac-
teristics converge at the point x = Q at the time ¢+ = 0, so that no shock
is formed before the compression wave collapses at x = 0 (we shall -
assume that there is a rigid wall at x = 0, and that the gas occupies the
region x > 0). Then, the first piece represents the gas at rest in front of
the compression wave; the piece of the CP describes the compression
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CpP

FIGURE 21 Integral curves representing the expansion of a gas into vacuum; the
arrows indicate increasing (.

wave, and the third piece describes the dense gas, behind the compres-
sion wave, as it moves towards x = 0. At the precise instant of collapse,
t = 0, the gas has everywhere the same density (that of the dense gas)
and moves with constant velocity.

To continue the solution from 1 < 0to ¢ > 0, i.e., to find the flow
after the collapse, one must keep in mind that according to (117) the
sign of ¥ must change when the sign of ¢ changes. Hence the integral
curve representing the solution for 1 > 0 must lie in the V' < 0 half
plane, and must have the same Mach number as that for t < 0. Then
the portion from (0,00) to (0,RS") of the ¥ = 0 axis, and the piece of
parabola from RS to the origin in Figure 22 describe what happens
after the collapse: the gas that is still converging towards the origin
(second piece) encounters an outgoing shock wave (the jump

*This is necessary to ensure continuity of the physical variables.
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Ccp

FIGURE 22 Integral curves representing the planar self similar tmplosion; the arrows
indicate increasing (.

RS — RS’)and is further compressed and brought at rest in the region
near the wall.

The closer is M to B, i.e., the larger the Mach number of the
uniformly converging gas behind the compression wave, the stronger
will be the compression. Notice that an infinite compression is achieved
for a finite # = A* = 2/(y — 1). It is not possible to have centered
compression waves with .# > .#*. A self similar compression wave
with .# > .#* must be represented in the phase plane by a piece of the
CP going from the singular point C to M (which now lies to the right
of B), which means that there will be an empty cavity extending from
the origin to the front of the compression wave (the point C represents
a boundary between the gas and a vacuum).

The self similar solution of Figure 22 corresponds for planar sym-
metry to the self similar spherical implosion studied by Ferro Fontan
et al. (1975). In the present case the solutions are fully analytic; they can
be derived by the method of characteristics, considering the flow
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generated by a piston that advances towards x = 0, and imposing the
condition that the compression wave is centered (in other words, that
the motion of the piston is such that all the C_ characteristics emanat-
ing from it collapse at the point x = 0 when ¢ = 0). For spherical or
cylindrical implosions the relevant integral curves are not analytical
and must be calculated numerically. An interesting analogy to the plane
centered compression wave we have been discussing has been given by
Lengyel (1973).

5.6 Strong Explosions

Explosions are very important for astrophysicists, and the interest in
explosive phenomena is due not only to scientific but also to practical
reasons. Apart from the nature or origin of the explosive process itself,
the expanding blast wave will shock, heat, and accelerate the surround-
ing ambient medium. If there are many explosions, the various interact-
ing blast waves may dominate over other physical processes to the
extent that they determine the overall properties of the medium. A very
extensive and recent review paper on astrophysical blast waves is due
to Ostriker and McKee (1988) and contains a large list of references. In
this section we shall briefly discuss the classical Sedov-Taylor (Sedov,
1946, 1959; Taylor, 1950) solution to the problem of a strong explosion,
which is the prototype of these type of problems.

Let us consider that at + = 0 an explosion occurs at the center of
symmetry (x = 0) of a gas at rest, in which a finite amount of energy
E, is liberated instantaneously (for the analogous problems with cylin-
drical and plane symmetry E, will be the energy per unit length, or per
unit area, respectively). We shall be primarily interested in the case in
which the gas has initially a uniform density g, (i.e., ® = 0in (117)),
although most of the formulae that we shall present are also valid if the
initial density varies according to a power law. We shall neglect the
mass and dimensions of the object that liberates the energy. This means
that the very first stages of the phenomenon will not be adequately
described by the theory, that applies only after the blast wave has
extended to the point when the swept-up and shocked mass of gas
greatly exceeds that of the original object. We shall also neglect the
radiative transfer of energy from the explosion region to its surround-
ings, which is the dominant mechanism at the beginning: during this
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initial stage the coefficient of thermal conductivity 4 can be considered
a power function of the temperature (1 = A T™, in which 4, is a
constant,and m =~ §, see Section 7.1); in this phase of the phenomenon
a strong nonlinear thermal wave whose front expands according to the
law x; ~ 1/?*™ heats the gas around the point of the explosion (see for
example Barenblatt, 1979). An intense shock wave arises in the heated
gas which soon outstrips the thermal wave, so that subsequently the
phenomenon enters into a purely gasdynamic stage. We shall focus our
attention on this second stage, in which the constant dimensional
governing parameters will be p, and p,, the initial density and pressure
of the gas, and E,. The motion of the gas will depend, under adiabatic
conditions, on the following parameters:

Pas Po» ECH X, & ¥ (146)

By considerations of dimensional analysis, it is then found that all the
independent dimensionless quantities of the problem can only depend
on the following dimensionless parameters:

x p:)z +v—w)f2y

= v THoa LT T e T
(E]py) T+ v=o giaes=an EV Py 7

v

(147)

where £ = aF, is a constant parameter whose dimensions are those of
energy (v = 3), or energy per unit length (v = 2), or energy per unit
area (v = 1), and « is a numerical constant whose value will be deter-
mined later. In (147), { and t are variables so that the flow is not in
general self similar. Nevertheless, both experiment and theory show
that at the boundary of the region of disturbed gas motion during an
explosion a shock wave is formed. In a spherically symmetric explosion
(v = 3) the shock will be a sphere whose radius increases with time.
Clearly, the influence of the initial pressure, and then of 7, enters only
due to the shock conditions. But then, in the limit of a very strong
explosion (i.e. if £ is large) the pressure behind the shock wave will be
much larger than p,, and the gas motion behind the shock wave will be
practically independent of p,. This will happen for ¢ not too large, so
that the radius of the shock front is still small and t < 1. In this
situation only two constant dimensional parameters govern the prob-
lem, p, and E,, and the motion is self similar. Notice that for large ¢,
as the shock wave attenuates further, it is not correct to neglect the
counterpressure p,, so that the gas motion ceases to be self similar.

Summarizing the previous discussion, the self similar regime in which
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we are interested occurs for ¢ not too small nor too large, such that
Lys te € 1 < tp, (148)

where
1 1

1 M v Eo 2m—1) K 24y Z+v@Zm - 1)
xr — | — x — — , (149
b \/E(Po)’tk [(Po) c” Vet

1 !

- (2%
fp ~ == — .
Po Po

In (132) 1,, denotes the time when the shock has swept a mass of the
order of M, the mass of the exploding object (then for ¢ > 1,, the latter
can be neglected), 1z denotes the time when the shock overtakes the
radiative thermal wave, and ¢, is the time when the pressure behind the
shock becomes comparable to p,. In (149) ¢ denotes the specific energy
of the explosion (energy liberated per unit mass of the explosive), C is
the specific heat (per unit mass) of the gas (v = 3), or the specific energy
per unit length or area (v = 2, 1, respectively), and x = A,/(m + 1)C.
Clearly, T = ¢/tp.
The hydrodynamic self similar regime will exist provided

Ly, tg << < tp, (150)

in the sense discussed in Section 4. We are here in the presence of a case
of self similarity of the first kind, as the similarity exponent

d = 2/(2+ v — w), (151)

is determined by dimensional analysis alone.

The solution in which we are interested will be represented in the
phase plane by an integral curve, solution of (121), beginning at the
point S, whose coordinates are given by (136):

2 _ o~
y+ U7 g+ )
that describes the state of the gas immediately behind the strong shock
that is advancing in the gas at rest (see Section 5.3). It results that this
integral curve is analytic, being given by the following formula:

Viv = Dy = 1)

v =1y

(152)

S

zZ = (153)

ez -
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as can be easily verified.
Three singular points of (121) that lie on the curve (153) are relevant
for the present problem:

(a) The point D(V,, = 1/y, Z, = o) is a saddle point: there is a
single integral curve arriving at D from the finite (V, Z) plane, which
is given by (153). Along this curve { — 0 as D is approached, so that
this point represents the origin of coordinates in the gas.

(b) The point C(Ve = 1, Z- = 0)is a node, it represents a point at
a finite distance from the origin (for finite ¢), where the density and the
pressure of the gas vanish.

(c¢) The point E

Ve = 2 154
£ OS2+ (y — ]’ (154)
2 = DIQ = )y ~ o]
Fl2 — oy +v - 22 + (¢ — Ipf
is a node; as E is approached along the curve (153), { — oo, so that this
point represents the state of the gas at infinity.
As w or y are varied the point £ moves along the integral curve (153),

and can pass through C from the Z < 0 half plane to the upper Z > 0
half plane; the condition that Z, be positive is given by

20~ +v
s

ZE=

Q- < 0 < (155)
Furthermore, E can pass through S, so that its position may be
intermediate between D and P. This happens in the intervals
200 = 1)+ ¥(3 — ) 20—y + v

v+ 1 gﬂ)‘\:_'—}—— (156)
y )

that are represented as hatched areas in Figure 23a— forv = 1. 2, 3.
It can be appreciated that for an explosion in a gas of uniform density
(w = 0) this situation happens only for spherical symmetry, fory > 7.

There is an important difference in the nature of the solution accord-
ing if E is located between D and S, or lies outside this interval:

(i) Let us discuss the last situation, that occurs for
<20y -1+ v3 -G+ 1), or w>2> — 1)+ v]fy (un-
shaded areas in Figure 23). In this case the solution is represented by
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FIGURE 23a Location of the singular point E(v = 1): in the shaded intervals E lies
between D and P.

the piece of the integral curve (153) that joins D with S, which describes
* the motion of the gas from the origin to the shock front. This is shown
in Figure 24 forv = 3,y = 5/3, @ = 0. As can be observed in Figure
23, if w = 0 and v = 1, 2, E lies outside the interval D — S for any
y > 0; for v = 3 this is true only fory < 7.

It is easy to find expressions of the physical variables in terms of V;
we give here the formulae for the case & =

4 V-V, e
= ¢ 157
& ES(I/S) (VS—V> I/;-—Vf—), ( )

V-1 V-V, |
= Py . 158
? p‘(Vs~ )(Vs—V) (VS—VL) (%)
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FIGURE 23b Location of the singular point £(v = 2): in the shaded intervals E lies

between D and P.

with

(l + 9PV Ve — |

4y

Vs — Vp (V)%P(i—

(| + W -1

4y

Ao

i3

x4

1

ETh V—VE g,
) (=%)

(159)

(160)

¥ — 1
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(Vs — V) Vi — ¥ Vi — Ve
I S el B
T2+ T 2y =D+
1 2v(y — 2) ]
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FIGURE 23¢ Location of the singular point E(v = 3): in the shaded intervals E lies
between D and P.

2 v 24+
= N A ,(161)
R A T W o
2v Y 2 - 1)+ v
%p = e T % T Ty

The dependencies of the physical variables on { are represented in
Figure 25 for the case v = 3,y = 5/3, = 0; results for other values
of v and y are given in the book of Sedov (1959).

It can be appreciated that the velocity is zero at the center of sym-
metry, and increases almost linearly with the coordinate near to it. The
pressure is finite, and tends to a constant value as the origin is ap-
proached. The density tends to zero very rapidly as { ~ 0, so that most
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FIGURE 24 Integral curve for a strong explosion (v = 3,y = 5/3, w = 0).

of the disturbed gas is contained in a rather thin shell just behind the
shock front. The temperature tends to infinity, hence very large tem-
perature gradients occur near the center of the explosion. In this
situation it is to be expected that heat conduction (that we neglected)
will be very important; if this is taken into account it can be shown that
T is finite at { = 0 (see Sedov, 1959).

(i) Now let us consider the first situation, i.e.
R =D+v3 =9l + 1) <o < [2(z — 1) + v])/y (hatched in-
tervals in Figure 23); for an explosion in a uniform gas (0 = 0) this will
occur only in the case of spherical symmetry (v = 3), and fory > 7.
When E is located between D and S it is not possible to find a solution
extending from the origin of coordinates to the shock, because as one
moves along the curve (153) starting from D, { increases to infinity as
E is approached before arriving to the point 8. Clearly the piece DE of
the integral curve cannot represent the solution of the problem we are
considering, which must now be represented by another piece of the
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FIGURE 25 Profiles of the physical variables for a strong explosion (v = 3,y = 5/3,
w = 0)

curve (153). The piece we need can be no other than that which joins
C with S. This is shown in Figure 26, that corresponds to v = 3,
y = 11, = 0. In the following we shall consider only v = 3, w = _0.
As stated above, C represents a moving point of the gas, at a finite
distance from the origin of coordinates. Its position is given by

Xe = ‘:c(E/Po)”S‘zlsv (162)
with
25;'!7—31)7(;=72~2)111;}'+I)
_al v - 7 503y - D@2y +
' =i 7
— o opqlis N 3y (]63)
e = G470 + ) <—3(7 = 2))

At C, the density, the pressure and the temperature of the gas van'ish,
so that an empty cavity whose radius is x is produced by the explosion.
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FIGURE 26 Integral curve for a strong explosion in which a central cavity is formed
v=3y=1,0=10).

On the other hand, the velocity tends to infinity as C'is approached. The
piece CS of (153) describes the motion of the gas between Xcand xg.

The dependency of { with y is shown in Figure 27. It can be observed
that {/{s is always less than =~ 1/4, and becomes vanishingly small as
7 — 0.

The profiles of the physical variables are given as before by (157)-
(161), and are represented in Figure 28 for the case y = 11.

To complete the solution of the problem of the strong explosion it
remains to determine the value of the numerical constant « that fixes the
coordinate scale in (147). For this purpose one must calculate the total
energy of the explosion, that is given by:

EO = a(“,’)E —

o, JOS [%,ou2 + }L] x'~dx, (164)

g = 2v62 = 27t,0'3 = 47'[,
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FIGURE 27 Radius of the cavity produced by a strong explosion fory > 7 (v = 3,
o = 0).

The first term in the integral is the kinetic energy density and the second
term is the internal energy of the gas. In terms of the dimensionless
functions (117) one obtains, using (153):

20,(y + 1) f GV?
o + 2 Joicyr—1

in which the lower limit of the integral is 0 if the solution is represented
by the piece DS of (153) and {if by CS. The integration can be effected
by changing to the variable ¥ and using (157)-(161). The function « is
shown in Figure 29.

Having thus fixed the coordinate scale we can give expressions of the
position and velocity of the shock front. For w = 0 one has:

g, (165)

Xg = (Eo/apo)li(2+v] f2“2+”. Uy = (Eola,po)Iff2+|-){4v,'(2+r}(166)

T 24w
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FIGURE 28 Profiles of the physical variables for a strong explosion in which a central
cavity is formed (v = 3,y = 11, @ = 0).

Other problems related to the strong explosion we have been con-
sidering, as well as discussions on various effects such as heat conduc-
tion, counterpressure, variable density of the medium, etc. can be found
in the book of Sedov (1959).

5.7 Implosions

Implosions are an important class of phenomena whose effect is to
concentrate a large amount of eneryg in a small volume (a process
called cumulation) at the instant of culmination; at later times this high
energy density drives an outgoing shock wave similar to that of an
explosion (however this shock is not as strong as that discussed in the
preceding Section, as the counterpressure cannot be neglected as be-
fore). Various interesting self similar solutions have been found that
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FIGURE 29 The ratio £;/E as a function of y; notice the logarithmic scale.

describe implosions. Classical problems of this type are the collapse of
a cavity in water (Rayleigh, 1917, Hunter, 1960) and the converging

- shock wave (Guderley, 1942, Yousaf, 1986). Research in inertial con-

finement fusion, in which one strives to produce large densities and a
high concentration of energy in a central region of a target (a small
pellet) to initiate nuclear fusion reactions, has spurred interest in im-
plosions, and many papers have been published describing various
types of self similar implosions. A huge amount of work has also been
done in the development of sophisticated codes for the numerical
simulation of implosions and the design of pellets, and a tremendous
effort has been spent in multimillion dollar experiments in which va-
rious kinds of targets have been compressed to very high densities by
extremely powerful laser beams. Implosions are also relevant for other
fusion concepts such as dynamic pinches and liners. I shall not discuss
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here these matters as the interested reader can find excellent reviews
elsewhere, and more information can be found in the references. A
comprehensive review on this matter has been written by Meyer-ter-
Vehn and Schalk (1982), where additional references can be found. We
shall discuss with some detail the converging shock wave, as it offers a
fine example of a self similar solution of the second kind in gas dynam-
ics (see Zel’dovich and Raizer, 1967, also Landau and Lifschitz, 1979).

Consider a spherically (or axially) symmetric flow in which a strong
shock wave travels towards the center (or axis) through a medium of
uniform initial density p,. We shall not discuss what caused the wave;
it could have been produced, for instance, by a spherical (or cylindrical)
piston which pushed the gas inward, imparting a certain amount of
energy to it. We shall concentrate our interest in what happens in the
advanced stages of the phenomenon, when the shock front is arriving
at the center (or axis) and immediately after its collapse, that we assume
occurs at + = 0. We shall also be concerned with the motion of the
medium for smal} values of the radius.

As the shock wave converges, the energy concentrates near the front
(cumulation) and the wave strengthens; then the unperturbed pressure
po of the gas inside plays no role in determining the motion behind the
shock front, and can be taken as zero. It is then reasonable to assume
that close to the moment of collapse and near the center (or axis) the
motion will approach some limiting regime (that we are going to
determine) in which the initial conditions have been “forgotten” to a
considerable extent.

In the limiting, or asymptotic regime in which we are interested the
problemn does not contain characteristic parameters with dimensions
cither of length or of time. The initial radius of the “piston” cannot be
a scale of length in a region very small as compared to it. The only scale
of length is the radius xg of the shock front, that is a function of time;
the scale of velocity is the velocity of the front dxg/d:, that is also
dependent on time. Then we expect that the asymptotic regime will be
self similar.

Notice that in this case the self similarity exponent ¢ cannot be
determined in advance. In fact, apart from the initial density p, there
are no other parameters that can be used to construct the self similar
variable {. In this connection it must be observed that the energy
imparted to the gas by the piston (that has a definite value) cannot be
taken as a parameter, since only a small part of it is concentrated in the

-
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self similar region (whose radius is of the order of x;), and this fraction
decreases with time. It is then clear that the solution must be a self
similarity of the second kind. The dimensions of the parameter 4 in
(117), related to the similarity exponent J, are not known in advance.
If § is found by direct construction of the solution, as we shall do, then
the numerical value of b will be still indeterminate. It depends on the
initial conditions of the problem, and can be obtained only by experi-
ment, or by following the (numerical) solution of the full non de-
generate problem until its self similar asymptotics is approached.

As said before, the self similar solution holds only in a small region,
whose size is of the order of xg, and then, only close to ¢t = 0, when xg
is small. If one solves the full problem of the motion of the medium,
with appropriate initial conditions so that an imploding shock is pro-
duced, it will be found that as the moment of the collapse is approached
the true solution will approximate closer and closer the asymptotic self
similar solution in a region near the shock front. The form of the
asymptotic solution does not depend on the initial condition, nor on the
motion of the medium at large distances (x > > x;); in particular it is
independent on how the motion was originated. However the asymp-
totics is not entirely independent on the initial conditions, because it
selects from all this information a single datum, the numerical value of
b. This value characterizes the intensity of the initial push that set the
medium in motion.

While the form of the asymptotic solution is independent on the
initial conditions and on the motion at large distances, the manner in
which the true solution tends to this asymptotics does, on the contrary,
depend on it. The closer the initial motion corresponds to the limiting
_motion, the sooner will the true motion near the front attain the self
similar regime. But it will reach it anyway sooner of later, regardless of
the initial conditions and of the motion at large distances.

Let us now show how the self similar solution is constructed. We
consider first the motion before collapse (¢ < 0). To find the desired
integral curve we observe that the point § that represents in the phase
plane the motion of the gas just behind the shock (x = xg) is given by

2 )

STy + 1" T g+ )

according to (136). The integral curve will describe the motion for
x > Xxg, and it must be possible to consider arbitrarily large values of

(167)
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x,i.e. { = oo. Then it must begin at S and end at the singular point O
(Vo = 0, Z, = 0) that represents the infinity in the gas (Sedov, 1959).
The point O is a node, through which pass an infinity of curves that in
its neighborhood are given by Z = KV?, with K = const., as in (143);
they represent flows that for large x are converging uniformly, being
characterized by their asymptotic Mach number .#, = K~'~.

Now we observe that in order to join P and O our integral curve must
intersect the CP. The crossing cannot occur through a regular point of
(125) because then V, Z would be multivalued functions of {, which is
physically inacceptable as commented in Section 5.3. Thus the intersec-
tion must occur at a singularity of (125). It can be checked that there
may be two such singular points on the CP, that we call B, and B_
whose coordinates are given by:

VBi = (p *+ 9)/2n, Zsi = (in - l)z‘ (168)
in which (@ = 0):
p=kKk+v—pqg = (P~ )’ (169)

If one specifies some arbitrary value of § and integrates (125) starting
from §, the resulting integral curve in general either will have no
intersection with the CP or will cross it at a regular point; then this
curve will not give the correct solution. Only for a special value of § the
curve will cross the parabola passing through the appropriate singular
point (that must be either B, or B_), after which it will go to O. The
requirement that the desired integral curve must pass through the
appropriate singular point determines the similarity exponent . Thus
the latter is found by solving a nonlinear eigenvalue problem, as is
typical of self similarity of the second kind.

The points B, , B_ are real if (p* — 4nk) > 0, which happens for
d>9d,0rd < é_ with

) 2 + )
5, = 3+_:_\/.81 (170)
h vy + 2 + /8y

These intervals are represented in Figure 30 for v = 2, 3. It can be
shown that § > §, is the interval of interest.

The eigenvalue J is found by trial and error, integrating numerically
(125). Exponents & have been calculated for various y (Welsh, 1967,
Lazarus and Richtmeyer, 1977, Rodriguez and Linan, 1978, Brush-
linski and Kazhadan, 1963). In the present paper, they have been
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FIGURE 30 In the shaded regions there are no singular points on the CP (w = 0).

calculated for 20 values of y in the interval 1 < y < 3.! Figures 31, 32
show the dependency of é with y for v = 2, 3, respectively. It can be
observed that J, gives a good approximation to the eigenvalue
(Stanyukovich, 1960, Yousaf, 1986, Fujimoto and Mishkin, 1978a,b).
It is to be also observed that there is a certain value y = ¥, such that
0 =20, (forv=318 <y < 19, see Yousaf, 1986); there, ¢ = 0,
and B,, B_ coincide. For y < y_ the integral curve that gives the
solution of the problem passes through B, , that is a saddle point. For

FAll the numerical data quoted in this Section as well as those displayed in the graphs
have been recalculated. The values of & represented in Figures 31, 32 are in perfect
agreement with those of the literature. Nevertheless it should be noticed that the present
calculations yield values of the compression factor of the implosion that differ by a few
percents from those quoted by Zel'dovich and Raizer (1967); we shall not discuss this
matter in detail since it is beyond the scope of the present review, and will be addressed
in a future publication.
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FIGURE 31 The eigenvalue & as a function of y for v = 2. The line that borders the
gray regionisé = é,.

¥ > 7. the appropriate integral curve passes through B_, that is a node.
In either case there is a single trajectory through the singular point on
the CP having the required regular properties.

The solution for ¢ > 0 that describes the flow after the shock collap-
ses at the center can be constructed (Guderley, 1942) as discussed in
Section 4.5 in connection with the centered plane compression wave, by
considering that in the neighborhood of O (i.e. for x — ao) the integral
curve representing the solution for ¢ > 0 must have the same asymptot-
ic Mach number as that corresponding to ¢ < 0.

The integral trajectories are represented in Figure 33 (v = 3,7 = 7/
5). The solution for ¢ < 0 is represented by the curve SB, O, and that
for 1 > 0 by the two pieces DRS, and RS, 0. An outgoing shock wave
is formed, corresponding to the discontinuous transition from RS, to
RS,. This discontinuity is necessary in order to extend the solution to
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FIGURE 32 The eigenvalue ¢ as a function of y for v = 3. The line that borders the
gray regionis 8 = & .

the origin of coordinates, that is represented by the saddle point D
(Vp = 1/y, Z, = o0, see the preceding Section).

The profiles of the velocity, density, temperature, and pressure are
tepresented in Figures 34-37 respectively, forz < 0,7 = Oand ¢t > 0.
In Figure 38 the trajectories of the converging (S) and the outgoing
(RS) shocks, as well as some C_ characteristics (that were calculated
using (140)) are represented in a x-7 diagram. Figure 39 shows some
particle trajectories, obtained by integration of (138).

Various properties of the solution can be appreciated in these graphs,
that can be summarized as follows (the numerical values are forv = 3,
v = 7/5, and are the results of the present calculations):

(a) The imploding shock accelerates continuously and is streng-
thened as it converges to the center. At the same time, energy con-
centrates near the shock front as the temperature and pressure there
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FIGURE 33 Integral trajectory for the convergent shock wave problem (v = 3,
y = 7/5).

increase without limit. Notice however that the size of the self similar
region decreases with time, with the net effect that the total energy
contained in the self similar region actually decreases (Zel’dovich and
Raizer, 1967).

(b) Individual gas elements implode with an almost constant veloc-
ity. The gas velocity behind the reflected shock is directed outwards,
while the gas in front of it is still flowing inwards.

(c) The Mach number at the instant of collapse, 4, = lim,_,V/
\/Z, is uniform and characterizes the solution; it is a diminishing
function of y(.#, = 1.554).

(d) The reflected shock has a constant strength.

(e) The pressure in the central region behind the reflected shock is
roughly constant near the center and increases slightly towards the
shock front.
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FIGURE 34 Velocity profiles for the convergent shock wave problem (v = 3,

¥ = 7/5).

(f) The temperature diverges in the center of symmetry behind the
reflected shock.

(g) For ¢ < 0 the gas is compressed by the imploding shock (6
times), and undergoes an additional adiabatic density increase due to
the convergence of the flow. As x — oo the density tends to a finite
value p, that stays constant in time; at 1 = 0, p = p, everywhere
(pxlpy = 20.07, so that a roughly 3.5x adiabatic compression
occurs). For ¢ > 0 the imploding gas in front of the reflected shock is
further compressed adiabatically from p_, at x = oo to a constant value
priust in front of the outgoing shock (p,/p, = 64.32, again a roughly
3 x density increase). The density vanishes at the center and rises to a
value p,, just behind the reflected shock (p,,/p, = 145.08). This is the
maximum density attained in the process, and remains constant as the
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FIGURE 35 Density profiles for the convergent shock wave problem (v = 3.y = 7/5).

shock propagates outwards.! The maximum compression is infinite for
y = 1 and decreases with increasing y > 1 (Lazarus and Richtmeyer,
1977, Rodriguez and Linan, 1978). For comparison, the following
values are reported by Meyer-ter-Vehn et al., (1982) for the case y = 5/
3,v =34, =095,p./p, = 947, p,./po = 32.0; in this case there
1s a 4 x compression due to the imploding shock.

The limiting characteristic LC (see Section 5.4) represented by the
singular point B, (or B_) on the CP through which the integral curve
passes is shown in the x, ¢ diagram of Figure 38. It can be appreciated
that it divides the converging flow in two regions (I and II):

(a) RegionIis represented by the piece SB, of the integral curve and
corresponds to points between the shock front and the LC. In this

¥Zel'dovich and Raizer (1967) report g, {py = 21.6, p,Jp, = 137.5 for » = /5,

vo= 3.
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FIGURE 36 Temperature profiles for the convergent shock wave problem (v = 3,
y = 75).

region the flow is subsonic and all the C_ characteristics, like C’ in the

_Figure will eventually intersect the shock trajectory S. The flow in this

region is in causal contact with the gas at x = 0, 1 = 0.

(b) Region II is represented by the piece B, O, and corresponds to
points outside the LC in Figure 38. The flow is supersonic and the C_
characteristics, like C” arrive at x = 0 for + > 0. Hence the flow in
region II is not in causal contact with the gas at x = 0, ¢ = 0. This
means that the collapse of the converging shock front will proceed in
the same fashion, regardless of any perturbation that might occur in
this region.t

Comparing the particle trajectories of Figure 39 with Figure 38 it can

tOf course such a perturbation will affect the gas at x = 0 at some later time ¢ > 0.
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FIGURE 37 Pressure profiles for the convergent shock wave problem (v = 3,
y = 7/5).

be appreciated that as ¢ increases and approaches t = 0, the portion of
gas inside the LC (i.e., region I) shrinks and becomes vanishingly small
as more and more gas elements cross the LC passing to region II.

It should be observed that for r > 0 the state of the gas in the central
region behind the reflected shock is very much like that corresponding
to an explosion (the profiles of Figures 34-37 and those of Figure 25 are
qualitatively very similar). In fact, the concentration of energy at the
origin at the moment of collapse of the convergent shock leads to a state
of affairs in a certain sense equivalent to the initial condition of an
explosion, i.e., a very high concentration of energy in a small region of
space. However the analogy between the two problems cannot be
carried too far, considering the different kind of self similarity, that
leads to values of & (and in consequence to motions) very dissimilar.

The numerical solution of the problem of a converging non self
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FIGURE 38 Diagram x-f showing the trajectories of the converging shock (S), the
reflected shock (RS), the limiting characteristic (LC), as well as some other C_ charac-
teristics (v = 3,y = 7/5); x and ¢ are in arbitrary units.

-similar shock wave starting from non self similar initial conditions

shows a transition to the self similar asymptotics in good agreement
with the theory (Nakamura, 1983). The effect of counterpressure was
studied by Welsh (1967). Discussions about the stability of self similar
implosions can be found in the papers of Book and Bernstein (1979).

Second kind seif similar solutions have been also found in related
problems such as the flow into a cavity (Hunter, 1963) and other
implosions, see also Meyer-ter-Vehn and Schalk (1982) and the referen-
ces quoted therein; the problem of the transition to the self similar
asymptotics of the flow into a cavity has been investigated numerically
by Thomas er al. (1986).
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RS

FIGURE 39 Particle trajectories for the convergent shock wave problem (v = 3,
v = 7/5); x and ¢ are in arbitrary units.

6 SELF SIMILAR SHALLOW WATER GRAVITY
CURRENTS

Shallow water theory is closely analogous to gas dynamics, so that it is
convenient to comment briefly the similarity solutions that have been
studied in this context.

Consider the equations of shallow water theory:

Ju ou oh ch ., 0 _

@ = — =0, —+ x"— () = 0, (171)

a Pt a 7
in which wu(x, r) denotes the (horizontal) velocity of an invis_cid liquid
that flows over a planar horizontal bottom, A(x, ) is the lhllckm?ss of
the current, g is the acceleration of gravity, and the geometrical lqdcx
n takes the values 0, 1, according if the current is planar, or axially
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FIGURE 40 An hydraulic jump.

symmetric. We notice that the same equations also describe a gravity
current of a dense fluid that intrudes under a less dense ambient fluid,
provided one replaces g by g° = g(p — p,)/p,, where p, is the density
of the ambient fluid.

It is well known that eqgs. (171) are formally equivalent to the equa-
tions of gas dynamics (114) for y = 2 (see for example Landau and
Lifschitz, 1959b); to show the equivalence it suffices to establish the
formal correspondence

4
ph — p. [ pdy > p. (172)

and one passes from (171) to (114). Clearly, many of the results that one
obtains from the dynamics of gases with y = 2 can be applied to the
shallow water gravity currents, with the qualification that the matching
conditions at discontinuities are different. Discontinuous solutions
must now be joined according to the matching conditions for hydraulic
jumps, as we shall indicate below.

The self similar solutions shall now be of the form

Sx SxN o, %

v = Zvoosh = (T 200 = g5 am)

in which V, Z satisfy the autonomous differential equation (125) with
y = 2, and {(V') is obtained by integration of (126).

In this type of flows, discontinuities of 4 and u, that are called
hydraulic jumps, may appear. The hydraulic jumps play here a role
analgous to that of shock waves in gas dynamics. The matching con-
ditions for hydraulic jumps can be found in the textbooks on hydrody-
namics (see for example Landau and Lifschitz, 1959b), and are derived
by requiring conservation of mass and momentum across the discon-
tinuity (see Figure 40). If the suffixes 1, 2 denote the variables at both
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FIGURE 41 The head of a gravity current that is intruding in an ambient fluid.

sides of the jump, one obtains

JI +87 —1 2

zZ, = Z, V=1 = —————— (¥ - D),
: 2 I ¥ izsg 7D
Vv, — 1)
F - -1 (174)
Z,

in which # = uj/gh, is the Froude number (that plays in the shallow
water theory a role analogous to that of the Mach number in gas
dynamics). The critical parabola is given as in the case of gas dynamics
by Z = (V — 1)}, and corresponds to # = 1. Points of the phase
plane above the CP correspond to subcritical flow (F < 1), and those
below it represent supercritical flow (# > 1).

In the case of a current that intrudes in an ambient fluid, we shall
have internal hydraulic jumps. The matching conditions will be in
general more complicated (see Yih, 1965), but when the depth of the
ambient liquid is infinite the corresponding formulae are formally
identical to those of an ordinary hydraulic jump, with the substitution
g — g in the definition of the Froude number.

If a gravity current intrudes in an ambient fluid, its head will en-
counter a resistance to its advance, and will assume a shape such as is
sketched in Figure 41 (see for example Von Karman, 1940, Brooke
Benjamin, 1968, Simpson and Britter, 1979, Grundy and Rottman,
1986, etc.). If we denote by x, the position of the front, the boundary
condition that takes into account the resistance of the ambient fluid is
of the form

, dx ()
Bghlx,t) = [3_!(1)] (175)
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In which f is a constant parameter of the order of unity for liquids whose
densitiesare not very different. Then thecurrent has a finite thickness atits
front. The case in which the ambient fluid has a vanishing density corres-
ponds to the limit § — oo in (175), then & — 0 at the current front. In
terms of the phase variables the boundary condition (175) takes the form

i) = LEZE) = L (176)

There are not many papers in the literature about self similar gravity
currents. We can mention the classical problem of the breaking of a dam
(see for example Whitham, 1974) that is entirely analogous to the expan-
sion of a gas into a vacuum that we discussed in Section 5.4, and the cur-
rent produced by the discharge of a constant volume of fluid whose the
scaling laws have been obtained by Fannelop and Waldman (1972) and
Hoult (1972). Rottman and Simpson (1983) have investigated experi-
mentally this type of current. A numerical study of the approach to self
similarity, and of the stability of these solutions has been made by Grundy
and Rottmann (1985). Huppert and Simpson (1980), and Maxworthy
(1983), have performed experiments on currents whose volume varies
with time according to a power law of the type ¢*.

A theoretical investigation of the self similar gravity currents has
been made by Britter (1979) in the case of constant volume (¢ = 0) and
more general cases were studied by Grundy and Rottman (1986) with
the phase plane formalism; in this reference currents whose volume
varies with time (x # 0), that intrude into an ambient fluid (with the
boundary condition (176)), were considered. This paper is the most
extensive in what respects the theory, but several results are not satis-

factory: in the case n = 0, the authors cannot obtain self similar

solutions for certain intervals of values of the parameter §, and for axial
symmetry they do not find any self similar solution at all. These
negative results (which are not adequately explained in the paper) are
contrary to intuition, and at best of doubtful validity. In fact, this
Author has investigated these matters and was able to find self similar
solutions in the cases in which Grundy and Rottman (1986) did not
succeed (these results will be published elsewhere).

The scaling laws for currents whose volume varies with a power of
time are obtained from (173) with

2+ a
= . 17
» 3+ n anm
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More details can be found in the above mentioned references.

7 SELF SIMILAR CREEPING FLOWS

Viscosity dominated gravity currents occur in many instances of in-
terest for geophysics, geology, engineering, and environmental sciences.
The main characteristic of these flows is that the motion is essentially
horizontal, and is governed by a balance between gravity and viscous
forces, inertia effect being negligible (see Huppert, 1986, Kerr and
Lister, 1987, Simpson, 1982, Hoult, 1972, etc.). In general, except
perhaps at the beginning of the phenomenon, the length of the current
is much greater than its thickness; with these assumptions, the flow can
be described by means of the so called lubrication theory approxima-
tion (Buckmaster, 1977, Huppert, 1982).

Some self similar solutions representing this type of currents have
been studied by Huppert (1982), who considered flows with planar and
axial symmetry over a rigid horizontal supporting surface; it was as-
sumed that the volume of the current varied according to a power law
of the time, Britter (1979), Didden and Maxworthy (1982), Huppert
(1982), and Maxworthy (1983) performed experiments in this field. The
complete theory of the self similar solutions for these phenomena,
based on a generalization of the Sedov-Courant-Friedrichs phase
plane formalism was developed by Gratton and Minotti (1990}, who
also discussed a considerable number of new solutions.

The interest in this type of phenomena goes far beyond the topic of
viscous gravity currents, because, as we shall show below, the nonlinear
parabolic equations (in contrast to the equations of gas dynamics and
of the shallow water theory, which are hyperbolic) that govern these
flows are mathematically equivalent to those that describe many other
important physical phenomena (Seshadri and Na, 1985); the list is long,
and it includes nonlinear diffusion, nonlinear heat conduction (trans-
port of heat by radiation in ionized gases, electron conduction in
plasmas, etc.), the Dupuit-Forchheimer equations for groundwater
flow in unconfined aquifers, and the porous media equation (see for
example Peletier, 1981); other phenomena are mentioned in Bear
(1982), Boyer (1962), and Lacey et al. (1982). In this context it can be
mentioned that the solutions found by Pattle (1959) for nonlinear
diffusion, and the self similar solutions of the nonlinear heat diffusion
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equations discussed by Barenblatt (1979), Tappert (1977), and Baren-
blatt and Zel'dovich (1972), are analogous to some of the solutions that
describe self similar viscous gravity currents derived by Huppert ( 1982)
and by Gratton and Minotti (1990). The stability of some of the self
similar solutions of this family has been investigated by Gratton and
Minotti (1988).

The theory has also been extended to non newtonian liquids that
follow a power law rheology, that are of interest for applications to
flows in the Earth’s lithosphere (Gratton er al., 1988): a further exten-
sion is due to Diez (1989) and deals with the self similar solutions of the
problem of water percolation in soils.

We now summarize the theory (Gratton and Minotti, 1990). Let
H(x, ) be the thickness of the current, and v(x, z, 7) the velocity, which
we shall assume is nearly horizontal; here x denotes the horizontal
coordinate (cartesian or radial, according if planar or axial symmetry
is assumed), z is the vertical coordinate; the boundary condition at the
bottom will be v(x, z = 0, 1) = 0, and at the free surface we shall
require (0v/dz),., = 0. Using these conditions, and with the above
assumptions one can derive the vertical velocity profile:

3
v = ?]‘fzf(zﬂ~ 2), (178)

inwhich u(x, 1) = 2v(x, z = H, 1)/3 is the average horizontal velocity.
It is important to notice that the only constant dimensional parameter
that enters in the governing equations of the problem is g/v (v denotes
the kinematic viscosity coefficient), and that it can be absorbed defining
a new dependent variable that replaces H, as

h = (g/3v)*H. (179)
One then obtains the basic equations of the problem in the form
oh oh é
h — = 0, — " =
v = + u '3 + x Fi (x" uh) 0. (180)

in which no constant dimensional parameter appears. These equations
are the starting point for the introduction of the phase plane formalism.
In (180) the geometrical index # is 0 for planar, and 1 for axial sym-
metry.

It is possible to use the first of the eq. (180) to eliminate u thus
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obtaining a single second order equation of the general form

oh @ . Oh
g; = X é‘;(;\’"h a—x). (181)

in which the nonlinearity index takes the value m = 3 in the present
case. When the governing equation is written in the form (181), it can
be recognized the analogy between the problem of viscous gravity
currents and the nonlinear diffusion, nonlinear thermal conduction,
and other phenomena of the same mathematical nature that we men-
tioned above. Heat conduction by radiation in a fully ionized gas
corresponds to m = 13/2; electron heat conduction in a plasma to
m = 5/2; with m = 1 one obtains the Dupuit-Forchheimer equation,
etc. Since some of these problems are by nature three dimensional, the
case n = 2, that corresponds to spherical symmetry is also physically
meaningful (this is not true for the viscous currents nor for the ground-
water flow, that are essentially two-dimensional phenomena). We no-
tice also that the linear case (m = 0) cannot be studied by means of the
phase plane formalism we shall presently develop, as it is not possible
to eliminate from the governing equations the dimensional parameter
(the diffusivity} by means of the substitution (179); if m = 0, this
parameter necessarily enters in the definition of the self similar variable
(see Sections 3.1 and 4.2).
The eqs. (180) involve only quantities having the dimensions of
length, time, or combinations thereof, then # and u can be expressed as
h = NIEYR, 9 = U, (182)
in which the phase variables Z, V are in general dimensionless functions
of x, t and the constant parameters involved in the initial and/or
boundary conditions. The problem will be self similar if these con-
ditions introduce no more than a single parameter with independent
dimensions. We shall assume this to be the case; we call b this paramet-
er, and assume that its dimensions are given by
B = [ (183)
in which d is a numerical constant. The motion is then self similar, and
Z, V will be functions of the self similarity variable
X
{ = A (184)
Substitution of (182) and (184) in (180) yields a system of two ordinary
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differential equations for the phase variables, that we shall not write
down for brevity. From this system one can obtain the basic equations
of the phase plane formalism in the form of an autonomous equation
for V(Z):

vV (26 = DZ + X1 + mVZ + 35 - VIV

Z - 3707 + 37) S5
whose solutions are the integral curves, and a second equation:
d 1
—CL_Z(]n Iy = - 37 330 (186)

that allows to calculate by means of a quadrature the self similar
variable in terms of the phase variables, once the adequate integral
curve V(Z) has been found.
For the general nonlinear diffusion equation (181) one obtains fol-
lowing a similar procedure:
av (26 - DZ + m(1 + )VZ + m(6 — V)V

2 = 1
dz mZ(2Z + mV) . (187)

and:

!
T 2Z + mV

in place of (185) and (186) (Gratton and Minotti, 1990); in this case
n = 0, 1, 2 for planar, cylindrical, and spherical symmetry, respective-
ly.
It can be observed that the autonomous differential equation (185) is
-simpler than its counterpart (125) for gas dynamics since the numerator
and the denominator of its r.h.s. are polynomials of the second degree
in V, Z, while those of (125) are of the fourth degree. There are in the
present case six singular points, namely: O[Z, =0, V, = 0],
AlZ, =0, V,=246, BlZ,= =325+ 3n), V=105 + 3n),
ClZ. =0, Ve =), D[Zy, = o, V, = (1 — 28)/3(1 + n)], and
E[Z; = w0, Ve = oc]. Their properties and those of the family of the
self similar viscous gravity currents has been analyzed in depth in the
paper of Gratton and Minotti (1990) to which the reader is referred.
There is a certain parallelism between this family and that of the
dynamics of gases, notwithstanding several important differences. One
of these is that here the whole phase plane (and not only the Z > 0 half

d i =
7 k) = (188)
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plane, as before) is physically meaningful: the solutions with Z > 0
correspond to r > 0, and those with Z < 0 are meaningful for r < 0.
An other important difference is that in the present case there is nothing
equivalent to the critical parabola, nor there are solutions with jumps,
or shocks, as it is to be expected given the diffusive nature of the
governing equations.

An interesting property of the currents we are considering is the
occurrence of sharp, well defined fronts (that correspond to the finite
propagation speed of a thermal wave in the case of nonlinear heat
conduction), but perhaps the single most striking and novel feature is
the occurrence of solutions with a front that does not move during a
finite amount of time, remaining at a fixed position, while nevertheless
motion is taking place behind it; these solutions are usually called
waiting-time solutions in the literature on nonlinear diffusion.

In what follows we shall discuss some of the solutions that can be
obtained from eq. (180), to illustrate some of the most remarkable
features of the self similar solutions of this type of nonlinear parabolic
equations.

7.1 The Breaking of a Dam Containing A Viscous Liquid

Let us assume that a vertical wall at x = 0 (we consider planar sym-
metry) supports a semti infinite pool of a viscous liquid in the x < 0
region, whose depth is H,. In a certain moment, that we shall take as
t = 0, the wall is removed and the liquid overruns the x > 0 region.
There is a single constant dimensional parameter, A, = (g/3v)'* H,, so
that the problem is self similar in the variable

X

{ = W; (189)

b = K? 6 = L (190)

The relevant part of the phase plane is represented in Figure 42. Since
initially no fluid is present in the x > 0 half plane, the solution must
present a front at a finite distance from the origin, that moves in time;
The integral curve that represents the flow for x > 01islabeled 4 in the
Figure; it starts at the singular point E* that represents the origin of

*The singular point E is a node.
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FIGURE 42 The integral curves for the dam breaking problem.

coordinates (x = 0), and arrives at the singular point 4, that represents
the front (notice that as A is a saddle, the integral curve A is unique).
For x < 0 the flow is represented by the curve A’, that joins the origin
O of the phase plane (that represents the point |x| = oo of the fluid)
with E. It can be shown that O is a saddle-node, there being an infinite

- number of integral curves arriving at O from the Z > 0 half plane, but

only a single curve that arrives there from the Z < 0 half plane; then
A'must be determined imposing some additional conditions, which
obviously can be no other than the requirement of the continuity of 4
and v at x = 0(i.e., at the point E); these conditions allow to determine
the curve A" and the integration constant that fixes ¢, (the front posi-
tion).

Near A4, i.e. near the front, the following asymptotic formulae hold
for the integral curve A:

(5 + 3ny — 1

V=090%+ 126

Z,Z = 3 -, (191
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Xf X

FIGURE 43 Qualitative profile of the viscous current produced by the breaking of a
dam.

x
H o~ %95 — x[x)"P u ~ T

Near E, which as said represents the point x = 0, we have the
following formulae for the curves A, A’

Z ~ VLZ ~ TLH ~ 0y P (192)

Finally, all the integral curves that arrive at O have the following
asymptotic behavior (8 # 0), that describes what happens near
X = —oo:

281 (5 + 3n)s — 4
Vs Z[‘"—za—z—

Z+ - ] Z ~ [

H ~ const,u ~ §e"";3, (193)

in which K denotes a constant.

The profile of the solution has been sketched in Figure 43. It can be
observed that the current is characterized by a constant vertical scale
H,, so that the only change of its profile with the passing of time is a

horizontal stretching proportional to ¢'2.

7.2 Waiting-time Solutions

We shall consider the singular point B, located at

3 1

Zy = '2(5+3n)‘V” T 5¥3m

(194)
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It can be shown that B can be either a node, or a focus, according to
the values of 6 and n. In addition, for any 9, n,

V = Vo Z = Z, (195)

give an exceptional exact solution of the governing _equationsi (180) that
is represented in the phase plane by the single point B. This solution
corresponds to negative times, and is given by

BT ¥ RS U S (196)
H=_|:10+6n§]'u_5+3n1'

It describes a current with a fixed front at x = 0 whose p'roﬁl'e varies
as x** and whose thickness at a fixed position grows mﬁmtely as
—1 — 0. The velocity of the current is zero at the fr.m?t for any given
time, and increases linearly with x: for fixed x( 0} it increases as t:e
inverse power of time, and is always dircct_ed towgrds thg froqt.}lThc
equation of motion of a parcel of the liquid that is moving with the

average velocity is

x = const.(—)!/¢+M, (197)

Physically, this means that given adequate conditions, apd without z;:y
obstacle to prevent its advance, there can be currents with a fronF t ‘}t
waits for a finite amount of time while the ﬂo.w bet'und reorders 1tself],
before starting to move. This type of behavior is typical of the so-c;illed
waiting type solutions, that appear in problems governed by nonlme_ar
diffusion-type equations such as (181). There have been recent‘ly quite
a few papers on this intriguing topic (among others see for éréstatl:ce[
Lacey et al., 1982, Kath and Cohen, 1982, Smyth and Hill, 19d.), tuz;l
is by itself an interesting field of researc;h. The problem of ﬁnhmf nt:
appropriate continuation of these solutions for ¢+ > 0, when; e [;:en
begins to move (and the pres;ezn)t treatment breaks down) has
1 Lacey er al. (1982).
COY%S}:SC;:;Egonal sz)lution we have discussed is not the only fmc; thl?t
exhibits a waiting-time behavior; there are several integral curves 1:1 t ;
phase plane that describe solutons of this type; they are curves re ated
to the singular point B, and, for é = 0, to the point O (Gratton an
inotti 0).

M?l?;t;elci?ia)r behavior of a waiting lim_e solution can be observej
most easily be means of a very simple experlmentithat can be performe
with a flat bottomed vessel that contains a thin layer of some very
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viscous fluid (such as some silicones). To set up an initial condition that
leads to the desired flow, lift one of the sides of the vessel and wait unti]
the liquid settles under the action of gravity, taking a wedge shaped
profile; then lower rapidly the side so that the bottom of the vessel is
horizontal. In this way an initial condition is established, in which the
liquid rests on a flat horizontal surface, and has a depth that varies
linearly with the position, being zero at the front. It will then be
observed that the subsequent motion consists of a change of the shape
of the profile, but the front itself does not move. This will go on for a
certain interval of time, during which the profile near the front acquires
a bulging shape, until suddenly the front begins to advance. The type
of motion we have described corresponds to a waiting time solution.
The interpretation is as follows: to advance, the profile of the liquid
must have the unique shape given by (191) in the vicinity of the front.
If the initial condition is such that the profile of the current does not
agree with the 1/3 power law (191) in the vicinity of the front, there
cannot be a motion of the front itself. The flow that ensues in this case
takes place behind the front, and gradually distorts the profile so that
eventually it acquires that particular shape that is compatible with the
movement of the front. Then, there must be a first stage of the
phenomenon in which the front sits still for a finite time interval,
waiting for the flow behind to reorganize. The self similar waiting time
solutions describe the very last moments of this first stage.

7.3 The Collapse of a Converging Viscous Current

Let us consider an axially symmetric viscous current that converges
towards the center of symmetry. Such a current can be produced if there
is initially a pool of liquid outside a circular vertical retaining wall (the
region inside the wall being dry), and at a certain moment the wall is
removed letting the liquid run towards the center. The current will have
a converging front whose radius will decrease with time, and that will
finally collapse at the center. We shall focus our attention on the Jast
stages of the phenomenon, near the moment of collapse, and shall be
interested in the properties of the flow near the front, for small values
of the radius as compared to any constant parameter characteristic of
the initial conditions (for example, the radius of the retaining wall). In
this situation no characteristic constant governing parameter remains,
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because those that appear in the initial conditions are no longer ade-
quate as scales of the properties within the region of interest, and the
characteristic parameters of the flow within this region are functions of
time. Consequently the flow must be self similar, but the self similarity
exponent § cannot be found by means of dimensional analysis.
Therefore we are in the presence of a case of self similarity of the second
kind. We shall now proceed to find the solution by direct construction.

Since the current has a moving front, the solution must be represented
by the single integral curve passing through the singular point 4.t We re-
call that we are concerned with what happens before the collapse of the
front (which we shall take to occuratt = Q),i.e.,fors < 0, whichmeans
that theintegralcurve we are seekingmust lieinthe Z < 0halfplane. The
integral trajectory leaving A must end at some other singular point; there
are in the present case only three possibilities: the points O, B, and C. Itis
easy to see that Band C must be discarded, as an integral curve from A4 to
any of these points represents a current whose thickness tends to zero, or
toinfinity,as — ¢ — 0, atany finite distance behind the front (to see thisitis
necessary toinvestigate the behavior of the solutionsin the neighborhood
of the singular points concerned; we skip the details for brevity, the inter-
ested reader can find them in the paper by Gratton and Minotti, 1988a).

We conclude that the current must be represented by an integral
curve joining 4 with O (more precisely, a portion of this curve), that has
indeed the desired properties, viz., it describes a flow that for —¢ — 0
has H, u, finite and non vanishing at any finite distance behind the
front. But O is (like A) a saddle for curves approachingitinthe Z < 0
half plane. Clearly, the single curve leaving 4 will not in general (i.e.,
for an arbitrary value of ) coincide with the single curve arriving at O
(see Figure 44). Then, for arbitrary § there will be no solution. Only for
a special value of d, that we shall denote by &, there will be an integral
curve joining 4 withO, that represents the solution we are looking for.
Thus the self similarity exponent is found by solving an eigenvalue
problem, as corresponds to a self similarity of the second kind.

By numerical calculation one finds §, = 0.762. . . . Near the front
whose position is denoted by x, the solution is given by

o . G\ x "y 46, — 1 x
—4 — — —_— — — e ——-i—— l _— — e §
1 ( Y :) )T s, 5t

fActually there is a second integral curve passing through A (that is a saddle): it is the
line Z = 0. that corresponds to a trivial, uninteresting solution.
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FIGURE 44 The eigenvalue problem for the collapse of a converging viscous current.

X 8, — 1 X
u = (5‘?,:1 — T(] _ 4 - 'j”xf = K(__[)O.Tﬁ‘z,..’

Xy
K = const. (198)

It can be observed that as — ¢ —» 0 the front accelerates, and its velocity
becomes infinite the moment of collapse. In Figure 45 the profiles of
this current can be appreciated.

Fort > 0,i.e., after the coilapse, the solution must be represented by
an integral curve in the Z > 0 half plane, corresponding of course to
& = d,; this curve must represent a flow with finite thickness and
vanishing velocity at x = 0. It can be shown (Diez et al., 1989) that this
curve is precisely the single integral curve that leaves the singular point
D (which is a saddle) and arrives at Q. The profiles of the current after
the collapse are shown in Figure 46.

It can be observed that this problem has several features in common
with that of the collapse of a cylindrical (or spherical) shock wave
(Section 5.7), that leads to the classical solution of Guderley (1942). The
ge-neralization of this problem for any n, m, has been investigated by
l?rez et al. (1989). In Figure 47 we present the dependence of the
eigenvalue J, on the geometrical and nonlinearity indices.
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FIGURE 45 Thickness and velocity profiles before collapse of a converging viscous
current.

7.4 Progressive Waves and Limiting to Self Similar
Solutions

To conclude this Section we shall discuss a special analytic solution of
egs. (180) and (185), that will show the connection between the self
similar solutions and the solutions of the progressive wave type.

In the case n = 0 the governing equations (180) are translationally
invariant, so that they admit solutions of the progressive wave type:

ho= W&, u = wé),& = cf — x, (199)

with ¢ = const.. Of course, in this case ¢ is not a characteristic of the
medium, but will be determined by the boundary conditions, for exam-
ple the (constant) velocity of a piston that is pushing the fluid, so that
it can take any value.

It is known (see for instance Barenblatt and Zel’dovich, 1972, and
Barenblatt, 1979) that there is a close connection between the self
similarities and the traveling waves. Actually the traveling waves are
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FIGURE 46 Thickness and velocity profiles after collapse of a converging viscous
current.

themselves self similar, as can be formally shown performing the sub-
stitution
.M =il T
A= =,p = e ", 1 = e, (200)
in (199). In (200), A is the self similarity variable, L and T are two
characteristic parameters with dimensions of length and time, respec-
tively, with L = ¢T, and ¢ = In A. This is not a self similarity of the
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type we have been studying in the previogs Sections (in whnch t(};e self
similar variable is expressed as a monomm{ of powers of the in epe}r:
dent variables), but anyway we can call it by this name, }s]mce }tl:
solutions (199) do not depend on x, ¢ sep_arate]y, but On]y|t950u%00)
particular combination of both. The soluuops of the type ( ; ) (t -
can be derived from the phase plane formallsm‘by means E afc;:;daov
limiting process, whose details can be foynd in the boot .oc]ass o
{1959), and because of this they are a spec}al' caie'of a certain s o
solutions that are called “limiting to self similar” in the literatur 'u'on
shall not discuss the detaiis of the general rnthod for the construcﬁnd
of the limiting to self similar solutions, as thc interested rea;jzr can nd
it in the above mentioned reference, but instead we shall derive
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of traveling wave solutions for the planar viscous gravity flows, and
show their connection to the self similarities of the type (182), (184).

We substitute in eq. (180) the definitions (199), and denote with * the
derivative with respect to ¢; then, after eliminating the dependent
vanable u and performing a first integration we obtain:

W —ch = K = const. ) (201)
If K = 0 we find the solution

9' 143
H = [f(g - go)J »U = ¢, & = const, (202)

that represents a current that moves with a constant velocity ¢ without
changing its profile, and whose front is located at Xr = ct — §,. This
type of flow is produced by a spatula advancing with uniform speed,
pushing a constant volume of liquid in front of it.

For K # 0itisalso possible to obtain analytical solutions of the eq.
(201); we shall not spend time with them, as they are discussed in the
paper of Gratton and Minotti (1990), it will suffice to say that they
describe traveling waves corresponding to other boundary conditions,
such that the volume of fluid pushed by the spatula is not conserved,

It is an interesting fact that the solution (202) is also represented
among the self similar solutions of the phase plane. Indeed, the eq. (1 85)
admits, for n = 0, § = I, an exact analytic solution (that passes
through the singular point 4) given by

Z =3V -1, (203)

It can be verified that (203) represents precisely the solution (202). In
contrast, the remaining traveling wave solutions corresponding to
K # 0 are not represented in the phase plane: in other words, they do
not admit a self similar representation of the type ( 182), (184). This is
precisely what should be expected, since the traveling waves depend in
general on two dimensional parameters, ¢ and K, with independent
dimensions; only if K = 0 we are left with a single parameter, so that
a self similarity of the type (182), (184) is obtained.

8 FINAL REMARKS

The overview of self similarity we have presented in this article is far
from being complete and thorough. For the sake of brevity we have left
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untouched important topics as for instance the problem of the spectrum
of exponents of the self similarity variables, certain issues connected
with the stability of the solutions, as well as a large number of applica-
tions to the mechanics of continuous media, the theory of turbulence,
astrophysics, etc.. Various matters that would have perhaps deserved
a more detailed and in depth analysis have been very summarily dis-
cussed. To assist those who are interested, or need to further study some
of the present topics, we have endeavored to give an abundant, albeit
with no pretense of completeness, list of references that we believe
should be sufficient to orient the reader in this field.

Notwithstanding these limitations [ hope that the various examples
discussed will have helped the reader to grasp the fundamental concepts
involved in self similarity and given him a taste of its richness, as well
as a glimpse of the beauty and elegance of the solutions and of the
usefulness of the theory.
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